Composition Characteristics of Organic Matter and Bacterial Communities under the Alternanthera philoxeroide Invasion in Wetlands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Sampling
2.2. Separation and Analysis of Organic Matter
2.3. Illumina MiSeq and Data Processing
2.4. Statistical Analysis
3. Results and Discussion
3.1. Organic Matter in the Wetland Habitats
3.2. Bacterial Distribution and Composition
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bassett, I.; Paynter, Q.; Beggs, J.; Preston, C.; Watts, J.H.; Crossman, N.D. Alligator weed (Alternanthera philoxeroides) invasion affects decomposition rates in a northern New Zealand lake. In Proceedings of the Managing Weeds in a Changing Climate, Adelaide, South Australia, 24–28 September 2006; pp. 776–779. [Google Scholar]
- Palihakkara, C.R.; Dassanayake, S.; Jayawardena, C.; Senanayake, I.P. Floating wetland treatment of acid mine drainage using Eichhornia crassipes (water hyacinth). J. Health. Pollut. 2018, 8, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Hao, W.; Juli, C.; Jianqing, D. Invasion by alligator weed, alternanthera philoxeroides, is associated with decreased species diversity across the latitudinal gradient in China. J. Plant Ecol. 2015, 3, 311–319. [Google Scholar]
- Spencer, N.R.; Coulson, J.R. The biological control of alligator weed, Alternanthera philoxeroides, in the United States of America. Aquat. Bot. 1976, 2, 177–190. [Google Scholar] [CrossRef]
- Tao, Y.; Jiang, M. Study on anatomical structure adaptation of stem of Alternanthera philoxeroides (Mart.) Griseb to various water condition. Wuhan Bot. Res. 2003, 22, 65–71. [Google Scholar]
- Chen, G.; Azkab, M.H.; Chmura, G.L.; Chen, S.; Sastrosuwondo, P.; Ma, Z.; Dharmawan, I.W.E.; Yin, X.; Chen, B. Mangroves as a major source of soil carbon storage in adjacent seagrass meadows. Sci. Rep.-UK 2017, 7, 1–10. [Google Scholar] [CrossRef]
- Skornia, K.; Safferman, S.I.; Rodriguez-Gonzalez, L.; Ergas, S.J. Treatment of winery wastewater using bench-scale columns simulating vertical flow constructed wetlands with adsorption media. Appl. Sci. 2020, 10, 1063. [Google Scholar] [CrossRef] [Green Version]
- Geddes, P.; Grancharova, T.; Kelly, J.J.; Treering, D.; Tuchman, N.C. Effects of invasive Typha × glauca on wetland nutrient pools, denitrification, and bacterial communities are influenced by time since invasion. Aquat. Ecol. 2014, 48, 247–258. [Google Scholar] [CrossRef]
- Martina, J.P.; Hamilton, S.K.; Turetsky, M.R.; Phillippo, C.J. Organic matter stocks increase with degree of invasion in temperate inland wetlands. Plant Soil. 2014, 385, 107–123. [Google Scholar] [CrossRef]
- Nguyen, H.T.T.; Chao, H.R.; Chen, K.C. Treatment of organic matter and tetracycline in water by using constructed wetlands and photocatalysis. Appl. Sci. 2019, 9, 2680. [Google Scholar] [CrossRef] [Green Version]
- Whalen, J.K.; Bottomley, P.J.; Myrold, D.D. Carbon and nitrogen mineralization from light-and heavy-fraction additions to soil. Soil Biol. Biochem. 2000, 32, 1345–1352. [Google Scholar] [CrossRef]
- Tan, Z.; Lal, R.; Owens, L.; Izaurralde, R.C. Distribution of light and heavy fractions of soil organic carbon as related to land use and tillage practice. Soil Till. Res. 2007, 92, 53–59. [Google Scholar] [CrossRef]
- Liao, J.D.; Boutton, T.W.; Jastrow, J.D. Storage and dynamics of carbon and nitrogen in soil physical fractions following woody plant invasion of grassland. Soil Biol. Biochem. 2006, 38, 3184–3196. [Google Scholar] [CrossRef]
- Bertin, C.; Yang, X.; Weston, L. The role of root exudates and allelochemicals in the rhizosphere. Plant Soil. 2003, 256, 67–83. [Google Scholar] [CrossRef]
- Batten, K.M.; Scow, K.M.; Davies, K.F.; Harrison, S.P. Two invasive plants alter soil microbial community composition in serpentine grasslands. Biol. Invasions. 2006, 8, 217–230. [Google Scholar] [CrossRef]
- Cao, Q.; Hui, W.; Chen, X.; Wang, R.; Jian, L. Composition and distribution of microbial communities in natural river wetlands and corresponding constructed wetlands. Ecol. Eng. 2017, 98, 40–48. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, B.; Jing, Y.; Kang, X.; Zhang, C. Design of constructed wetland in Xinxue River Estuary into Nansi Lake in Eastern Line of South-to-North water transfer project. China Water Wastewater 2008, 24, 49–51. [Google Scholar]
