Thermometry in a Multipole Ion Trap
Abstract
:Featured Application
Abstract
1. Introduction
2. Overview of the Experimental Setting
3. Description of the Ion Trap
4. Comparison between Wire and Rod Traps
5. Translational Temperature Determination in HAI-Trap
5.1. Energy Distribution of Trapped Ions
5.2. Spatial Distribution from Photodetachment Tomography
5.3. Effect of Surface Charges on the Ion Distribution
5.4. Correlation between Ions’ TOF Distribution and Their Translational Temperature
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. COMSOL Multiphysics® Simulations
Appendix B. Molecular Dynamics Simulation
References
- Schuessler, H.A.; Holder, C.H.; Chun-Sing, O. Orbiting charge-transfer cross sections between He+ ions and cesium atoms at near-thermal ion-atom energies. Phys. Rev. A 1983, 28, 1817–1820. [Google Scholar] [CrossRef]
- Côté, R. From Classical Mobility to Hopping Conductivity: Charge Hopping in an Ultracold Gas. Phys. Rev. Lett. 2000, 85, 5316–5319. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, N.; Dalgarno, A. Chemistry at Ultracold Temperatures. Chem. Phys. Lett. 2001, 341, 652–656. [Google Scholar] [CrossRef]
- Rellergert, W.G.; Sullivan, S.T.; Kotochigova, S.; Petrov, A.; Chen, K.; Schowalter, S.J.; Hudson, E.R. Measurement of a Large Chemical Reaction Rate between Ultracold Closed-Shell 40Ca Atoms and Open-Shell 174Yb+ Ions Held in a Hybrid Atom-Ion Trap. Phys. Rev. Lett. 2011, 107, 243201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willitsch, S. Coulomb-crystallised molecular ions in traps: Methods, applications, prospects. Int. Rev. Phys. Chem. 2012, 31, 175–199. [Google Scholar] [CrossRef]
- Ravi, K.; Lee, S.; Sharma, A.; Werth, G.; Rangwala, S.A. Cooling and stabilization by collisions in a mixed ion-atom system. Nat. Commun. 2012, 3, 1126. [Google Scholar] [CrossRef] [Green Version]
- Ratschbacher, L.; Zipkes, C.; Sias, C.; Köhl, M. Controlling chemical reactions of a single particle. Nat. Phys. 2012, 8, 649–652. [Google Scholar] [CrossRef]
- Puri, P.; Mills, M.; Simbotin, I.; Montgomery, J.A.; Côté, R.; Schneider, C.; Suits, A.G.; Hudson, E.R. Reaction blockading in a reaction between an excited atom and a charged molecule at low collision energy. Nat. Chem. 2019, 11, 615–621. [Google Scholar] [CrossRef] [Green Version]
- Dalgarno, A.; Rudge, M.R.H. Cooling of Interstellar Gas. Astrophys. J. 1964, 140, 800. [Google Scholar] [CrossRef]
- Stancil, P.C.; Lepp, S.; Dalgarno, A. The lithium chemistry of the early Universe. Astrophys. J. 1996, 458, 401. [Google Scholar] [CrossRef]
- Steigman, G. Charge transfer reactions in multiply charged ion-atom collisions. Astrophys. J. 1975, 199, 642–646. [Google Scholar] [CrossRef]
- Vuitton, V.; Yelle, R.; McEwan, M. Ion chemistry and N-containing molecules in Titan’s upper atmosphere. Icarus 2007, 191, 722–742. [Google Scholar] [CrossRef]
- Snow, T.P.; Bierbaum, V.M. Ion Chemistry in the Interstellar Medium. Ann. Rev. Anal. Chem. 2008, 1, 229–259. [Google Scholar] [CrossRef] [PubMed]
- Vuitton, V.; Lavvas, P.; Yelle, R.; Galand, M.; Wellbrock, A.; Lewis, G.; Coates, A.; Wahlund, J.E. Negative ion chemistry in Titan’s upper atmosphere. Planet. Space Sci. 2009, 57, 1558–1572. [Google Scholar] [CrossRef]
- Reddy, V.S.; Ghanta, S.; Mahapatra, S. First Principles Quantum Dynamical Investigation Provides Evidence for the Role of Polycyclic Aromatic Hydrocarbon Radical Cations in Interstellar Physics. Phys. Rev. Lett. 2010, 104, 111102. [Google Scholar] [CrossRef]
