Dynamic Viscosity and Transverse Ultrasonic Attenuation of Engineering Materials
Abstract
:1. Introduction
2. Experimental Methods
3. Results and Discussion
3.1. Attenuation Behavior of Iron and Ferrous Alloys
3.2. Attenuation Behavior of Non-Ferrous Metals and Alloys
3.3. Attenuation Behavior of Organic Materials
3.4. Attenuation Behavior of Fiber-Reinforced Plastics
3.5. Attenuation Behavior of Inorganic Materials
4. Discussion
5. Summary
- (1)
- Methods of ultrasonic attenuation measurement for the transverse waves were implemented and verified using PMMA samples. These were transmission difference methods, similar to those used previously for the longitudinal waves [13].
- (2)
- A total of 223 transverse attenuation measurements were completed together with 50 additional longitudinal attenuation measurements. The frequency dependence of the attenuation coefficients followed four patterns, linear, Mason-McSkimin (linear + f4), linear + f2 (or f2), and linear + f3 (or f3). The linear spectra were found in two-thirds of the tests, followed by Mason-McSkimin relation in a quarter of the cases. In only five cases, the linear component was absent.
- (3)
- The transverse damping factors, ηt, converted from the linear components, ranged from 0.004 for ferrous alloys to 0.065 for FRP. Corresponding longitudinal values of η were from 0.007 to 0.048. These η and ηt for non-metals are higher than those of prototypically viscoelastic PMMA (η = 0.008 and ηt = 0.013). Even metallic values were within a factor of three, suggesting almost all engineering materials are viscoelastic.
- (4)
- The transverse attenuation coefficients, Cdt, were 1.5-times higher than the corresponding longitudinal attenuation coefficients, Cd, in 61% of the tests, while they were comparable or lower in 23 or 17%. In polymers and FRP, Cdt > 2Cd in most cases.
- (5)
- Low-alloy structural steels mostly showed low Cdt values below 20 dB/m/MHz, which were moderately higher than Cd values. Cdt values for high alloy steels were higher, but most of them were below 50 dB/m/MHz. The 300-series austenitic stainless steels exhibited slightly higher attenuation than low alloy steels, but cold working reduced transverse attenuation to low levels as was the case for longitudinal attenuation.
- (6)
- Gray cast iron again showed frequency-squared dependence, while ductile and malleable iron had the Mason-McSkimin relation. The transverse attenuation was approximately twice than the longitudinal mode.
- (7)
- Aluminum alloys showed low transverse attenuation, giving Cdt in the range of 3 to 34 dB/m/MHz with Cdt/Cd ratios varying from 1.5 to 10.5. The average Cdt/Cd was 3.75.
- (8)
- A peculiar attenuation behavior of Cu and brass with the frequency-squared (and -cubed) spectra was again found in the transverse mode.
- (9)
- Both pure Mg and AZ61 Mg alloy showed low attenuation. In pure Mg, the transverse mode was 2.4 to 4.1 times higher, while AZ61 Mg alloy gave approximately comparable attenuation. No scattering contribution was visible.
- (10)
- In Ni, effects of cold work and magnetic field were stronger for the transverse mode. Cdt reached 300 dB/m/MHz in annealed Ni, but dropped to ½ with strong magnets. In cold-worked Ni, both Cdt and Cd were 20 dB/m/MHz with no magnetic effects. High-temperature Ni alloys, Ti alloys, and tungsten were also evaluated with varied responses. Isotropic W showed comparable Cd and Cdt values to those of most Al alloys.
- (11)
- Nine engineering polymers showed about three times higher transverse attenuation than longitudinal cases. Their spectra were always linear and Cdt values ranged from 253 to 1830 dB/m/MHz.
- (12)
- Eight fiber-reinforced plastics showed higher transverse attenuation than longitudinal cases with the average Cdt/Cd ratio of 4.45. The previously found frequency contribution vanished, but one case of frequency-squared spectrum appeared, with all others following the linear spectra. Very high attenuation occurred in T700 CFRP and Kevlar composites. Velocity and attenuation data were converted to complex stiffness coefficients of fiber-reinforced plastics.
- (13)
- Twenty-four inorganic materials, 16 glasses and ceramics, six natural rocks, ADP and Si crystals, showed the linear frequency dependence except for four cases with Cdt = 0 for fused silica to 876 dB/m/MHz for granite. Marble again showed the frequency-squared spectrum, attributed to multiple scattering. ADP and Si single crystals also showed low attenuation.
- (14)
- Eight single crystal samples were examined. No scattering terms were found, but systematic correlations between attenuation and bonding types were not observed. Some had very low to moderate attenuation while Cu, Ni3Al, and sapphire showed high attenuation.
- (15)
- Observed Cdt/Cd ratios were plotted against Poisson’s ratios. Lower Cdt/Cd values were mostly between n of 0.2 to 0.35, centering at 0.27, but this behavior seems to be unrelated to the Cauchy hypothesis.
- (16)
- Theories for attenuation from various scatterings provided a good basis of understanding the observed power-law behaviors. However, the main contribution to the observed attenuation, viscous damping effect, remains unresolved as only the dislocation bow-out theory [13] can give reasonable prediction to metals with low to medium strength. For high strength solids, the Gilman theory [76] may provide a new approach. Molecular dynamics and STZ approaches appear to be promising for glassy polymers.
6. Conclusions
Funding
Conflicts of Interest
Appendix A
Material | Density | v | vt | E | G | Poisson’s | Vickers |
---|---|---|---|---|---|---|---|
Mg/m^3 | mm/µs | mm/µs | GPa | GPa | Ratio | HN | |
Pure Fe cw | 7.87 | 6.05 | 3.21 | 211.5 | 81.1 | 0.304 | 174 |
Pure Fe | 7.87 | 6.08 | 3.28 | 219.2 | 84.7 | 0.295 | 91 |
1020 | 7.82 | 5.91 | 3.21 | 208.0 | 80.6 | 0.291 | 100 |
Low-C steel | 7.82 | 5.93 | 3.26 | 213.3 | 83.1 | 0.283 | 161 |
4340 | 7.84 | 5.86 | 3.16 | 202.8 | 78.3 | 0.295 | 315 |
4340 (T) | 7.84 | 5.92 | 3.21 | 208.7 | 80.8 | 0.292 | 315 |
4340 (S) | 7.84 | 5.85 | 3.22 | 208.5 | 81.3 | 0.283 | 315 |
4142 | 7.84 | 5.92 | 3.23 | 210.7 | 81.8 | 0.288 | 321 |
4142 (T) | 7.84 | 5.75 | 3.21 | 205.8 | 80.8 | 0.274 | 321 |
1060 | 7.82 | 5.93 | 3.24 | 211.3 | 82.1 | 0.287 | 198 |
HSLA-SM50 | 7.82 | 5.81 | 3.21 | 206.3 | 80.6 | 0.280 | 132 |
HSLA-SM50 (T) | 7.82 | 5.86 | 3.23 | 209.2 | 81.6 | 0.282 | 132 |
HSLA-SM50 (S) | 7.82 | 5.85 | 3.22 | 208.0 | 81.1 | 0.283 | 132 |
A533B | 7.82 | 5.91 | 3.23 | 210.0 | 81.6 | 0.287 | 189 |
1Cr-1Mo-V | 7.82 | 5.88 | 3.23 | 209.5 | 81.6 | 0.284 | 240 |
Tool steel T8 (T) | 8.43 | 5.87 | 3.2 | 222.5 | 86.3 | 0.289 | 1155 |
Hardness block4 | 7.86 | 5.92 | 3.18 | 206.2 | 79.5 | 0.297 | 847 |
301 | 7.83 | 5.92 | 3.25 | 212.4 | 82.7 | 0.284 | 214 |
302 | 7.92 | 5.87 | 3.08 | 196.9 | 75.1 | 0.310 | 267 |
302 | 7.92 | 5.7 | 3.14 | 200.2 | 78.1 | 0.282 | 228 |
304 | 8.00 | 5.72 | 3.14 | 202.6 | 78.9 | 0.284 | 321 |
304 | 8.00 | 5.75 | 3.14 | 203.1 | 78.9 | 0.288 | 193 |
304 (T) | 8.00 | 5.72 | 3.14 | 202.6 | 78.9 | 0.284 | 193 |
304 (S) | 8.00 | 5.83 | 3.16 | 206.4 | 79.9 | 0.292 | 193 |
