3D Documentation with TLS of Caliphal Gate (Ceuta, Spain)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
- Intel Core i7 3770 K, with CPU at 3.5 GHz, 3901 MHz;
- Four main processors and eight logical processors;
- RAM: 32 GB;
- Hard disk: 2 TB;
- Graphic Card: GeForce GTX560.
2.2. Methods
2.2.1. Previous Works
- European Terrestrial Reference System 1989 (ETRS89). ETRS89 replaced the regional reference system ED50 in the year 2015, after a period of coexistence of both systems (2012–2015);
- Planimetric Universal Transverse Mercator (UTM) coordinates, the official projection system since July 1970;
- Altimetric coordinates referred with respect to the mean sea level of Alicante (NMMA), which were obtained by means of GPS and previous junction with vertices within the precise leveling network.
- Analysis of any existing network;
- Physical location and signaling of outside vertices;
- Observation with GPS of the outside vertices;
- Analysis, compensation, and determination of final coordinates;
- Digital identification and documentation of each outside vertex.
2.2.2. TLS Surveying
2.2.3. Data Management According to the Desired Outputs
3. Results
3.1. Ceuta and the Caliphal Gate
3.2. Main Areas of Work
3.3. Results of the Previous Works: Micro-Geodetic Network
3.4. Point-Clouds
3.5. Meshes
3.6. Other Outputs of Interest
3.6.1. Orthoimages
3.6.2. Virtual Itineraries
3.6.3. Interactive Application
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ferrer Torío, R.; Ruiz Bedia, M.L. Fotogrametría aplicada al patrimonio. In El Patrimonio Histórico 10, Actas de los XVI Cursos Monográficos sobre Patrimonio Histórico; Iglesias Gil, J.M., Ed.; Servicio de Publicaciones de la Universidad de Cantabria: Santander, Spain, 2005; pp. 109–120. [Google Scholar]
- Piña Patón, B.; Mañero García, A.; Pascual Sanz, F. Trabajos Topográficos y Altimétricos en la Cueva de Altamira. Rev. Fund. Patrim. Hist. Castilla León 2002, 8, 31–32. [Google Scholar]
- Penasa, L.; Franceschi, M.; Petro, N.; Teza, G.; Polito, V. Integration of intensity textures and local geometry descriptors from terrestrial laser scanning to map chert in outcrops. ISPRS-J. Photogramm. Remote Sens. 2014, 93, 88–97. [Google Scholar] [CrossRef]
- Rodríguez-Gonzálvez, P.; Mancera-Taboada, J.; González-Aguilera, D.; Muñoz-Nieto, A.; Armesto, J.A. A hybrid approach to create an archaeological visualization system for a paleolithic cave. Archaeometry 2011, 54, 565–580. [Google Scholar] [CrossRef]
- Santana, D.; Corominas, J.; Mavrouli, O.; García Sellés, D. Magnitude-frequency relation for rockfall scars using a Terrestrial Laser Scanner. Eng. Geol. 2012, 145, 50–64. [Google Scholar] [CrossRef]
- Hancock, G.R.; Crawter, D.; Fityius, S.G.; Chandler, J.; Wells, T. The measurement and modelling of rill erosions at angle of repose slopes in mine spoil. Earth Surf. Proc. Landforms 2008, 33, 1006–1020. [Google Scholar] [CrossRef]
- Tarolli, P.; Calligaro, S.; Cazorzi, F.; Dalla Fontana, G. Recognition of surface flow processes influenced by roads and trails in mountain areas using high-resolution topography. Eur. J. Remote Sens. 2014, 46, 176–197. [Google Scholar] [CrossRef]
- Kajzar, V.; Kukutsch, R.; Waclawik, P.; Konicek, P. Coal pillar deformation monitoring using terrestrial laser scanner technology in room and pillar panel—A case study from the Ostrava-Karvina coal field. In Rock Mechanics and Rock Engineering: From the Past to the Future, Proceedings of the 2016 ISRM International Symposium—Eurock 2016, Cappacocia, Turkey, 29–31 August 2016; Ulusay, R., Aydan, Ö., Gerçek, H., Ali Hindistan, M., Eds.; CRC Press: Leiden, The Netherlands, 2016; Volume 2, pp. 951–956. [Google Scholar]
- Brodie, K.L.; Slocum, R.K.; McNinch, J.E. New insights into the physical drivers of wave runup from a continuously operating terrestrial laser scanner. In Proceedings of the MTS/IEEE Oceans, Hampton Roads, VA, USA, 14–19 October 2012. [Google Scholar]
- Barbarella, M.; Fiani, M. Monitoring of large landslides by Terrestrial Laser Scanning techniques: Field data collection and processing. Eur. J. Remote Sens. 2013, 46, 126–151. [Google Scholar] [CrossRef]