- Bohringer, H.; Glebe, W.; Arnold, F. Temperature dependence of the mobility and association rate coefficient of He+ions in He from 30–350K. J. Phys. B At. Mol. Phys. 1983, 16, 2619–2626. [Google Scholar] [CrossRef]
- Eppink, A.T.J.B.; Parker, D.H. Velocity map imaging of ions and electrons using electrostatic lenses: Application in photoelectron and photofragment ion imaging of molecular oxygen. Rev. Sci. Instrum. 1997, 68, 3477–3484. [Google Scholar] [CrossRef]
- Neuhauser, W.; Hohenstatt, M.; Toschek, P.E.; Dehmelt, H. Localized visible Ba+ mono-ion oscillator. Phys. Rev. A 1980, 22, 1137–1140. [Google Scholar] [CrossRef]
- Bergquist, J.C.; Wineland, D.J.; Itano, W.M.; Hemmati, H.; Daniel, H.U.; Leuchs, G. Energy and Radiative Lifetime of the 5d96s22 State in Hg II by Doppler-Free Two-Photon Laser Spectroscopy. Phys. Rev. Lett. 1985, 55, 1567–1570. [Google Scholar] [CrossRef]
- Segall, J.; Lavi, R.; Wen, Y.; Wittig, C. Acetylene carbon-hydrogen bond dissociation energy using 193.3-nm photolysis and sub-Doppler resolution hydrogen-atom spectroscopy: 127 .+-. 1.5 kcal mol−1. J. Phys. Chem. 1989, 93, 7287–7289. [Google Scholar] [CrossRef]
- Kinugawa, T.; Arikawa, T. Three-dimensional velocity analysis combining ion imaging with Doppler spectroscopy: Application to photodissociation of HBr at 243 nm. J. Chem. Phys. 1992, 96, 4801–4804. [Google Scholar] [CrossRef] [Green Version]
- Schlemmer, S.; Kuhn, T.; Lescop, E.; Gerlich, D. Laser excited N2+ in a 22-pole ion trap:: Experimental studies of rotational relaxation processes. Int. J. Mass Spectrom. 1999, 185–187, 589–602. [Google Scholar] [CrossRef]
- Glosík, J.; Hlavenka, P.; Plašil, R.; Windisch, F.; Gerlich, D.; Wolf, A.; Kreckel, H. Action spectroscopy of and D2H+ using overtone excitation. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2006, 364, 2931–2942. [Google Scholar] [CrossRef] [PubMed]
- Otto, R.; von Zastrow, A.; Best, T.; Wester, R. Internal state thermometry of cold trapped molecular anions. Phys. Chem. Chem. Phys. 2013, 15, 612–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakhmanskaya, O.; Simpson, M.; Wester, R. Vibrational overtone spectroscopy of cold trapped hydroxyl anions. Phys. Rev. A 2020, in press. [Google Scholar] [CrossRef]
- Deiglmayr, J.; Göritz, A.; Best, T.; Weidemüller, M.; Wester, R. Reactive collisions of trapped anions with ultracold atoms. Phys. Rev. A 2012, 86, 043438. [Google Scholar] [CrossRef] [Green Version]
- Trippel, S.; Mikosch, J.; Berhane, R.; Otto, R.; Weidemüller, M.; Wester, R. Photodetachment of cold OH− in a multipole ion trap. Phys. Rev. Lett. 2006, 97, 193003. [Google Scholar] [CrossRef] [Green Version]
- Hlavenka, P.; Otto, R.; Trippel, S.; Mikosch, J.; Weidemüller, M.; Wester, R. Absolute photodetachment cross section measurements of the O− and OH− anion. J. Chem. Phys. 2009, 130, 061105. [Google Scholar] [CrossRef] [Green Version]
- Osborn, D.L.; Leahy, D.J.; Cyr, D.R.; Neumark, D.M. Photodissociation spectroscopy and dynamics of the N2O2− anion. J. Chem. Phys. 1996, 104, 5026–5039. [Google Scholar] [CrossRef]
- Höltkemeier, B.; Glässel, J.; López-Carrera, H.; Weidemüller, M. A dense gas of laser-cooled atoms for hybrid atom-ion trapping. Appl. Phys. B Lasers Opt. 2017, 123, 51. [Google Scholar] [CrossRef]