304L (S) | 8.00 | 5.65 | 3.16 | 203.3 | 79.9 | 0.272 | 199 |
316 | 8.00 | 5.69 | 3.14 | 202.1 | 78.9 | 0.281 | 368 |
321 | 7.92 | 5.76 | 3.16 | 203.2 | 79.1 | 0.285 | 196 |
430 (S) | 7.78 | 5.81 | 3.11 | 195.5 | 75.2 | 0.299 | 312 |
440A (S) | 7.68 | 5.85 | 3.19 | 201.4 | 78.2 | 0.288 | 541 |
A286 (S) | 7.94 | 5.75 | 3.16 | 203.5 | 79.3 | 0.284 | 293 |
17-4PH | 7.81 | 6.1 | 3.17 | 206.4 | 78.5 | 0.315 | 360 |
17-4PH | 7.65 | 5.84 | 3.17 | 198.5 | 76.9 | 0.291 | 412 |
Gray class 20 | 6.98 | 4.47 | 2.47 | 109.0 | 42.6 | 0.280 | 145 |
Gray class 60 | 7.22 | 5 | 2.79 | 143.2 | 56.2 | 0.274 | 242 |
Ductile 80-55-06 | 7.15 | 5.64 | 3.12 | 178.1 | 69.6 | 0.280 | 282 |
Malleabl × ferritic | 7.02 | 5.52 | 3.08 | 169.7 | 66.6 | 0.274 | 145 |
Material | Density | v | vt | E | G | Poisson’s | Vickers |
---|---|---|---|---|---|---|---|
Mg/m^3 | mm/µs | mm/µs | GPa | GPa | Ratio | HN | |
Al 2011 | 2.83 | 6.23 | 3.10 | 72.6 | 27.2 | 0.34 | 103 |
Al 2011 | 2.83 | 6.25 | 3.12 | 73.5 | 27.5 | 0.33 | 155 |
Al 2014 | 2.80 | 6.32 | 3.13 | 73.4 | 27.4 | 0.34 | 145 |
Al 2024 | 2.77 | 6.36 | 3.10 | 71.6 | 26.6 | 0.34 | 170 |
Al 6061 | 2.70 | 6.38 | 3.23 | 74.8 | 28.2 | 0.33 | 109 |
Al 6061 | 2.70 | 6.35 | 3.20 | 73.5 | 27.6 | 0.33 | 78.0 |
Al 7049 | 2.84 | 6.21 | 3.06 | 71.3 | 26.6 | 0.34 | 128 |
Al 7075 | 2.80 | 6.25 | 3.10 | 71.9 | 26.9 | 0.34 | 180 |
Al 7075 (T) | 2.80 | 6.26 | 3.08 | 71.2 | 26.6 | 0.34 | 180 |
Al 7075 (S) | 2.80 | 6.23 | 3.08 | 71.1 | 26.6 | 0.34 | 180 |
Cu single crystal | 8.96 | 5.16 | 2.15 | 115.1 | 41.2 | 0.40 | 69.6 |
Cu electroformed | 8.96 | 4.68 | 2.37 | 133.6 | 50.3 | 0.33 | 66.3 |
OFHC Cu | 8.96 | 4.47 | 2.91 | 171.8 | 75.9 | 0.13 | 77.6 |
Cu 110 | 8.94 | 4.64 | 2.40 | 135.7 | 51.5 | 0.32 | 100 |
Cu 110 | 8.94 | 4.72 | 2.24 | 121.5 | 44.9 | 0.35 | 86.1 |
Cu 110 | 8.94 | 4.73 | 2.53 | 148.7 | 57.2 | 0.30 | 54.1 |
Cu 110 (S) | 8.94 | 4.62 | 2.25 | 121.7 | 45.3 | 0.34 | 54.1 |
Brass 260 | 8.50 | 4.55 | 2.21 | 111.7 | 41.5 | 0.35 | 91.0 |
Brass 260 (T) | 8.50 | 4.54 | 2.21 | 111.7 | 41.5 | 0.34 | 91.0 |
Brass 260 (S) | 8.50 | 4.49 | 2.22 | 112.1 | 41.9 | 0.34 | 91.0 |
Brass 260 | 8.50 | 4.54 | 2.22 | 112.5 | 41.9 | 0.34 | 122 |
Brass 280 | 8.39 | 4.30 | 2.32 | 116.9 | 45.2 | 0.29 | 177 |
Brass 360 | 8.53 | 4.36 | 2.18 | 108.1 | 40.5 | 0.33 | 109 |
Brass 360 annealed | 8.53 | 4.36 | 2.17 | 107.3 | 40.2 | 0.34 | 97.5 |
Cu-Zr | 8.89 | 4.69 | 2.43 | 138.2 | 52.5 | 0.32 | 88.9 |
Cu-Al2O3 | 8.90 | 4.54 | 2.42 | 135.7 | 52.1 | 0.30 | 110 |
Cu-Ag-Zr | 9.92 | 4.75 | 2.38 | 149.7 | 56.2 | 0.33 | 110 |
pure Mg | 1.74 | 5.81 | 3.12 | 43.9 | 16.9 | 0.30 | 40.5 |
Mg AZ61 | 1.80 | 5.78 | 2.99 | 42.4 | 16.1 | 0.32 | 91.4 |
Ni 200 | 8.91 | 5.72 | 2.97 | 206.8 | 78.6 | 0.32 | 115 |
Ni 200 cw | 8.91 | 5.77 | 3.08 | 219.9 | 84.5 | 0.30 | 234 |
Monel 400 | 8.80 | 5.47 | 2.77 | 179.3 | 67.5 | 0.33 | 275 |
Inconel 600 (S) | 8.50 | 6.35 | 3.76 | 316.8 | 134.6 | 0.23 | 322 |
Inconel 625 | 8.44 | 5.83 | 3.08 | 209.2 | 80.1 | 0.31 | 317 |
Inconel 718 | 8.19 | 5.73 | 3.06 | 199.5 | 76.7 | 0.30 | 152 |
Inconel 718 (S) | 8.19 | 5.82 | 3.04 | 198.7 | 75.7 | 0.31 | 152 |
Inconel 738 | 8.11 | 5.72 | 3.08 | 199.4 | 76.9 | 0.30 | 319 |
Inconel 738 (T) | 8.11 | 5.73 | 3.12 | 203.6 | 78.9 | 0.29 | 319 |
Inconel 738 (S) | 8.11 | 5.62 | 3.12 | 201.7 | 78.9 | 0.28 | 319 |
Ni-13% Al (Ni3Al) | 8.10 | 5.53 | 3.29 | 215.0 | 87.7 | 0.23 | 268 |
Ti-6-4 | 4.50 | 6.11 | 3.10 | 114.7 | 43.2 | 0.33 | 330 |
Ti-6-6-2 | 4.54 | 6.02 | 3.04 | 111.5 | 42.0 | 0.33 | 359 |
W | 19.25 | 5.23 | 2.86 | 405.2 | 157.5 | 0.29 | 299 |
Material | Density | vt | E | G | Poisson’s |
---|---|---|---|---|---|
Mg/m^3 | mm/µs | GPa | GPa | Ratio | |
PMMA | 0.95 | 1.40 | 4.63 | 1.86 | 0.24 |
PVC | 1.40 | 1.11 | 4.67 | 1.72 | 0.35 |
PC | 1.20 | 0.98 | 3.19 | 1.15 | 0.38 |
LDPE | 0.91 | 1.25 | 3.85 | 1.42 | 0.35 |
HDPE | 0.94 | 1.17 | 3.50 | 1.29 | 0.36 |
UHMWPE | 0.95 | 1.33 | 4.30 | 1.68 | 0.28 |
Polypropylene (PP) | 0.90 | 1.38 | 4.48 | 1.71 | 0.31 |
Nylon 6/6 | 1.14 | 1.20 | 4.51 | 1.64 | 0.37 |
Epoxy | 1.39 | 1.38 | 7.05 | 2.65 | 0.33 |
Mortar | 2.00 | 2.18 | 23.50 | 9.50 | 0.24 |
WC | 14.51 | 4.07 | 584.4 | 240.4 | 0.22 |
PZT-5A | 7.78 | 1.72 | 64.85 | 23.02 | 0.41 |
BaTiO3 | 5.70 | 3.60 | 185.6 | 73.87 | 0.26 |
BK7 glass | 2.51 | 3.46 | 73.54 | 30.05 | 0.22 |
Pyrex glass | 2.23 | 3.41 | 61.79 | 25.93 | 0.19 |
Soda-lime (S-L) glass | 2.48 | 3.50 | 74.29 | 30.38 | 0.22 |
S-L glass, tempered | 2.52 | 3.47 | 74.38 | 30.34 | 0.23 |
Fused silica | 2.20 | 3.71 | 70.70 | 30.28 | 0.17 |
Clay ceramic (tile) | 1.97 | 2.47 | 28.21 | 12.02 | 0.17 |
Porcelain | 2.63 | 4.15 | 112.8 | 45.30 | 0.24 |
Sintered Alumina | 3.42 | 5.47 | 255.1 | 102.3 | 0.25 |
Transparent alumina | 3.90 | 6.19 | 373.1 | 149.4 | 0.25 |
Sapphire (R-cut) | 3.98 | 6.78 | 434.4 | 183.0 | 0.19 |
Bonded SiC | 2.32 | 3.42 | 66.87 | 27.14 | 0.23 |
Macor | 2.52 | 3.10 | 60.06 | 24.22 | 0.24 |
Granite (Santa Cecilia) | 2.74 | 2.82 | 56.48 | 21.79 | 0.30 |
Marble (Carrara) | 2.83 | 3.34 | 82.15 | 31.57 | 0.30 |
Rock salt | 2.18 | 2.69 | 38.85 | 15.77 | 0.23 |
Fluorite <111> | 3.13 | 3.98 | 117.3 | 49.58 | 0.18 |
Calcite [001][110] | 2.72 | 2.72 | 57.07 | 20.12 | 0.42 |
Calcite [001][110] | 2.71 | 2.71 | 56.36 | 19.90 | 0.42 |
ADP <100><001> | 1.80 | 2.20 | 24.87 | 8.71 | 0.43 |
ADP <100><010> | 1.80 | 3.74 | 60.91 | 25.18 | 0.21 |
Quartz SX SiO2 X | 2.56 | 3.28 | 69.06 | 27.54 | 0.25 |
Si SX | 2.33 | 5.10 | 155.1 | 60.60 | 0.28 |
References
- Knopoff, L. “Q”. Rev. Geophys. 1964, 2, 625–660. [Google Scholar] [CrossRef]
- Mason, W.P. Physical Acoustics and the Properties of Solids; Van Nostrand: Princeton, NJ, USA, 1958; 402p. [Google Scholar]
- Ono, K.; Dobmann, G.; Maisl, M.; Erhard, A.; Netzelmann, U.; Wiggenhauser, H.; Helmerich, R.; Taffe, A.; Krause, M.; Kind, T.; et al. Nondestructive Testing, Ullmann’s Encyclopedia of Industrial Chemistry; John Wiley and Sons: Hoboken, NJ, USA, 2014; Volume 24, pp. 471–584. [Google Scholar]
- Jarzynski, J.; Balizer, E.; Fedderly, J.J.; Lee, G. Acoustic Properties—Encyclopedia of Polymer Science and Technology; Wiley: New York, NY, USA, 2003. [Google Scholar] [CrossRef]
- ASTM D5026-15. Standard Test Method for Plastics: Dynamic Mechanical Properties: In Tension; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- Romanowicz, B.A.; Mitchell, B. Deep earth structure: Q of the earth from crust to core. In Treatise on Geophysics, 2nd ed.; Romanowicz, B., Dziewonski, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 1, pp. 789–827. [Google Scholar] [CrossRef]
- Krautkramer, J.; Krautkramer, H. Ultrasonic Testing of Materials, 4th ed.; Springer: Berlin, Germany, 1990; 677p. [Google Scholar]
- Ensminger, D.; Bond, D.J. Ultrasonics, Fundamentals, Technologies, and Applications, 3rd ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2011; 704p. [Google Scholar]
- Boller, C.; Chang, F.K.; Fujino, Y. Encyclopedia of Structural Health Monitoring; Wiley: Hoboken, NJ, USA, 2009; 2960p. [Google Scholar]
- Giurgiutiu, V. Structural Health Monitoring of Aerospace Composites; Academic Press: New York, NY, USA, 2015; 470p. [Google Scholar]
- Victrov, I.A. Rayleigh and Lamb Waves: Physical Theory and Applications; Plenum: New York, NY, USA, 1967; 165p. [Google Scholar]