- Bonali, E.; Pesci, A.; Casula, G.; Boschi, E. Deformation of ancient buildings inferred by terrestrial laser scanning methodology: The Cantalovo Church case study (Northern Italy). Archaeometry 2013, 56, 703–716. [Google Scholar] [CrossRef]
- Sampson, C.C.; Fewtrell, T.J.; Ducan, A.; Shaad, K.; Horritt, M.S.; Bates, P.D. Use of terrestrial laser scanning data to drive decimetric resolution urban inundation models. Adv. Water Resour. 2012, 41, 1–17. [Google Scholar] [CrossRef]
- Golpavar-Fard, M.; Bohn, J.; Teizer, J.; Savarese, S.; Peña-Mora, F. Evaluation of image-based modelling and laser scanning accuracy for emerging automated performance monitoring techniques. Autom. Constr. 2012, 20, 1143–1155. [Google Scholar] [CrossRef]
- Azmy, S.N.; Sah, S.A.; Shafie, N.J.; Griffin, A.; Majid, Z.; Ismail, M.N.; Shamsir, M.S. Counting in the dark: Non-intrusive laser scanning for population counting and identifying of roosting bat. Sci. Rep. 2012, 2, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Pueschel, P. The influence of scanner parameters on the extraction of tree metrics from FARO Photon 120 laser scans. ISPRS-J. Photogramm. Remote Sens. 2013, 78, 58–68. [Google Scholar] [CrossRef]
- Odipo, V.O.; Nickless, A.; Berger, C.; Baade, J.; Urbazaev, M.; Walther, C.; Schmullius, C. Assessment of aboveground woody biomass dynamics using terrestrial laser scanner and L-Band Data in South African Savanna. Forests 2016, 7, 294. [Google Scholar] [CrossRef] [Green Version]
- Ehlert, D.; Heisig, M. Sources of angle-dependent errors in terrestrial laser scanner-based cropped stand measurement. Comput. Electron. Agric. 2013, 93, 10–16. [Google Scholar] [CrossRef]
- Marsico, A.; Sabato, L.; Spalluto, L.; Infante, M.; Nitti, A. Integrated geological and digital surveys to know, preserve and promote a geoheritage: The Sea Cliff of Vignanotica Bay (Gargano Promontory, Southern Italy). Geoheritage 2016, 8, 371–380. [Google Scholar] [CrossRef]
- Pérez-Álvarez, R. Aplicación de las Nuevas Tecnologías Geomáticas en El Grupo Minero La Florida. In Proceedings of the I Congreso Científico Internacional de Cuevas y Minas “El Soplao”, Celis, Spain, 15–17 November 2017; De Luis-Ruiz, J.M., Pérez-Álvarez, R., Fernández Maroto, G., El Soplao, S.L., Eds.; Consejería de Innovación, Industria, Turismo y Comercio del Gobierno de Cantabria: Santander, Spain, 2017; pp. 87–104. [Google Scholar]
- Ghiraldi, L.; Giordano, E.; Perotti, L.; Giardino, M. Digital tools for collection, promotion and visualisation of geoscientific data: Case study of Seguret Valley (Piemonte, NW Italy). Geoheritage 2014, 6, 103–112. [Google Scholar] [CrossRef]
- Torres, J.A.; Hernández-López, D.; González-Aguilera, D.; Moreno Hidalgo, M.A. A hybrid measurement approach for archaeological site modelling and monitoring: The Case Study of Mas D’Is, Penàguila. J. Archaeol. Sci. 2014, 50, 475–483. [Google Scholar] [CrossRef]
- Di Salvo, F.; Lo Brutto, M. Full-waveform terrestrial laser scanning for extracting a high-resolution 3D topographic model: A case study on an area of archeological significance. Eur. J. Remote Sens. 2014, 47, 307–327. [Google Scholar] [CrossRef] [Green Version]
- Fregonese, L.; Barbieri, G.; Biolzi, L.; Bocciarelli, M.; Frigeri, A.; Taffurelli, L. Surveying and monitoring for vulnerability assessment of an ancient building. Sensors 2013, 13, 9747–9773. [Google Scholar] [CrossRef]
- Bertocci, S.; Pancani, G.; Cottinin, A. The City Wall of Lastra a Signa: Integrated Digital Survey Methodologies. In Defensive Architecture of the Mediterranean; Navarro Palazón, J., García Pulido, L.J., Eds.; Universitat Politècnica de València: Valencia, Spain, 2010; Volume X, pp. 255–262. [Google Scholar]
- Nocerino, E.; Menna, F.; Farella, E.; Remondino, F. 3D virtualization of an underground semi-submerged cave system. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2019, XLII-2/W15, 857–864. [Google Scholar] [CrossRef] [Green Version]