- Nadarajah, S. A generalized normal distribution. J. Appl. Stat. 2005, 32, 685–694. [Google Scholar] [CrossRef]
- Otto, R.; Hlavenka, P.; Trippel, S.; Mikosch, J.; Singer, K.; Weidemüller, M.; Wester, R. How can a 22-pole ion trap exhibit ten local minima in the effective potential? J. Phys. B At. Mol. Opt. Phys. 2009, 42, 154007. [Google Scholar] [CrossRef]
- Okada, K.; Yasuda, K.; Takayanagi, T.; Wada, M.; Schuessler, H.A.; Ohtani, S. Crystallization of Ca+ ions in a linear rf octupole ion trap. Phys. Rev. A 2007, 75, 033409. [Google Scholar] [CrossRef] [Green Version]
- Wester, R. Radiofrequency multipole traps: Tools for spectroscopy and dynamics of cold molecular ions. J. Phys. B At. Mol. Opt. Phys. 2009, 42, 154001. [Google Scholar] [CrossRef]
- Gerlich, D. Inhomogeneous RF Fields: A Versatile Tool for the Study of Processes with Slow Ions. In Advances in Chemical Physics; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2007; pp. 1–176. [Google Scholar] [CrossRef]
- Ter Haar, D. (Ed.) The Maxwell—Boltzmann Distribution. In Elements of Statistical Mechanics, 3rd ed.; Butterworth-Heinemann: Oxford, UK, 1995; Chapter 2; pp. 36–58. [Google Scholar] [CrossRef]
- Asvany, O.; Schlemmer, S. Numerical simulations of kinetic ion temperature in a cryogenic linear multipole trap. Int. J. Mass Spectrom. 2009, 279, 147–155. [Google Scholar] [CrossRef]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Tsallis, C.; Mendes, R.; Plastino, A. The role of constraints within generalized nonextensive statistics. Phys. A Stat. Mech. Appl. 1998, 261, 534–554. [Google Scholar] [CrossRef]
- Höltkemeier, B.; Weckesser, P.; López-Carrera, H.; Weidemüller, M. Dynamics of a single trapped ion immersed in a buffer gas. Phys. Rev. A 2016, 94, 062703. [Google Scholar] [CrossRef] [Green Version]
- Höltkemeier, B.; Weckesser, P.; López-Carrera, H.; Weidemüller, M. Buffer-Gas Cooling of a Single Ion in a Multipole Radio Frequency Trap Beyond the Critical Mass Ratio. Phys. Rev. Lett. 2016, 116, 233003. [Google Scholar] [CrossRef] [Green Version]
- Rouse, I.; Willitsch, S. Superstatistical Energy Distributions of an Ion in an Ultracold Buffer Gas. Phys. Rev. Lett. 2017, 118, 143401. [Google Scholar] [CrossRef] [Green Version]
- COMSOL Multiphysics, Version 5.4. Available online: https://www.comsol.com/ (accessed on 16 June 2020).
- Friedman, M.H.; Yergey, A.L.; Campana, J.E. Fundamentals of ion motion in electric radio-frequency multipole fields. J. Phys. E Sci. Instrum. 1982, 15, 53–56. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nötzold, M.; Hassan, S.Z.; Tauch, J.; Endres, E.; Wester, R.; Weidemüller, M. Thermometry in a Multipole Ion Trap. Appl. Sci. 2020, 10, 5264. https://doi.org/10.3390/app10155264
Nötzold M, Hassan SZ, Tauch J, Endres E, Wester R, Weidemüller M. Thermometry in a Multipole Ion Trap. Applied Sciences. 2020; 10(15):5264. https://doi.org/10.3390/app10155264
Chicago/Turabian StyleNötzold, Markus, Saba Zia Hassan, Jonas Tauch, Eric Endres, Roland Wester, and Matthias Weidemüller. 2020. "Thermometry in a Multipole Ion Trap" Applied Sciences 10, no. 15: 5264. https://doi.org/10.3390/app10155264
APA StyleNötzold, M., Hassan, S. Z., Tauch, J., Endres, E., Wester, R., & Weidemüller, M. (2020). Thermometry in a Multipole Ion Trap. Applied Sciences, 10(15), 5264. https://doi.org/10.3390/app10155264