- Ono, K. Review on structural health evaluation with acoustic emission. Appl. Sci. 2018, 8, 958. [Google Scholar] [CrossRef] [Green Version]
- Ono, K. A comprehensive report on ultrasonic attenuation of engineering materials, including metals, ceramics, polymers, fiber-reinforced composites, wood, and rocks. Appl. Sci. 2020, 10, 2230. [Google Scholar] [CrossRef] [Green Version]
- Winkler, K.; Nur, A. Pore fluids and seismic attenuation in rocks. Geophys. Res. Lett. 1979, 6, 1–4. [Google Scholar] [CrossRef]
- Adam, L.; Batzle, M.; Lewallen, K.T.; van Wijk, K.J. Seismic wave attenuation in carbonates. Geophys. Res. 2009, 114, B06208. [Google Scholar] [CrossRef] [Green Version]
- Mason, W.J.; McSkimin, H.J. Attenuation and scattering of high frequency sound waves in metals and glasses. J. Acoust. Soc. Am. 1947, 19, 464–473. [Google Scholar] [CrossRef]
- Kinra, V.; Petraitis, M.; Datta, S.K. Ultrasonic wave propagation in a random p articulate composite. Int. J. Solids Struct. 1990, 16, 301–312. [Google Scholar] [CrossRef]
- Biwa, S.; Watanabe, Y.; Ohno, N. Modelling of ultrasonic attenuation in unidirectional FRP. J. Soc. Mater. Sci. Jpn. 2001, 50, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Rogers, P.H.; Van Buren, A.L. An exact expression for the Lommel-diffraction correction integral. J. Acoust. Soc. Am. 1974, 55, 724. [Google Scholar] [CrossRef]
- Mielenz, K.D. Algorithms for fresnel diffraction at rectangular and circular apertures. J. Res. Natl. Inst. Stand. Tech. 1998, 103, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Kuster, G.T.; Toksöz, M.N. Velocity and attenuation of seismic waves in two-phase media. Part I Theor. Formul. Geophys. 1974, 39, 587–606. [Google Scholar]
- Toksöz, M.N.; Johnston, D.H.; Timur, A. Attenuation of seismic waves in dry and saturated rocks: I. Laboratory measurements. Geophysics 1979, 44, 681–690. [Google Scholar] [CrossRef]
- Wulff, A.-M.; Hashida, T.; Watanabe, K.; Takahashi, H. Attenuation behaviour of tuffaceous sandstone and granite during microfracturing. Geophys. J. Int. 1999, 139, 395–409. [Google Scholar] [CrossRef] [Green Version]
- Kono, R. The dynamic bulk viscosity of polystyrene and polymethyl methacrylate. J. Phys. Soc. Jpn. 1960, 15, 718–725. [Google Scholar] [CrossRef]
- Zimmer, J.E.; Cost, J.R. Determination of the elastic constants of a unidirectional fiber composite using ultrasonic velocity measurements. J. Acoust. Soc. Am. 1970, 47, 795–803. [Google Scholar] [CrossRef]
- Markham, M.F. Measurement of the elastic constants of fiber composites by ultrasonics. Composites 1970, 1, 145–149. [Google Scholar] [CrossRef]
- Hartmann, B.; Jarzynski, J. Immersion apparatus for ultrasonic measurements in polymers. J. Acoust. Soc. Am. 1974, 56, 1469. [Google Scholar] [CrossRef]
- Pearson, L.H.; Murri, W.J. Measurement of ultrasonic wavespeeds in off-axis directions of composite materials. In Review of Progress in Quantitative Nondestructive Evaluation; Thompson, D.O., Chimenti, D.E., Eds.; Springer: Boston, MA, USA, 1987; Volume 6A, pp. 1093–1101. [Google Scholar]
- Rokhlin, S.I.; Wang, W. Double through-transmission bulk wave method for ultrasonic phase velocity measurement and determination of elastic constants of composite materials. J. Acoust. Soc. Am. 1992, 91, 3303–3312. [Google Scholar] [CrossRef]
- Wu, J. Determination of velocity and attenuation of shear waves using ultrasonic spectroscopy. J. Acoust. Soc. Am. 1996, 99, 2871–2875. [Google Scholar] [CrossRef]
- Szabo, T.L.; Wu, J. Longitudinal and shear wave propagation in viscoelastic media. J. Acoust. Soc. Am. 2000, 107, 2437–2446. [Google Scholar] [CrossRef]
- Castaings, M.; Hosten, B. Air-coupled measurement of plane wave, ultrasonic plate transmission for characterising anisotropic, viscoelastic materials. Ultrasonics 2000, 38, 781–786. [Google Scholar] [CrossRef]
- Castaings, M.; Hosten, B.; Kundu, T. Inversion of ultrasonic, plan × wave transmission data in composite plates to infer viscoelastic material properties. NDT E Int. 2000, 33, 377–392. [Google Scholar] [CrossRef]
- Hosten, B. Ultrasonic through-transmission method for measuring the complex stiffness moduli of composite materials. In Handbook of Elastic Properties of Solids, Liquids and Gases; Every, A.G., Sachse, W., Eds.; Academic Press: San Diego, CA, USA, 2001; pp. 67–86. [Google Scholar]
- Tran, H.T.K.; Manh, T.; Johansen, T.F.; Hoff, L. Temperature effects on ultrasonic phase velocity and attenuation in eccosorb and PMMA. In Proceedings of the 2016 IEEE International Ultrasonics Symposium, Tours, France, 18–21 September 2016. [Google Scholar]
- Hartmann, B.; Jarzynski, J. Ultrasonic hysteresis absorption in polymers. J. Appl. Phys. 1972, 43, 4304. [Google Scholar] [CrossRef]
- Simon, A.; Lefebvre, G.; Valier-Brasier, T.; Wunenburger, R. Viscoelastic shear modulus measurement of thin materials by interferometry at ultrasonic frequencies. J. Acoust. Soc. Am. 2019, 146, 3131. [Google Scholar] [CrossRef] [PubMed]
- Saltiel, S.; Paul, A.; Selvadurai, P.A.; Brian, P.; Bonner, B.P.; Glaser, S.D.; Ajo-Franklin, J.B. Experimental development of low-frequency shear modulus and attenuation measurements in mated rock fractures: Shear mechanics due to asperity contact area changes with normal stress. Geophysics 2017, 82, M19–M36. [Google Scholar] [CrossRef]
- Hirao, M.; Ogi, H. EMATS for Science and Industry, Noncontacting Ultrasonic Measurements; Kluwer: Boston, MA, USA, 2003; p. 369. [Google Scholar]
- Ohtani, T.; Ogi, H.; Hirao, M. Electromagnetic acoustic resonance to assess creep damage in Cr-Mo-V steel, Japan. J. Appl. Phys. 2006, 45, 4526–4533. [Google Scholar] [CrossRef]
- Rose, J.H.; Hsu, D.K. Ultrasonic reflection from rough surfaces in water. In Review of Progress in Quantitative Nondestructive Evaluation; Thompson, D.O., Chimenti, D.E., Eds.; Springer: Boston, MA, USA, 1987; Volume 6A, pp. 1425–1433. [Google Scholar]
- Zhang, J.; Perez, R.J.; Lavernia, E.J. Documentation of damping capacity of metallic, ceramic and metal—Matrix composite materials. J. Mater. Sci. 1993, 28, 2395–2404. [Google Scholar] [CrossRef]
- Hungtington, H.B. On ultrasonic scattering by polycrystals. J. Acoust. Soc. Am. 1950, 22, 362–364. [Google Scholar] [CrossRef]
- Latiff, R.H.; Fiore, N.F. Ultrasonic attenuation in spheroidized steel. J. Appl. Phys. 1974, 45, 5182–5186. [Google Scholar] [CrossRef]
- Coronel, V.F.; Beshers, D.N. Magnetomechanical damping in iron. J. Appl. Phys. 1988, 64, 2006–2015. [Google Scholar] [CrossRef]
- Papadakis, E.P. Ultrasonic attenuation caused by scattering in polycrystalline metals. J. Acoust. Soc. Am. 1965, 37, 711–717. [Google Scholar] [CrossRef]
- Stadler, F.J.; Kaschta, J.; Munstedt, H. Dynamic-mechanical behavior of polyethylenes and ethen × /a-olefin-co-polymers. Part I. α′-Relaxation. Polymer 2005, 46, 10311–10320. [Google Scholar] [CrossRef]
- Pethrick, R.A. Acoustical properties. In Comprehensive Polymer Science: Supplement; Allen, G., Aggarwal, S.L., Russo, S., Eds.; Pergamon: Oxford, UK, 1989; Volume 2, pp. 571–599. [Google Scholar]