- Bertocci, S. Il Castello templar de Peniscola, da fortezza di época crociata a cittadella tardo rinascimentale. In Defensive Architecture of the Mediterranean, XV to XVIII Centuries; Navarro Palazón, J., Ed.; Universitat Politécnica de València: Valencia, Spain, 2015; Volume II, pp. 27–32. [Google Scholar]
- Miceli, A.; Morandotti, M.; Parrinello, S. 3D survey and semantic analysis for the documentation of built heritage. The case study of Palazzo Centrale of Pavia University. VITRUVIO Int. J. Arch. Technol. Sustain. 2020, 5, 65–80. [Google Scholar] [CrossRef]
- Parrinello, S.; Gómez-Blanco Pontes, A.; Picchio, F.; Rodríguez-Moreno, C.; Rivas-López, E. An integrated system for documentation, analysis and management of the architectural heritage: The general and the parts of the Generalife Palace. EGA Rev. Exp. Graf. Arquit. 2019, 35, 140–151. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Moreno, C.; Reinoso-Gordo, J.F.; Rivas-López, E.; Gómez-Blanco, A.; Ariza-López, F.J.; Ariza-López, I. From point cloud to BIM: An integrated workflow for documentation, research and modelling of architectural heritage. Surv. Rev. 2018, 50, 212–231. [Google Scholar] [CrossRef]
- Grilli, E.; Özdemir, E.; Remondino, F. Application of machine and deep learning strategies for the classification of heritage point clouds. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2019, XLII-4/W18, 447–454. [Google Scholar] [CrossRef] [Green Version]
- Grilli, E.; Remondino, F. Machine learning generalization across different 3D architectural heritage. GISPRS Int. J. Geo-Inf. 2020, 9, 379. [Google Scholar] [CrossRef]
- Balzani, M.; Maietti, F.; Kühl, B. Point cloud analysis for conservation and enhancement of modernist architecture. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2017, XLII-2/W3, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Apollonio, F.I.; Bassilissi, V.; Callieri, M.; Dellepiano, M.; Gaiani, M.; Ponchio, F.; Rizzo, F.; Rubino, A.R.; Scopigno, R.; Sobra, G. A 3D-centered information system for the documentation of a complex restoration intervention. J. Cult. Herit. 2017, 29, 89–99. [Google Scholar] [CrossRef]
- Parrinello, S.; Porzilli, S. 3D survey systems and digital simulations for structural monitoring of rooms at the Uffizi Museum in Florence. In Mechatronics for Cultural Heritage and Civil Engineering. Intelligent Systems, Control and Automation: Science and Engineering; Ottaviano, E., Pellicio, A., Galluti, V., Eds.; Springer: Cham, Switzerland, 2018; Volume 92, pp. 203–233. [Google Scholar]
- Parrinello, S. A development project for the United Nations. The digital survey for the planning of East Jerusalem. In Putting Tradition into Practice: Heritage, Place and Design; Amoruso, G., Ed.; Springer: Cham, Switzerland, 2018; Volume 3, pp. 551–559. [Google Scholar]
- Bertocci, S.; Bua, S.; Parrinello, S.; Picchio, F. Montepulciano 3D virtual models for urban planning and development of the urban environment. DISEGNARECON 2014, 7, 1–20. [Google Scholar]
- Bertocci, S.; Parrinello, S. Experiences of digital documentation of carsulae on the Flaminian Way in Umbria. SCIRES-IT-Sci. Res. Inf. Technol. 2014, 4, 5–13. [Google Scholar]
- Litchi, D.D.; Licht, G. Experiences with terrestrial laser scanner modelling and accuracy assessment. In Proceedings of the IAPRS, Part 5, Dresden, Germany, 25–27 September 2006; Maas, H.G., Schneider, D., Eds.; ISPRS: Dresden, Germany, 2006; Volume XXXVI, pp. 155–160. [Google Scholar]
- Reshetyuk, Y. A unified approach to self-calibration of terrestrial laser scanners. ISPRS J. Photogramm. Remote Sens. 2010, 65, 445–456. [Google Scholar] [CrossRef]
- Gordon, S.J.; Lichti, D. Terrestrial laser scanners with a narrow field of view: The effect on 3D resection solutions. Sur. Rev. 2004, 37, 448–468. [Google Scholar] [CrossRef]
- Reshetyuk, Y. Investigation and Calibration of Pulsed Time-of-Flight Terrestrial Laser Scanners. Master’s Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2006. [Google Scholar]
- INE. Available online: https://www.ine.es/jaxiT3/Tabla.htm?t=2853&L=0n (accessed on 22 July 2020).