- Gilbert, M. Crystallinity in poly (vinyl chloride). J. Macromol. Sci. Part C Polym. Rev. 1994, 34, 77–135. [Google Scholar] [CrossRef]
- Navarro-Pardo, F.; Martínez-Barrera, G.; Martínez-Hernández, A.L.; Castaño, V.M.; Rivera-Armenta, J.L.; Medellín-Rodríguez, F.; Velasco-Santos, C. Effects on the thermo-mechanical and crystallinity properties of nylon 6, 6 electrospun fibres reinforced with one dimensional (1D) and two dimensional (2D) carbon. Materials 2013, 6, 3494–3513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malito, L.G.; Arevalo, S.; Kozak, A.; Spiegelberg, S.; Bellare, A.; Pruitt, L. Material properties of ultra-high molecular weight polyethylene: Comparison of tension, compression, nanomechanics and microstructure across clinical formulations. J. Mech. Beh. Biomed. Mater. 2018, 83, 9–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.; Zhou, L.; Wang, X.; He, L.; Yang, X. Effect of crystallinity of polyethylene with different densities on breakdown strength and conductance property. Materials 2019, 12, 1746. [Google Scholar] [CrossRef] [Green Version]
- Alexander, S. Amorphous solids: Their structure, lattice dynamics and elasticity. Phys. Rep. 1998, 296, 65–236. [Google Scholar] [CrossRef]
- De Giuli, E.; Laversann-Finot, A.; Düring, G.; Lerner, E.; Wyart, M. Effects of coordination and pressure on sound attenuation, boson peak and elasticity in amorphous solids. Soft Matter 2014, 10, 5628–5644. [Google Scholar] [CrossRef] [Green Version]
- De Giuli, E. Field theory for amorphous solids. Phys. Rev. Lett. 2018, 121, 118001. [Google Scholar] [CrossRef] [Green Version]
- ASTM E837-13a. Standard Test Method for Determining Residual Stresses by the Hol × Drilling Strain-Gage Method; ASTM International: West Conshohocken, PA, USA, 2013. [Google Scholar] [CrossRef]
- ASTM D4093-95. Standard Test Method for Photoelastic Measurements of Birefringence and Residual Strains in Transparent or Translucent Plastic Materials; ASTM International: West Conshohocken, PA, USA, 2014. [Google Scholar] [CrossRef]
- Biwa, S. Independent scattering and wave attenuation in viscoelastic composites. Mech. Mater. 2001, 33, 635–647. [Google Scholar] [CrossRef]
- Prosser, W.H. Ultrasonic Characterization of the Nonlinear Elastic Properties of Unidirectional Graphite/Epoxy Composites, NASA-CR-4100; Johns Hopkins University: Baltimore, MD, USA, 1987; 198p. [Google Scholar]
- Roman, I.; Ono, K. AE Characterization of Failure Mechanisms in Woven Roving Glass-fiber Epoxy Composites, Progress in Acoustic Emission II; Japanese Society for Non-Destructive Inspection: Tokyo, Japan, 1984; pp. 496–503. [Google Scholar]
- Liu, W.; Zhang, L. Mechanisms of the complex thermo-mechanical behavior of polymer glass across a wide range of temperature variations. Polymers 2018, 10, 1153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sane, S.B.; Cagin, T.; Goddard, W.A.; Knauss, W.G. Molecular dynamics simulations to compute the bulk response of amorphous PMMA. J. Comput. Aided Mater. Des. 2001, 8, 87–106. [Google Scholar] [CrossRef]
- Hernandez, C.A.S. Molecular Dynamic Simulation of Thermo-Mechanical Properties of Ultra-Thin Poly (Methyl Methacrylate) Films. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2010; 155p. [Google Scholar]
- Fang, Q.; Tian, Y.; Wu, H.; Li, J. Revealing the deformation mechanism of amorphous polyethylene subjected to cycle loading via molecular dynamics simulations. RSC Adv. 2018, 8, 32377–32386. [Google Scholar] [CrossRef] [Green Version]
- Barrat, J.-L.; Baschnagel, J.; Lyulin, A. Molecular dynamics simulations of glassy polymers. Soft Matter 2010, 6, 3430–3446. [Google Scholar] [CrossRef] [Green Version]
- Bouchbinder, E.; Langer, J.S.; Procaccia, I. Athermal shear-transformation-zone theory of amorphous plastic deformation, I. basic principles. Phys. Rev. E 2007, 75, 036107. [Google Scholar] [CrossRef] [Green Version]
- Bouchbinder, E.; Langer, J.S.; Procaccia, I. Athermal shear-transformation-zone theory of amorphous plastic deformation, II. Analysis of simulated amorphous silicon. Phys. Rev. E. 2007, 75, 036108. [Google Scholar] [CrossRef] [Green Version]
- Demkowicz, M.J.; Argon, A.S. Liquidlike atomic environments act as plasticity carriers in amorphous silicon. Phys. Rev. B 2005, 72, 245205. [Google Scholar] [CrossRef]
- Fitzgerald, J.V.; Laing, K.M.; Bachman, G.S. Temperature variation of the elastic moduli of glass. Trans. Soc. Glass Tech. 1952, 36, 90–104. [Google Scholar]
- Chen, B.; Li, S.; Zong, H.; Ding, X.; Sun, J.; Ma, E. Unusual activated processes controlling dislocation motion in body-centered-cubic high-entropy alloys. Proc. Natl. Acad. Sci. USA 2020, 117, 201919136. [Google Scholar] [CrossRef]
- Greaves, G.N.; Greer, A.L.; Lakes, R.S.; Rouxel, T. Poisson’s ratio and modern materials. Nat. Mater. 2011, 10, 823–837. [Google Scholar] [CrossRef]
- Greaves, G.N. Poisson’s ratio over two centuries: Challenging hypotheses. Notes Rec. R. Soc. 2013, 67, 37–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatia, A.B. Ultrasonic Absorption, An Introduction to the Theory of Sound Absorption and Dispersion in Gases, Liquids and Solids; Clarendon Press: Oxford, UK, USA, 1967; 427p. [Google Scholar]
- Nowick, A.S.; Berry, B.S. Anelastic Relaxation in Crystalline Solids; Academic Press: New York, NY, USA, 1972; 694p. [Google Scholar]
- Blanter, M.S.; Golovin, I.S.; Neuhäuser, H.; Sinning, I.R. Internal Friction in Metallic Materials. A Handbook; Springer: Berlin, Germany, 2007; 542p. [Google Scholar]
- Gilman, J.J. Chemical theory of dislocation mobility. Mater. Sci. Eng. 2005, 409, 7–12. [Google Scholar] [CrossRef]
Test Method | Cdt | R2 | vt | Damping Factor | Thickness |
---|---|---|---|---|---|
dB/m/MHz | mm/µs | ηt | mm | ||
TDM-1 | 211 | 0.999 | 1.41 | 0.0109 | 17.95, 5.25 |
TDM-1 | 260 | 0.992 | 1.39 | 0.0132 | 17.8, 9.11 |
TDM-1 | 236 | 0.994 | 1.40 | 0.0121 | 9.11, 5.25 |
TDM-1 | 231 | 0.992 | 1.39 | 0.0118 | 17.8, 5.25 |
TDM-1 | 238 | 0.994 | 1.40 | 0.0122 | 9.11, 5.25 |
TDM-1 | 259 | 0.994 | 1.41 | 0.0134 | 17.95, 5.25 |
TDM-1 | 260 | 0.992 | 1.41 | 0.0134 | 17.95, 9.11 |
TDM-1 | 251 | 0.993 | 1.40 | 0.0129 | 11.75, 5.25 |
TDM-1 | 249 | 0.993 | 1.39 | 0.0127 | 27.3, 5.25 |
TDM-1 | 248 | 0.992 | 1.39 | 0.0126 | 27.3, 9.11 |
TDM-1 | 260 | 0.992 | 1.39 | 0.0132 | 27.3, 11.75 |
TDM-1 | 263 | 0.993 | 1.38 | 0.0133 | 24.64, 5.25 |
TDM-1 | 261 | 0.992 | 1.38 | 0.0132 | 24.64, 9.11 |
TDM-1 | 260 | 0.992 | 1.38 | 0.0131 | 24.64, 11.75 |
TDM-1 | 270 | 0.993 | 1.40 | 0.0139 | 24.77, 5.25 |
TDM-1 | 274 | 0.991 | 1.40 | 0.0141 | 24.77, 9.11 |
TDM-1 | 274 | 0.989 | 1.40 | 0.0141 | 24.77, 11.75 |
Average | 253.2 | 0.9928 | 1.395 | 0.0129 | |
Std dev | 16.5 | 0.0020 | 0.010 | 0.0008 | |
TDM-2 | 211 | 0.997 | 1.41 | 0.0109 | 17.95 |
TDM-2 | 240 | 0.997 | 1.39 | 0.0122 | 17.80 |
TDM-2 | 219 | 0.998 | 1.40 | 0.0112 | 9.11 |
TDM-2 | 244 | 0.997 | 1.41 | 0.0126 | 17.95 |
TDM-2 | 224 | 0.996 | 1.40 | 0.0115 | 11.75 |
TDM-2 | 253 | 0.996 | 1.39 | 0.0129 | 27.30 |
TDM-2 | 259 | 0.995 | 1.38 | 0.0131 | 24.64 |
TDM-2 | 259 | 0.995 | 1.40 | 0.0133 | 24.77 |
Average | 238.6 | 0.9964 | 1.40 | 0.0122 | |
Std. dev. | 18.6 | 0.0011 | 0.010 | 0.0009 | |
Quartz TDM-1 | 223 | 0.953 | 1.38 | 0.0113 | 9.11, 5.25 |
Test. | Material | Cd | CR | v | η | Cdt | CRt | vt | ηt | Cdt/Cd | ηt/η | Thickness | Vickers | Notes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No | dB/m/ MHz | dB/m/ MHz^4 | mm/ µs | dB/m/ MHz | dB/m/ MHz^4 | mm/ µs | mm | HN | ||||||
F1 | Pure Fe | 129 | 6.05 | 2.86 × 10−2 | 164 | 3.21 | 1.93 × 10−2 | 1.271 | 0.675 | 72.1 | 174 | Cold worked | ||
F1a | Pure Fe | 135 | 6.05 | 2.99 × 10−2 | 164 | 3.21 | 1.93 × 10−2 | 1.215 | 0.645 | 72.1 | 174 | Cold worked | ||
F2 | Pure Fe | 125.8 | 6.08 | 2.80 × 10−2 | 159 | 3.28 | 1.91 × 10−2 | 1.264 | 0.682 | 30.2 | 91 | Annealed | ||
F2a | Pure Fe | 136 | 6.05 | 3.01 × 10−2 | 159 | 3.28 | 1.91 × 10−2 | 1.169 | 0.634 | 30.2 | 91 | Annealed | ||
F9 | 1020 | 9.8 | 1.41 × 10−2 | 5.91 | 2.12 × 10−3 | 15.6 | 3.13 × 10−2 | 3.21 | 1.83 × 10−3 | 1.592 | 0.865 | 31.8 | 100 | Annealed |
F10 | 1020 | 7.6 | 8.60 × 10−3 | 5.87 | 1.63 × 10−3 | 13.6 | 3.57 × 10−2 | 3.21 | 1.60 × 10−3 | 1.789 | 0.979 | 139.0 | 100 | Annealed |
F11 | 1020 | 7.5 | 5.74 × 10−3 | 5.87 | 1.61 × 10−3 | 11.1 | 4.35 × 10−2 | 3.21 | 1.31 × 10−3 | 1.480 | 0.809 | 31.8/139.0 | 100 | Annealed TDM-1 |
F12 | Low C steel | 0 | (4.84: n = 2) | 5.93 | 1.05 × 10−3 | 16.9 | 4.51 × 10−1 | 3.26 | 2.02 × 10−3 | 3.492 | 1.928 | 66.4 | 161 | |
F38 | 4340 | 6.0 | 5.86 | 1.29 × 10−3 | 6.7 | 3.16 | 7.72 × 10−4 | 1.112 | 0.599 | 61.0 | 315 | |||
F39 | 4340 (T) | 9.1 | 5.92 | 1.98 × 10−3 | 6.3 | 3.21 | 7.45 × 10−4 | 0.693 | 0.376 | 79.0 | 315 | Same as F38 | ||
F40 | 4340 (S) | 8.2 | 5.85 | 1.76 × 10−3 | 22.6 | 3.22 | 2.67 × 10−3 | 2.753 | 1.515 | 25.2 | 315 | Same as F38 | ||
F44 | 4142 | 5.5 | 1.25 × 10−3 | 5.92 | 1.18 × 10−3 | 12.9 | 3.23 | 1.53 × 10−3 | 2.367 | 1.291 | 60.3 | 321 | Same as F42–F48 | |
F44a | 4142 | 5.5 | 1.25 × 10−3 | 5.92 | 1.18 × 10−3 | 15.8 | 3.23 | 1.87 × 10−3 | 2.899 | 1.582 | 60.3 | 321 | ||
F45 | 4142 (T) | 25.5 | 5.75 | 5.37 × 10−3 | 28.9 | 3.21 | 3.40 × 10−3 | 1.133 | 0.633 | 18.9 | 321 | |||
F51 | 4142 (T) | 13.2 | 5.75 | 2.78 × 10−3 | 14.1 | 3.19 | 1.65 × 10−3 | 1.068 | 0.593 | 18.9 | 164 | OQ + temper | ||
F53 | 1060 | 15.3 | 5.93 | 3.32 × 10−3 | 11.0 | 5.70 × 10−3 | 3.24 | 1.31 × 10−3 | 0.719 | 0.393 | 54.3 | 198 | Rail steel | |
F58 | HSLA-SM50 | 4.6 | 5.81 | 9.71 × 10−4 | 13.0 | 2.13 × 10−3 | 3.21 | 1.53 × 10−3 | 2.851 | 1.575 | 75.0 | 132 | Same as F59, F60 | |
F59 | HSLA-SM50 (T) | 4.9 | 5.86 | 1.05 × 10−3 | 12.9 | 1.54 × 10−3 | 3.23 | 1.53 × 10−3 | 2.633 | 1.451 | 71.2 | 132 | ||
F60 | HSLA-SM50 (S) | 15.4 | 5.85 | 3.30 × 10−3 | 12.5 | 2.59 × 10−3 | 3.22 | 1.47 × 10−3 | 0.812 | 0.447 | 50.1 | 132 | ||
F66 | A533B | 7.1 | 5.91 | 1.53 × 10−3 | 5.2 | 2.63 × 10−3 | 3.23 | 6.11 × 10−4 | 0.729 | 0.398 | 60.7 | 189 | ||
F68 | 1Cr-1Mo-V | 6.4 | 5.88 | 1.37 × 10−3 | 5.9 | 3.28 × 10−3 | 3.23 | 7.02 × 10−4 | 0.931 | 0.511 | 60.8 | 240 | ||
F72 | Tool steel T8 (T) | 56.7 | 5.75 | 1.19 × 10−2 | 36.6 | 3.2 | 4.29 × 10−3 | 0.646 | 0.359 | 12.7 | 1155 | |||
F72a | Tool steel T8 (T) | 66.9 | 5.87 | 1.44 × 10−2 | 36.6 | 3.2 | 4.29 × 10−3 | 0.547 | 0.298 | 12.7 | 1155 | |||
F76 | Hardness block4 | 28.4 | 5.92 | 6.16 × 10−3 | 37.5 | 3.18 | 4.37 × 10−3 | 1.320 | 0.709 | 14.8 | 847 | |||
F79 | 301 | 9.4 | 1.47 × 10−3 | 5.92 | 2.05 × 10−3 | 13.2 | 3.25 | 1.57 × 10−3 | 1.398 | 0.768 | 76.2 | 214 | Magnetic | |
F79a | 301 | 9.4 | 1.47 × 10−3 | 5.92 | 2.05 × 10−3 | 14.9 | 2.75 × 10−3 | 3.25 | 1.77 × 10−3 | 1.578 | 0.867 | 76.2 | 214 | Magnetic |
F82 | 302 | 18.6 | 5.87 | 4.00 × 10−3 | 1.4 | 1.19 × 10−2 | 3.08 | 1.34 × 10−6 | 0.074 | 0.001 | 43.7 | 267 | ||
F82a | 302 | 11.4 | 4.11 × 10−3 | 5.87 | 2.45 × 10−3 | 1.4 | 1.19 × 10−2 | 3.08 | 1.343 × 10−6 | 0.120 | 0.000 | 43.7 | 267 | |
F84 | 302 | 4.03 | 1.00 × 10−3 | 5.73 | [8.46 × 10−4] | 0 | 7.20 × 10−3 | 3.1 | [8.18 × 10−7] | 0.002 | 0.001 | 77.4 | 279 | Nonmagnetic |
F84 | 302 | 42.2 | 5.7 | 8.81 × 10−3 | 46.9 | 3.14 | 5.40 × 10−3 | 1.111 | 0.612 | 10.5 | 228 | Nonmagnetic | ||
F85 | 304 | 1.5 | 1.10 × 10−3 | 5.72 | 3.12 × 10−4 | 0 | 4.85 × 10−3 | 3.14 | 5.58 × 10−7 | 0.003 | 0.002 | 479 | 321 | Magnetic |
F86 | 304 | 21.2 | 7.78 × 10−3 | 5.75 | 4.47 × 10−3 | 17.1 | 4.33 × 10−2 | 3.14 | 1.97 × 10−3 | 0.807 | 0.440 | 76.0 | 193 | |
F87 | 304 (T) | 22.0 | 9.98 × 10−3 | 5.72 | 4.61 × 10−3 | 19.4 | 4.39 × 10−2 | 3.14 | 2.23 × 10−3 | 0.882 | 0.484 | 50.1 | 193 | Same as F86 |
F88 | 304 (S) | 38.2 | 8.92 × 10−3 | 5.83 | 8.16 × 10−3 | 10.1 | 4.99 × 10−2 | 3.16 | 1.17 × 10−3 | 0.264 | 0.143 | 19.0 | 193 | Same as F86 |
F89 | 304L (S) | 23.4 | 1.36 × 10−2 | 5.65 | 4.84 × 10−3 | 26.2 | 1.23 × 10−1 | 3.16 | 3.03 × 10−3 | 1.120 | 0.626 | 25.6 | 199 | |
F90 | 316 | 25.0 | 4.48 × 10−3 | 5.69 | 5.21 × 10−3 | 0 | 1.53 × 10−2 | 3.14 | 1.76 × 10−6 | 0.001 | 0.000 | 26.8 | 368 | |
F90a | 316 | 11.9 | 2.33 × 10−3 | 5.67 | 2.47 × 10−3 | 0 | 1.90 × 10−2 | 3.14 | 2.19 × 10−6 | 0.002 | 0.001 | 26.8 | 368 | |
F91 | 321 | 55.8 | 5.78 | 1.18 × 10−2 | 23.4 | 2.20 × 10−2 | 3.16 | 2.71 × 10−3 | 0.419 | 0.229 | 34.0 | 196 | ||
F91a | 321 | 61.8 | 5.76 | 1.30 × 10−2 | 23.4 | 2.20 × 10−2 | 3.16 | 2.71 × 10−3 | 0.379 | 0.208 | 34.0 | 196 | ||
F91b | 321 | 49.1 | 5.83 | 1.05 × 10−2 | 23.4 | 2.20 × 10−2 | 3.16 | 2.71 × 10−3 | 0.477 | 0.258 | 34.0 | 196 | ||
F94 | 430 (S) | 9.9 | 5.81 | 2.10 × 10−3 | 9.13 | 3.13 | 1.05 × 10−3 | 0.924 | 0.498 | 24.3 | 312 | |||
F94a | 430 (S) | 9.9 | 5.81 | 2.10 × 10−3 | 3.93 | 1.24 × 10−3 | 3.11 | 4.48 × 10−4 | 0.398 | 0.213 | 24.3 | 312 | ||
F95 | 440A (S) | 39.5 | 5.85 | 8.47 × 10−3 | 17.4 | 3.19 | 2.03 × 10−3 | 0.441 | 0.240 | 19.0 | 541 | |||
F95a | 440A (S) | 31.4 | 5.83 | 6.71 × 10−3 | 17.4 | 3.19 | 2.03 × 10−3 | 0.554 | 0.303 | 19.0 | 541 | |||
F102 | A286 (S) | 71.9 | 1.09 × 10−1 | 5.75 | 1.51 × 10−2 | 142 | 6.46 × 10−1 | 3.16 | 1.64 × 10−2 | 1.975 | 1.085 | 13.9 | 293 | |
F100 | 17-4PH | 9.0 | 4.19 × 10−3 | 6.10 | 2.01 × 10−3 | 26.3 | 3.17 | 3.05 × 10−3 | 2.925 | 1.520 | 238.3 | 360 | Solution treated | |
F100a | 17-4PH | 9.0 | 4.19 × 10−3 | 6.10 | 2.01 × 10−3 | 31.0 | 3.17 | 3.60 × 10−3 | 3.448 | 1.792 | 238.3 | 360 | Solution treated | |
F101 | 17-4PH | 34.7 | 5.84 | 7.43 × 10−3 | 53.4 | 3.17 | 6.20 × 10−3 | 1.539 | 0.835 | 25.4 | 412 | Aged at 480 °C | ||
F101a | 17-4PH | 30.2 | 5.86 | 6.67 × 10−3 | 31.3 | 3.19 | 3.75 × 10−3 | 1.194 | 0.647 | 25.4 | 412 | Aged at 480 °C | ||
I3 | Gray class 20 | 0 | (35.0: n = 2) | 4.47 | [5.73 × 10−3] | 0 | (82.0: n = 2) | 2.47 | [7.42 × 10−3] | 2.343 | 1.295 | 25.0 | 145 | As-cast |
I8 | Gray class 60 | 0 | (18.7: n = 2) | 5.00 | [3.43 × 10−3] | 0 | (32.66: n = 2) | 2.79 | [3.34 × 10−3] | 1.747 | 0.973 | 24.8 | 242 | As-cast |
I18 | Ductile 80-55-06 | 41.0 | 8.38 × 10−3 | 5.64 | 8.47 × 10−3 | 80.0 | 0.0439 | 3.12 | 9.15 × 10−3 | 1.951 | 1.079 | 25.0 | 282 | As-cast |
I21 | Malleabl × ferritic | 28.5 | 7.90 × 10−3 | 5.52 | 5.76 × 10−3 | 83.3 | 0.0125 | 3.08 | 9.40 × 10−3 | 2.923 | 1.631 | 24.0 | 145 | Heat treated |
Average | 6.69 × 10−3 | 3.97 × 10−3 |
Test. | Material | Cd | CR | v | η | Cdt | CRt | vt | ηt | Cdt/Cd | ηt/η | Thickness | Vickers | Notes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No | dB/m /MHz | dB/m /MHz^4 | mm/µs | dB/m /MHz | dB/m /MHz^4 | mm /µs | mm | HN | ||||||