- Villada Paredes, F. Arquitectura Urbana de Ceuta (2000–2005). In Actas del I Seminario Hispano-Marroquí de Especialización en Arqueología; Bernal, D., Raissouni, B., Ramos, J., Bouzouggan, A., Eds.; Servicio de Publicaciones de la Universidad de Cádiz: Cádiz, Spain, 2012; pp. 269–280. [Google Scholar]
- Villada Paredes, F.; Gurriarán Daza, P. Recientes investigaciones sobre las fortificaciones del Califato Omeya en el estrecho de Gibraltar (Tarifa, Algeciras, Tánger, Ceuta). In Fortificações e Território na Península Ibérica e no Magreb (Séculos VI a XVI); Ferreira Fernandes, I.C., Ed.; Edições Colibri/Campo Arqueológico de Mértola: Lisboa, Portugal, 2013; Volume I, pp. 51–62. [Google Scholar]
- Gómez Barceló, J.L. Informe sobre el hallazgo en Ceuta de una Muralla Califal. In Anuario de la Real Academia de Bellas Artes San Telmo; Canales Pérez, A., Cuenca Mendoza, J.M., Eds.; Real Academia de Bellas Artes San Telmo: Málaga, Spain, 2002; pp. 14–17. [Google Scholar]
- Hernández de León, J.M. Rehabilitación de las Murallas de Ceuta. Rev. Arquit. 2001, 324, 55–67. [Google Scholar]
- Gómez Barceló, J.L. Ceuta, una ciudad fortificada. Aldaba 2008, 34, 145–166. [Google Scholar] [CrossRef] [Green Version]
- Villada Paredes, F. Excavaciones arqueológicas en la Muralla Real de Ceuta: Persistencias y rupturas (1415–1668). In Velhos e Novos Mundos. Estudos de Arqueologia Moderna Old and New Worlds. Studies on Early Modern Archaeology; André Teixeira, A., José António Bettencourt, J.A., Eds.; Centro de História de Além-Mar, Faculdade de Ciências Sociais e Humanas—Universidade Nova de Lisboa, Universidade dos Açores: Lisboa, Portugal, 2012; Volume 1, pp. 375–384. [Google Scholar]
- Modelo 3D de la Puerta Califal de Ceuta—Unican.es. Available online: https://www.youtube.com/watch?v=UCC1nkiIVig (accessed on 22 July 2020).
Name | X | Y | z | Comments |
---|---|---|---|---|
101 | 290,757.78 | 3,974,068.26 | 21.46 | Vertex |
102 | 290,760.11 | 3,974,058.87 | 21.74 | Vertex |
103 | 290,762.17 | 3,974,048.03 | 22.07 | Vertex |
104 | 290,764.04 | 3,974,034.92 | 22.53 | Vertex |
105 | 290,763.48 | 3,974,020.65 | 23.09 | Vertex |
106 | 290,756.43 | 3,974,017.03 | 23.35 | Vertex |
341 | 290,789.26 | 3,974,024.05 | 12.28 | Support point |
343 | 290,776.47 | 3,974,031.61 | 12.50 | Support point |
601 | 290,704.39 | 3,974,111.90 | 9.51 | Support point |
602 | 290,662.62 | 3,974,094.87 | 7.94 | Support point |
603 | 290,712.23 | 3,974,059.13 | 11.39 | Support point |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Álvarez, R.; Luis-Ruiz, J.M.d.; Pereda-García, R.; Fernández-Maroto, G.; Malagón-Picón, B. 3D Documentation with TLS of Caliphal Gate (Ceuta, Spain). Appl. Sci. 2020, 10, 5377. https://doi.org/10.3390/app10155377
Pérez-Álvarez R, Luis-Ruiz JMd, Pereda-García R, Fernández-Maroto G, Malagón-Picón B. 3D Documentation with TLS of Caliphal Gate (Ceuta, Spain). Applied Sciences. 2020; 10(15):5377. https://doi.org/10.3390/app10155377
Chicago/Turabian StylePérez-Álvarez, Rubén, Julio Manuel de Luis-Ruiz, Raúl Pereda-García, Gema Fernández-Maroto, and Beatriz Malagón-Picón. 2020. "3D Documentation with TLS of Caliphal Gate (Ceuta, Spain)" Applied Sciences 10, no. 15: 5377. https://doi.org/10.3390/app10155377
APA StylePérez-Álvarez, R., Luis-Ruiz, J. M. d., Pereda-García, R., Fernández-Maroto, G., & Malagón-Picón, B. (2020). 3D Documentation with TLS of Caliphal Gate (Ceuta, Spain). Applied Sciences, 10(15), 5377. https://doi.org/10.3390/app10155377