N1 | Al 2011 | 6.4 | 6.23 | 1.45 × 10−3 | 21.0 | 3.90 × 10−3 | 3.1 | 2.39 × 10−3 | 3.31 | 1.65 | 48.1 | 103 | ||
N2 | Al 2011 | 1.4 | 5.60 × 10−3 | 6.25 | 3.18 × 10−4 | 9.0 | 8.11 × 10−3 | 3.12 | 1.03 × 10−3 | 6.47 | 3.23 | 135.0 | 155 | T6 temper |
N3 | Al 2014 | 5.6 | 1.90 × 10−3 | 6.35 | 1.30 × 10−3 | 16.8 | 9.28 × 10−3 | 3.12 | 1.92 × 10−3 | 3.00 | 1.47 | 69.2 | 155 | T6 temper |
N100 | Al 2014 (T) | 4.9 | 6.32 | 1.13 × 10−3 | 21.7 | 3.15 | 2.50 × 10−3 | 4.43 | 2.21 | 50.7 | 155 | Extrusion | ||
N4 | Al 2014 | 3.2 | 8.80 × 10−3 | 6.32 | 7.41 × 10−4 | 33.6 | 3.13 | 3.85 × 10−3 | 10.50 | 5.20 | 45.2 | 145 | ||
N4a | Al 2014 | 5.3 | 4.47 × 10−2 | 6.28 | 1.21 × 10−3 | 24.5 | 1.41 × 10−2 | 3.12 | 2.80 × 10−3 | 4.64 | 2.31 | 34.1 | 149 | |
N7 | Al 2024 | 1.7 | 1.49 × 10−3 | 6.36 | 4.03 × 10−4 | 3.1 | 3.09 × 10−3 | 3.10 | 3.56 × 10−4 | 1.81 | 0.88 | 154.2 | 170 | T3 temper |
N9 | Al 2024 | 6.8 | 6.35 | 1.58 × 10−3 | 30.2 | 3.13 | 3.46 × 10−3 | 4.44 | 2.19 | 45.8 | 162 | T851 temper | ||
N10 | Al 6061 | 4.0 | 6.38 | 9.44 × 10−4 | 34.8 | 3.23 | 4.12 × 10−3 | 8.61 | 4.36 | 31.0 | 109 | T6 temper | ||
N13 | Al 2024 | 6.5 | 6.35 | 1.51 × 10−3 | 21.7 | 4.68 × 10−3 | 3.17 | 2.52 × 10−3 | 3.34 | 1.67 | 50.7 | 153 | N8 annealed | |
N14 | Al 6061 | 14.4 | 6.35 | 3.35 × 10−3 | 25.1 | 3.20 | 2.94 × 10−3 | 1.74 | 0.88 | 212.0 | 78 | Annealed | ||
N15 | Al 6061 | 14.4 | 6.35 | 3.35 × 10−3 | 28.5 | 3.20 | 3.34 × 10−3 | 1.98 | 1.00 | 212/10.6 | 78 | Annealed TDM-1 | ||
N17 | Al 7049 | 6.9 | 6.21 | 1.57 × 10−3 | 16.2 | 5.59 × 10−3 | 3.06 | 1.82 × 10−3 | 2.35 | 1.16 | 45.8 | 128 | T7 temper | |
N19 | Al 7075 | 5.7 | 6.25 | 1.31 × 10−3 | 12.2 | 3.10 | 1.39 × 10−3 | 2.14 | 1.06 | 75.0 | 180 | T6 temper | ||
N20 | Al 7075 (T) | 5.9 | 6.26 | 1.35 × 10−3 | 10.6 | 3.08 | 1.20 × 10−3 | 1.80 | 0.88 | 76.0 | 180 | Same as N19 | ||
N21 | Al 7075 (S) | 10.8 | 6.23 | 2.47 × 10−3 | 18.8 | 3.08 | 2.12 × 10−3 | 1.74 | 0.86 | 37.2 | 180 | Same as N19 | ||
N101 | Al 7075 | 15.1 | 6.3 | 3.49 × 10−3 | 22.3 | 3.10 | 2.53 × 10−3 | 1.48 | 0.73 | 45.8 | 201 | T6 temper | ||
N26 | Cu single crystal | 133 | 5.16 | 2.51 × 10−2 | 232 | 2.15 | 1.82 × 10−2 | 1.74 | 0.73 | 12.4 | 69.6 | <111> Direction | ||
N102 | Cu | 245 | 4.68 | 4.20 × 10−2 | (83.45: n-2) | 2.37 | 7.25 × 10−3 | [0.34] | [0.17] | 5.1 | 66.3 | Electroformed | ||
N28 | OFHC Cu | 25.3 | 4.47 | 4.14 × 10−3 | 116 | 2.91 | 1.24 × 10−2 | 4.58 | 2.98 | 81.5 | 77.6 | |||
N28 | OFHC Cu | 25.3 | 4.47 | 4.14 × 10−3 | 174 | 2.92 | 1.86 × 10−2 | 6.88 | 4.49 | 19.8 | 77.6 | |||
N28 | OFHC Cu | 25.3 | 4.47 | 4.14 × 10−3 | 150 | 2.92 | 1.60 × 10−2 | 5.93 | 3.87 | 1.57 | 77.6 | |||
N30 | Cu 110 | 41.6 | 4.64 | 7.07 × 10−3 | 88.4 | 2.40 | 7.77 × 10−3 | 2.13 | 1.10 | 51.5 | 100 | |||
N32 | Cu 110 | 43.5 | 4.67 | 7.44 × 10−3 | 176 | 2.46 | 1.59 × 10−2 | 4.05 | 2.13 | 34.6 | 77 | Annealed | ||
N33 | Cu 110 | 0 | (6.05: n = 2) | 4.7 | 1.04 × 10−3 | 32.0 | 4.89 × 10−1 | 2.26 | 2.65 × 10−3 | [5.29] | 2.54 | 48.5 | 99 | |
N34 | Cu 110 (S) | 35.4 | 1.30 × 10−2 | 4.57 | 5.93 × 10−3 | 77.1 | 3.30 × 10−1 | 2.22 | 6.27 × 10−3 | 2.18 | 1.06 | 12.7 | 99 | Same as N33 |
N35 | Cu 110 | 0 | (15.5: n = 2) | 4.73 | 2.69 × 10−3 | 134 | 1.34 | 2.53 | 1.24 × 10−2 | [8.65] | 4.62 | 23.5 | 54.1 | Annealed |
N35 | Cu 110 | 0 | (15.5: n = 2) | 4.73 | 2.69 × 10−3 | 0 | (50.2: n = 2) | 2.53 | 4.65 × 10−3 | [3.24] | 1.73 | 23.5 | 54.1 | Annealed |
N36 | Cu 110 (S) | 66.9 | 1.73 × 10−2 | 4.62 | 1.13 × 10−3 | 130 | 1.19 | 2.25 | 1.07 × 10−2 | 1.94 | 0.95 | 12.7 | 54.1 | Same as N35 |
N36 | Cu 110 (S) | 66.9 | 1.73 × 10−2 | 4.62 | 1.13 × 10−3 | (55.0: n = 2) | 2.25 | 4.53 × 10−3 | [0.82] | 0.40 | 12.7 | 54.1 | Same as N35 | |
N37 | Cu 110 | 10.1 | 8.47 × 10−2 | 4.72 | 1.75 × 10−3 | 89.2 | 2.24 | 7.32 × 10−3 | 8.83 | 4.19 | 49.5 | 86.1 | ||
N41 | Brass 260 | 0 | (4.5: n = 2) | 4.55 | 7.50 × 10−3 | (2.695: n = 3) | 2.21 | 2.19 × 10−4 | [0.60] | 0.29 | 95.0 | 91 | ||
N42 | Brass 260 (T) | 0 | (5.13: n = 2) | 4.54 | 8.53 × 10−3 | 14.8 | 3.88 × 10−1 | 2.21 | 1.20 × 10−3 | [2.88] | 1.40 | 90.3 | 91 | |
N42 | Brass 260 (T) | 0 | (5.13: n = 2) | 4.54 | 8.53 × 10−3 | (2.556: n = 3) | 2.21 | 2.07 × 10−4 | [0.50] | 0.24 | 90.3 | 91 | ||
N43 | Brass 260 (S) | 60.2 | 2.84 × 10−2 | 4.49 | 9.90 × 10−3 | 74.7 | 2.63 × 10−1 | 2.22 | 6.08 × 10−3 | 1.24 | 0.61 | 19.0 | 91 | |
N44 | Brass 260 | 42.1 | 3.28 × 10−2 | 4.52 | 6.97 × 10−3 | 40.4 | 2.61 × 10−1 | 2.22 | 3.29 × 10−3 | 0.96 | 0.47 | 45.8 | 85.8 | Annealed |
N44 | Brass 260 | 42.1 | 3.28 × 10−2 | 4.52 | 6.97 × 10−3 | (14.98: n = 2) | 2.22 | 1.22 × 10−3 | [0.36] | 0.17 | 45.8 | 85.8 | Annealed | |
N45 | Brass 260 (S) | 58.9 | 2.92 × 10−2 | 4.53 | 9.78 × 10−3 | 60.5 | 2.63 × 10−1 | 2.22 | 4.92 × 10−3 | 1.03 | 0.50 | 19.0 | 85.8 | Same as N44 |
N103 | Brass 260 | 35.1 | 3.15 × 10−2 | 4.54 | 5.84 × 10−3 | 32.6 | 2.64 × 10−1 | 2.22 | 2.65 × 10−3 | 0.93 | 0.45 | 56.8 | 122 | |
N103a | Brass 260 | 35.1 | 3.15 × 10−2 | 4.54 | 5.84 × 10−3 | (13.04: n = 2) | 2.22 | 1.06 × 10−3 | [0.37] | 0.18 | 56.8 | 122 | ||
N46 | Brass 280 | 0 | (7.97: n = 2) | 4.28 | 1.25 × 10−3 | 152 | 2.32 | 1.29 × 10−2 | [19.07] | 10.34 | 52.6 | 177 | ||
N46 | Brass 280 | 0 | (8.31: n = 2) | 4.3 | 1.31 × 10−3 | 152 | 2.32 | 1.29 × 10−2 | [18.29] | 9.87 | 52.6 | 177 | ||
N104 | Brass 360 | 27.0 | 1.21 × 10−2 | 4.36 | 4.31 × 10−3 | 36.5 | 8.10 × 10−2 | 2.18 | 2.92 × 10−3 | 1.35 | 0.68 | 49.3 | 109 | |
N104a | Brass 360 | 27.0 | 1.21 × 10−2 | 4.36 | 4.31 × 10−3 | 0 | (8.9: n = 2) | 2.18 | 7.11 × 10−4 | [0.33] | 0.16 | 49.3 | 109 | |
N58 | Brass 360 | 31.5 | 4.36 | 5.03 × 10−3 | 62.1 | 3.15 × 10−2 | 2.17 | 4.94 × 10−3 | 1.97 | 0.98 | 31.7 | 97.5 | ||
N62 | Cu-Zr | 56.7 | 4.03 × 10−2 | 4.69 | 9.74 × 10−3 | 0 | (25.88: n = 2) | 2.43 | 2.30 × 10−3 | [0.46] | 0.24 | 33.5 | 88.9 | |
N63 | Cu-Al2O3 | 23.3 | 4.55 | 3.88 × 10−3 | 41.4 | 2.44 | 3.70 × 10−3 | 1.78 | 0.95 | 43.0 | 97.8 | |||
N64 | Cu-Al2O3 | 19.0 | 4.54 | 3.16 × 10−3 | 12.1 | 1.11 × 10−2 | 2.42 | 1.07 × 10−3 | 0.64 | 0.34 | 51.0 | 110 | ||
N65 | Cu-Ag-Zr | 24.2 | 8.91 × 10−3 | 4.75 | 4.21 × 10−3 | 91.3 | 2.38 | 7.96 × 10−3 | 3.77 | 1.89 | 35.9 | 110 | ||
N66 | Pure Mg | 6.6 | 5.81 | 1.40 × 10−3 | 15.6 | 3.12 | 1.78 × 10−3 | 2.37 | 1.27 | 160.0 | 40.5 | 99.95% | ||
N66a | Pure Mg | 4.9 | 5.8 | 1.03 × 10−3 | 15.6 | 3.12 | 1.78 × 10−3 | 3.20 | 1.72 | 160.0 | 40.5 | 99.95% | ||
N67 | Pure Mg | 5.3 | 5.81 | 1.14 × 10−3 | 22.0 | 3.12 | 2.52 × 10−3 | 4.12 | 2.21 | 76 | 40.5 | 99.95% | ||
N68 | Pure Mg | 4.4 | 5.82 | 9.28 × 10−4 | 11.1 | 3.12 | 1.27 × 10−3 | 2.55 | 1.37 | 76/160 | 40.5 | 99.95% TDM-1 | ||
N68a | Pure Mg | 4.1 | 5.8 | 8.71 × 10−4 | 11.1 | 3.12 | 1.27 × 10−3 | 2.71 | 1.46 | 7.0/160 | 40.5 | 99.95% TDM-1 | ||
N69 | Mg AZ61 | 2.0 | 5.75 | 4.19 × 10−4 | 4.0 | 2.99 | 4.38 × 10−4 | 2.02 | 1.05 | 100.6 | 91.4 | |||
N69a | Mg AZ61 | 3.0 | 5.76 | 6.32 × 10−4 | 4.0 | 2.99 | 4.38 × 10−4 | 1.33 | 0.69 | 165.0 | 91.4 | |||
N69b | Mg AZ61 | 4.4 | 5.76 | 9.22 × 10−4 | 4.0 | 2.99 | 4.38 × 10−4 | 0.92 | 0.48 | 35.3/165.0 | 91.4 | TDM1 | ||
N70 | Ni 200 | 60.4 | 2.60 × 10−2 | 5.72 | 1.27 × 10−2 | 301 | 2.97 | 3.28 × 10−2 | 4.98 | 2.59 | 46.0 | 115 | No magnet | |
N70a | Ni 200 | 59.0 | 2.90 × 10−2 | 5.72 | 1.24 × 10−2 | 301 | 2.97 | 3.28 × 10−2 | 5.10 | 2.65 | 46.0 | 115 | No magnet | |
N70b | Ni 200 | 48.0 | 3.25 × 10−2 | 5.72 | 1.01 × 10−2 | 140 | 3.05 | 1.56 × 10−2 | 2.92 | 1.56 | 46.0 | 115 | * 1, * 2 | |
N70c | Ni 200 | 31.5 | 2.82 × 10−2 | 5.76 | 6.65 × 10−3 | 140 | 3.05 | 1.56 × 10−2 | 4.44 | 2.35 | 46.0 | 115 | * 2, * 3 | |
N72b | Ni 200 | 20.4 | 5.77 | 4.31 × 10−3 | 21.1 | 5.78 × 10−3 | 3.08 | 2.38 × 10−3 | 1.03 | 0.55 | 38.0 | 234 | * 4 | |
N72c | Ni 200 | 18.3 | 5.77 | 3.87 × 10−3 | 21.1 | 5.78 × 10−3 | 3.08 | 2.38 × 10−3 | 1.15 | 0.62 | 38.0 | 234 | * 5 | |
N75 | Monel 400 | 34.0 | 5.47 | 6.81 × 10−3 | 20.3 | 7.75 × 10−3 | 2.77 | 2.06 × 10−3 | 0.60 | 0.30 | 36.8 | 275 | ||
N105 | Inconel 600 (S) | 86.6 | 6.35 | 2.01 × 10−2 | 139 | 3.76 | 1.92 × 10−2 | 1.61 | 0.95 | 11.2 | 322 | |||
N106 | Inconel 600 (S) | 89.3 | 6.44 | 2.11 × 10−2 | 174 | 3.76 | 2.40 × 10−2 | 1.95 | 1.14 | 11.2 | 322 | |||
N77 | Inconel 625 | 15.5 | 1.08 × 10−2 | 5.83 | 3.31 × 10−3 | 21.1 | 6.05 × 10−2 | 3.08 | 2.38 × 10−3 | 1.36 | 0.72 | 46.2 | 317 | |
N77 | Inconel 625 | 15.5 | 1.08 × 10−2 | 5.83 | 3.31 × 10−3 | 32.5 | 5.83 × 10−2 | 3.09 | 3.68 × 10−3 | 2.10 | 1.11 | 46.2 | 317 | |
N79 | Inconel 718 | 21.9 | 1.67 × 10−1 | 5.73 | 4.60 × 10−3 | 78.8 | 3.06 | 8.84 × 10−3 | 3.60 | 1.92 | 101.3 | 152 | ||
N80 | Inconel 718 (S) | 56.3 | 1.83 × 10−1 | 5.82 | 1.20 × 10−2 | 179 | 7.84 × 10−1 | 3.04 | 1.99 × 10−2 | 3.18 | 1.66 | 14.2 | 152 | |
N107 | Inconel 718 | 14.6 | 3.08 × 10−3 | 5.79 | 3.10 × 10−3 | 8.5 | 3.93 × 10−2 | 3.03 | 9.47 × 10−4 | 0.58 | 0.31 | 152.5 | 460 | |
N107a | Inconel 718 | 15.7 | 2.22 × 10−3 | 5.79 | 3.33 × 10−3 | 8.5 | 3.93 × 10−2 | 3.03 | 9.47 × 10−4 | 0.54 | 0.28 | 152.5 | 460 | |
N108 | Inconel 738 | 18.5 | 1.57 × 10−1 | 5.72 | 3.88 × 10−3 | 73.9 | 3.08 | 8.34 × 10−3 | 3.99 | 2.15 | 101.5 | 319 | ||
N108 | Inconel 738 | 0 | (13.35: n = 2) | 5.72 | [2.80 × 10−3] | 73.9 | 3.08 | 8.34 × 10−3 | 5.54 | 2.98 | 101.5 | 319 | ||
N109 | Inconel 738 (T) | 41.6 | 1.25 × 10−1 | 5.73 | 8.73 × 10−3 | 43.1 | 9.25 × 10−1 | 3.12 | 4.93 × 10−3 | 1.04 | 0.56 | 46.4 | 319 | |
N110 | Inconel 738 (S) | 98.7 | 7.88 × 10−2 | 5.62 | 2.03 × 10−2 | 110 | 5.91 × 10−1 | 3.12 | 1.26 × 10−2 | 1.11 | 0.62 | 15.2 | 319 | |
N110a | Inconel 738 (S) | 66.7 | 9.98 × 10−2 | 5.62 | 1.37 × 10−2 | 153 | 5.99 × 10−1 | 3.11 | 1.74 × 10−2 | 2.29 | 1.27 | 15.0 | 319 | |
N111 | Ni3Al | 185 | 5.53 | 3.74 × 10−2 | 341 | 3.29 | 4.11 × 10−2 | 1.85 | 1.10 | 4.38 | 268 | |||
N85 | Ti-6-4 | 38.5 | 6.11 | 8.62 × 10−3 | 39.2 | 5.52 × 10−2 | 3.10 | 4.45 × 10−3 | 1.02 | 0.52 | 21.8 | 330 | ||
N87 | Ti-6-6-2 | 14.5 | 4.30 × 10−3 | 6.02 | 3.20 × 10−3 | 31.5 | 3.04 | 3.51 × 10−3 | 2.17 | 1.10 | 117.3 | 359 | ||
N93 | W | 13.3 | 5.23 | 2.55 × 10−3 | 11.9 | 2.86 | 1.25 × 10−3 | 0.89 | 0.49 | 75.0 | 299 | |||
Average | 6.52 × 10−3 | 7.28 × 10−3 |
Test No | Material | Cd | v | η | Cdt | vt | ηt | Cdt/Cd | ηt/η | Thickness | Density | Notes |
---|---|---|---|---|---|---|---|---|---|---|---|---|
dB/m /MHz | mm /µs | dB/m /MHz4 | mm /µs | mm | Mg/m3 | |||||||
O1 | PMMA | 91.4 | 2.40 | 8.00 × 10−3 | 253 | 1.40 | 1.30 × 10−2 | 2.78 | 1.62 | 0.95 | TDM-1 Average | |
O2 | PVC | 239 | 2.33 | 1.91 × 10−2 | 829 | 1.11 | 3.37 × 10−2 | 3.47 | 1.65 | 1.40 | Average | |
O2a | PVC | 849 | 1.11 | 3.45 × 10−2 | 8.6 | 1.40 | ||||||
O2b | PVC | 728 | 1.11 | 2.96 × 10−2 | 8.6/4.3 | 1.40 | TDM-1 | |||||
O2c | PVC | 909 | 1.11 | 3.70 × 10−2 | 4.3 | 1.40 | ||||||
O3 | PC | 638 | 2.25 | 5.26 × 10−2 | 1780 | 0.98 | 6.40 × 10−2 | 2.80 | 1.22 | 1.20 | Average | |
O3a | PC | 1750 | 0.97 | 6.22 × 10−2 | 2.33 | 1.20 | ||||||
O3b | PC | 1830 | 0.98 | 6.57 × 10−2 | 4.7 | 1.20 | ||||||
O3c | PC | 1770 | 0.98 | 6.36 × 10−2 | 2.33/4.7 | 1.20 | TDM-1 | |||||
O5 | Low density polyethylene (LDPE) | 446 | 2.59 | 4.23 × 10−2 | 1240 | 1.25 | 5.68 × 10−2 | 2.78 | 1.34 | 24.2 | 0.91 | |
O5a | Low density polyethylene (LDPE) | 579 | 2.64 | 5.60 × 10−2 | 1240 | 1.25 | 5.68 × 10−2 | 2.14 | 1.01 | 24.2 | 0.91 | |
O10 | High density polyethylene (HDPE) | 222 | 2.51 | 2.04 × 10−2 | 1010 | 1.17 | 4.33 × 10−2 | 4.55 | 2.12 | 9.9 | 0.94 | |
O6 | Ultrahigh molecular weight PE | 256 | 2.40 | 2.25 × 10−2 | 990 | 1.33 | 4.82 × 10−2 | 3.87 | 2.14 | 10.0 | 0.95 | |
O7 | Polypropylene (PP) | 452 | 2.61 | 4.32 × 10−2 | 1260 | 1.38 | 6.37 × 10−2 | 2.79 | 1.47 | 9.4 | 0.90 | |
O7a | Polypropylene (PP) | 465 | 2.61 | 4.45 × 10−2 | 1260 | 1.38 | 6.37 × 10−2 | 2.71 | 1.43 | 9.4 | 0.90 | |
O8 | Nylon 6/6 | 269 | 2.67 | 2.63 × 10−2 | 717 | 1.20 | 3.15 × 10−2 | 2.67 | 1.20 | 27.3 | 1.14 | |
O8a | Nylon 6/6 | 231 | 2.68 | 2.27 × 10−2 | 717 | 1.20 | 3.15 × 10−2 | 3.10 | 1.39 | 27.3 | 1.14 | |
O9 | Epoxy | 274 | 2.75 | 2.76 × 10−2 | 1030 | 1.38 | 5.21 × 10−2 | 3.76 | 1.89 | 9.1 | 1.39 | |
Average | 3.27 × 10−2 | 4.65 × 10−2 | 3.12 | 1.54 |
Test. | Material | Cd | C3 | v | η | Cdt | C2t | vt | ηt | Cdt/Cd | ηt/η | Thickness | Density | Notes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No | dB/m /MHz | dB/m /MHz^3 | mm /µs | dB/m /MHz | dB/m /MHz^2 | mm /µs | mm | Mg/m3 | ||||||
R1 | GRP rod //F | 74.6 | 4.96 | 3.00 × 10−2 | 478 | 1.71 | 3.00 × 10−2 | 6.41 | 2.21 | 33.5 | 1.97 | |||
R4 | GRP rod SN | 173 | 5.946 | 3.07 | 5.72 × 10−2 | 952 | 1.64 | 5.72 × 10−2 | 5.50 | 2.94 | 6.3 | 1.97 | pol = ⊥F | |
R4a | GRP rod SN | 173 | 5.946 | 3.07 | 6.09 × 10−2 | 944 | 1.76 | 6.09 × 10−2 | 5.46 | 3.13 | 6.3 | 1.97 | pol = //F | |
R5 | GRP //F | 121 | 5.06 | 4.29 × 10−2 | 650 | 1.80 | 4.29 × 10−2 | 5.37 | 1.91 | 7.0 | 2.07 | Pultruded rod | ||
R13 | GRP XP //F | 202 | 4.15 | 1.27 × 10−1 | 1740 | 1.99 | 1.27 × 10−1 | 8.61 | 4.13 | 7.0 | 1.81 | |||
R14 | GRP XP SN | 441 | 2.84 | 1.83 × 10−1 | 3030 | 1.65 | 1.83 × 10−1 | 6.87 | 3.99 | 2.2 | 1.81 | pol = //F | ||
R15 | CFRP AS4 UD //F | 91.0 | 9.32 | 36.6 | 1.53 | |||||||||
R35 | CFRP AS4 UD //F | 65.2 | (0.0372: n = 4) | 9.20 | 3.15 × 10−2 | 326 | 74.4 | 2.15 | 3.15 × 10−2 | 3.58 | 1.02 | 5.4 | 1.53 | |
R35a | CFRP AS4 UD //F | 65.2 | (0.0372: n = 4) | 9.20 | 1.10 × 10−2 | 0 | 140 | 2.15 | 1.10 × 10−2 | 2.15 | 0.50 | 5.4 | 1.53 | |
R16 | CFRP AS4 ⊥F | 247 | 4.938 | 3.16 | 4.43 × 10−2 | 579 | 2.09 | 4.43 × 10−2 | 2.34 | 1.55 | 24.3 | 1.53 | pol = //F | |
R16a | CFRP AS4 ⊥F | 247 | 4.938 | 3.16 | 3.42 × 10−2 | 583 | 1.60 | 3.42 × 10−2 | 2.36 | 1.20 | 24.3 | 1.53 | pol = ⊥F | |
R18 | CFRP G50 UD //F | 110 | 11.30 | 4.99 × 10−2 | 667 | 2.04 | 4.99 × 10−2 | 6.06 | 1.09 | 13.3 | 1.58 | |||
R22 | CFRP G50 UD SN | 148 | 2.79 | 6.71 × 10−2 | 995 | 1.84 | 6.71 × 10−2 | 6.72 | 4.43 | 28.9 | 1.58 | pol = //F | ||
R22a | CFRP G50 UD SN | 148 | 2.79 | 5.01 × 10−2 | 1050 | 1.30 | 5.01 × 10−2 | 7.10 | 3.31 | 28.9 | 1.58 | pol = ⊥F | ||
R36 | CFRP G50 XP SN | 213 | 2.68 | 4.21 × 10−2 | 709 | 1.62 | 4.21 × 10−2 | 3.33 | 2.01 | 4.7 | 1.58 | |||
R26 | CFRP T700 UD //F | 68.6 | (0.0316: n = 4) | 9.19 | 3.77 × 10−2 | 527 | 1.95 | 3.77 × 10−2 | 7.68 | 1.63 | 23.7 | 1.48 | ||
R28 | CFRP T700 UD SN | 1730 | 2.66 | 9.70 × 10−2 | 1400 | 1.89 | 9.70 × 10−2 | 0.81 | 0.57 | 15.5 | 1.48 | pol = //F | ||
R28a | CFRP T700 UD SN | 1730 | 2.66 | 1.12 × 10−2 | 1860 | 1.64 | 1.12 × 10−1 | 1.07 | 0.66 | 3.5 | 1.48 | pol = ⊥F | ||
R34a | KFRP SN | 1090 | 2.72 | 7.88 × 10−2 | 1630 | 1.32 | 7.88 × 10−2 | 1.50 | 0.73 | 9.2 | 1.34 | |||
R34b | KFRP SN | 1090 | 2.72 | 8.29 × 10−2 | 1700 | 1.33 | 8.29 × 10−2 | 1.56 | 0.77 | 4.41 | 1.34 | |||
Average | 6.52 × 10−2 | 6.52 × 10−2 | 4.45 | 1.99 |
C11 | C33 | C12 | C44 | C66 | η11 | η33 | η44 | η66 | Density | Fiber | Notes | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
GPa | GPa | GPa | GPa | GPa | Mg/m3 | Content % | ||||||
GRP rod | 18.57 | 48.47 | 7.97 | 6.10 | 5.76 | 0.019 | 0.014 | 0.061 | 0.030 | 1.97 | 56.5 | |
GRP pultruded | 53.00 | 6.71 | 0.022 | 0.043 | 2.07 | 61.5 | ||||||
CFRP AS4 UD | 15.28 | 132.9 | 7.44 | 6.68 | 7.07 | 0.029 | 0.031 | 0.044 | 0.032 | 1.53 | 50.0 | Hexcel 3501-6 |
CFRP G50 UD | 12.30 | 201.8 | 6.96 | 5.35 | 6.58 | 0.015 | 0.046 | 0.067 | 0.050 | 1.58 | 60.0 | Hexcel F584 |
CFRP T700 UD | 10.47 | 125.0 | 2.51 | 5.29 | 5.63 | 0.169 | 0.023 | 0.097 | 0.038 | 1.48 | 41.0 | Toray 2510 |
GRP XP | 14.60 | 31.17 | 4.93 | 7.17 | 0.046 | 0.031 | 0.183 | 0.127 | 1.81 | 38.0 | woven | |
G50 XP | 11.35 | 4.15 | 0.021 | 0.042 | 1.58 | 60.0 | Hexcel F584 | |||||
KFRP | 9.91 | 2.33 | 0.108 | 0.079 | 1.32 | 32.0 | Woven | |||||
Epoxy | 10.51 | 2.65 | 0.028 | 0.028 | 0.052 | 0.052 | 1.39 | |||||
PMMA | 5.47 | 1.86 | 0.008 | 0.008 | 0.013 | 0.013 | 0.95 |
Test. | Material | Cd | CR | v | η | Cdt | CRt | vt | ηt | Cdt/Cd | ηt/η | Thickness | Density | Notes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No. | dB/m /MHz | dB/m /MHz^4 | mm /µs | dB/m /MHz | dB/m /MHz^4 | mm /µs | mm | Mg/m3 | ||||||
C1 | Mortar | 252.0 | 6.20 × 10 | 3.71 | 3.43 × 10−2 | 423 | 2.18 | 3.38 × 10−2 | 1.68 | 0.99 | 50.7 | 2.00 | ||
C4 | WC | 41.9 | 6.75 | 1.04 × 10−2 | 31.0 | 14.51 | ||||||||
C4a | WC | 46.8 | 6.76 | 1.16 × 10−2 | 51.9 | 4.07 | 7.74 × 10−2 | 1.17 | 0.67 | 31.0 | 14.51 | |||
C7 | PZT-5A | 242.0 | 4.38 | 3.88 × 10−2 | 509 | 1.72 | 3.21 × 10−2 | 2.10 | 0.83 | 5.3 | 7.78 | |||
C8 | BaTiO3 | 121.0 | 5.91 | 2.62 × 10−2 | 4.2 | 5.70 | ||||||||
C8a | BaTiO3 | 105.0 | 6.29 | 2.42 × 10−2 | 89.3 | 3.60 | 1.18 × 10−2 | 1.08 | 0.49 | 4.2 | 5.70 | |||
C9 | BK7 glass | 5.0 | 5.80 | 1.06 × 10−3 | 4.7 | 3.46 | 5.96 × 10−4 | 0.94 | 0.56 | 100.0 | 2.51 | |||
C10 | BK7 glass | 6.3 | 5.80 | 1.34 × 10−3 | 50/100 | 2.51 | TDM-1 | |||||||
C10a | BK7 glass | 3.4 | 3.46 | 4.31 × 10−4 | 0.60 | 0.36 | 3.3/100 | 2.51 | TDM-1 | |||||
C10b | BK7 glass | 4.5 | 3.46 | 5.71 × 10−4 | 0.80 | 0.48 | 100.0 | 2.51 | ||||||
C10c | BK7 glass | 4.3 | 3.46 | 5.45 × 10−4 | 0.76 | 0.45 | 16 /100 | 2.51 | TDM-1 | |||||
C41 | Pyrex glass | 10.5 | 5.52 | 2.12 × 10−3 | 4.9 | 3.41 | 6.12 × 10−4 | 0.46 | 0.29 | 76.0 | 2.23 | |||
C42 | Pyrex glass | 10.7 | 5.52 | 2.16 × 10−3 | 2.1 | 3.41 | 2.62 × 10−4 | 0.20 | 0.12 | 16 /76 | 2.23 | TDM-1 | ||
C42a | Pyrex glass | 1.4 | 3.41 | 1.75 × 10−4 | 0.13 | 0.00 | 3.3 /76 | 2.23 | TDM-1 | |||||
C43 | Soda-lime (S-L) glass | 8.7 | 5.86 | 1.87 × 10−3 | 16.2 | 3.50 | 2.08 × 10−3 | 1.86 | 1.11 | 5.6 | 2.48 | |||
C44 | S-L glass, tempered | 12.3 | 5.83 | 2.63 × 10−3 | 8.8 | 3.47 | 1.12 × 10−3 | 0.72 | 0.43 | 10.2 | 2.52 | |||
C45 | Fused silica | ND | 5.87 | ND | 3.71 | 3.0/45 | 2.20 | TDM-1 | ||||||
C21 | Clay ceramic (tile) | 193.0 | 5.07 × 10−1 | 3.93 | 2.78 × 10−2 | 239 | 7.84 × 10−1 | 2.47 | 2.16 × 10−2 | 1.24 | 0.78 | 6.9 | 1.97 | |
C21a | Clay ceramic (tile) | 0 | (78.57: n = 2) | 2.48 | 7.14 × 10−3 | 6.9 | 1.97 | |||||||
C24 | Porcelain | 167.0 | 5.75 | 3.52 × 10−2 | 85.8 | 4.15 | 1.30 × 10−2 | 0.51 | 0.37 | 2.1 | 2.63 | |||
C24a | Porcelain | 173.0 | 7.14 | 4.53 × 10−2 | 98 | 4.15 | 1.49 × 10−2 | 0.57 | 0.33 | 2.0 | 2.63 | |||
C25 | Sintered Alumina | 196.0 | 9.43 | 8.32 × 10−2 | 116 | 5.47 | 5.93 × 10−2 | 0.76 | 0.41 | 3.3 | 3.42 | |||
C26 | Transparent alumina | 336.0 | 10.70 | 1.32 × 10−1 | 136 | 6.19 | 3.08 × 10−2 | 0.40 | 0.23 | 3.0 | 3.90 | |||
C46 | Sapphire SX | 106.0 | 10.93 | 4.33 × 10−2 | 32.9 | 6.78 | 8.17 × 10−3 | 0.31 | 0.19 | 3.1 | 3.98 | R-cut | ||
C27 | Bonded SiC | 392.0 | 5.79 | 8.32 × 10−2 | 473 | 1.40 × 10 | 3.36 | 5.93 × 10−2 | 1.21 | 0.71 | 9.3 | 2.32 | ||
C29 | Macor | 3.6 | 5.30 | 6.91 × 10−4 | 8.3 | 8.09 × 10−4 | 3.10 | 9.43 × 10−4 | 2.33 | 1.36 | 36.5 | 2.52 | ||
C33 | Granite (Santa Cecilia) | 1129.0 | 5.22 | 2.16 × 10−1 | 30.0 | 2.74 | ||||||||
C33a | Granite (Santa Cecilia) | 1150.0 | 5.24 | 2.21 × 10−1 | 867 | 2.82 | 8.96 × 10−2 | 0.76 | 0.41 | 30.0 | 2.74 | |||
C35 | Marble (Carrara) | 0.0 | (29.7: n = 2) | 6.26 | [6.81 × 10−3] | (57.3: n = 2) | 3.34 | 7.01 × 10−3 | 1.93 | 1.03 | 29.0 | 2.83 | ||
C38 | Fluorite <111> | 43.4 | 6.39 | 1.02 × 10−2 | 45.1 | 3.98 | 6.58 × 10−3 | 1.04 | 0.65 | 28.8 | 3.13* | |||
C39 | Calcite [001][110] | 58.8 | 7.25 | 1.56 × 10−2 | 40.9 | 2.72 | 4.08 × 10−3 | 0.70 | 0.26 | 22.1 | 2.72 | yellow | ||
C47 | Calcite [001][110] | 52.4 | 1.17 × 10−2 | 7.14 | 1.37 × 10−2 | 28.3 | 2.71 | 2.81 × 10−3 | 0.54 | 0.20 | 8.5 | 2.71 | clear | |
C40 | ADP H6NO4P <100> | 0.0 | 6.17 | 2.38 | 2.20 | 1.92 × 10−4 | 73.0 | 1.8* | pol = <001> | |||||
C40a | ADP H6NO4P <100> | 3.74 | 3.74 | 5.13 × 10−4 | 73.0 | 1.8* | pol = <010> | |||||||
C48 | Quartz SX SiO2 X | 19.1 | 5.71 | 4.00 × 10−3 | 47.2 | 3.28 | 5.67 × 10−3 | 2.47 | 1.42 | 23.4 | 2.56 | pol = Z | ||
C49 | Si SX | 2.7 | 9.22 | 9.09 × 10−4 | 15.7 | 5.10 | 2.93 × 10−3 | 5.84 | 3.23 | 29.7 | 2.33 | |||
C50 | Rock salt | 50.0 | 1.82 × 10−2 | 4.55 | 8.34 × 10−3 | 216 | 2.69 | 2.13 × 10−2 | 4.32 | 2.55 | 51.0 | 2.18 | ||
Average | 3.86 × 10−2 | 1.19 × 10−2 | 1.26 | 0.70 |
Material Group | Cdt Only | Cdt + CR | Cdt + C2 | Cdt + C3 | Cdt − Low | Cdt − High | Cdt/Cd ≥ 1.5 | 1.5 > Cdt/Cd ≥ 0.67 | 0.67 > Cdt/Cd | η | ηt |
---|---|---|---|---|---|---|---|---|---|---|---|
or CR | or C2 | dB/m/MHz | dB/m/MHz | ||||||||
Ferrous | 23 (73) | 28 (35) | 2 (13) | 0 (0) | 0 (1.4) | 164 | 17 | 21 | 15 | 6.69 × 10−3 | 3.97 × 10−3 |
Non-ferrous | 41 (59) | 31 (29) | 7 (11) | 2 (0) | 0 (4.0) | 341 | 54 | 16 | 11 | 6.52 × 10−3 | 7.28 × 10−3 |
Polymers | 37 (48) | 0 (2) | 0 (4) | 0 (0) | 211 | 1830 | 37 | 0 | 0 | 3.27 × 10−2 | 4.65 × 10−2 |
Fiber-reinforced plastics | 17 (25) | 0 (1) | 2 (0) | 0 (8) | 0 (326) | 1860 | 17 | 2 | 0 | 4.79 × 10−2 | 6.52 × 10−2 |
Ceramics and rocks | 27 (30) | 3 (8) | 2 (2) | 0 (0) | 0 (1.4) | 867 | 10 | 11 | 11 | 3.86 × 10−2 | 1.19 × 10−2 |
Percent of total tests | 65.3 (67.5) | 27.9 (21.6) | 5.9 (8.6) | 0.9 (2.3) | 60.8 | 22.5 | 16.7 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ono, K. Dynamic Viscosity and Transverse Ultrasonic Attenuation of Engineering Materials. Appl. Sci. 2020, 10, 5265. https://doi.org/10.3390/app10155265
Ono K. Dynamic Viscosity and Transverse Ultrasonic Attenuation of Engineering Materials. Applied Sciences. 2020; 10(15):5265. https://doi.org/10.3390/app10155265
Chicago/Turabian StyleOno, Kanji. 2020. "Dynamic Viscosity and Transverse Ultrasonic Attenuation of Engineering Materials" Applied Sciences 10, no. 15: 5265. https://doi.org/10.3390/app10155265
APA StyleOno, K. (2020). Dynamic Viscosity and Transverse Ultrasonic Attenuation of Engineering Materials. Applied Sciences, 10(15), 5265. https://doi.org/10.3390/app10155265