- Zhang, Y. Plant Diversity, Soil Mercury Risk and Eco-Sustainability of Xinxue River Constructed Wetland in Nansi Lake, China. Ph.D. Thesis, Shandong University, Jinan, China, 2014. [Google Scholar]
- Liu, H. Distribution Characteristics, Bioaccumulation, and Sources of Mercury in Rice at Nansi Lake Area, Shandong Province, China. JAPS J. Anim. Plant Sci. 2015, 25, 114–121. [Google Scholar]
- Zhang, W.J.; Xiao, H.A.; Tong, C.L.; Su, Y.R.; Xiang, W.S.; Huang, D.Y.; Syers, J.K.; Wu, J. Estimating organic carbon storage in temperate wetland profiles in Northeast China. Geoderma 2008, 146, 311–316. [Google Scholar] [CrossRef]
- Cao, Q.; Wang, R.; Zhang, H.; Ge, X.; Liu, J. Distribution of organic carbon in the sediments of Xinxue River and the Xinxue River Constructed Wetland, China. PLoS ONE 2015, 10, e0134713. [Google Scholar] [CrossRef]
- Moiwo, J.P.; Wahab, A.; Kangoma, E.; Blango, M.M.; Ngegba, M.P.; Suluku, R. Effect of biochar application depth on crop productivity under tropical rainfed conditions. Appl. Sci. 2019, 9, 2602. [Google Scholar] [CrossRef] [Green Version]
- Bambi, P.; Rezende, R.D.S.; Feio, M.J.; Leite, G.F.M.; Alvin, E.; Quintão, J.M.B.; Araújo, F.; Júnior, J.F.G. Temporal and spatial patterns in inputs and stock of organic matter in Savannah Streams of Central Brazil. Ecosystems 2017, 20, 757–768. [Google Scholar] [CrossRef]
- Nadzirah, K.Z.; Zainal, S.; Noriham, A.; Normah, I. Efficacy of selected purification techniques for bromelain. Int. Food Res. J. 2013, 20, 43–46. [Google Scholar]
- Niemi, R.M.; Heiskanen, I.; Wallenius, K.; Lindström, K. Extraction and purification of DNA in rhizosphere soil samples for PCR-DGGE analysis of bacterial consortia. J. Microbiol. Meth. 2001, 45, 155–165. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Lozupone, C.A.; Turnbaugh, P.J.; Fierer, N.; Knight, R. Global patterns of 165 rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 2011, 108, 4516–4522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolgova, A.S.; Stukolova, O.A. High-fidelity PCR enzyme with DNA-binding domain facilitates de novo gene synthesis. Biotech 2017, 7, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [Green Version]
- García, A.L.; Quiroga, C.P.; Atxaerandio, R.; Pérez, A.; Recio, O.G. Comparison of Mothur and Qiime for the analysis of rumen microbiota composition based on 16s rRNA amplicon sequences. Front. Microbiol. 2018, 9, 1–11. [Google Scholar]
- DeSantis, T.Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie, E.L.; Keller, K.; Huber, T.; Dalevi, D.; Hu, P.; Andersen, G.L. Greengenes, a Chimera-Checked 16S rRNA Gene Databaseand Workbench Compatible with ARB. Appl. Environ. Microbial. 2006, 72, 5069–5072. [Google Scholar] [CrossRef] [Green Version]
- Schloss, P.D. A high-throughput DNA sequence aligner for microbial ecology studies. PLoS ONE 2009, 4, e8230. [Google Scholar] [CrossRef]
- Ramette, A. Multivariate analyses in microbial ecology. FEMS Microbiol. Ecol. 2007, 62, 142–160. [Google Scholar] [CrossRef] [Green Version]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Cao, Q.; Wang, H.; Zhang, Y.; Lal, R.; Wang, R.; Ge, X.; Jian, L. Factors affecting distribution patterns of organic carbon in sediments at regional and national scales in China. Sci. Rep.-UK 2017, 7, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Hogan, D.M.; Jordan, T.E.; Walbridge, M.R. Phosphorus retention and soil organic carbon in restored and natural freshwater wetlands. Wetlands 2004, 24, 573–585. [Google Scholar] [CrossRef] [Green Version]
- Bruland, G.L.; Richardson, C.J. Comparison of soil organic matter in created, restored and paired natural wetlands in North Carolina. Wetl. Ecol. Manag. 2006, 14, 245–251. [Google Scholar] [CrossRef]
- Gao, J.; Lei, G.; Zhang, X.; Wang, G. Can δ13C abundance, water-soluble carbon, and light fraction carbon be potential indicators of soil organic carbon dynamics in Zoigê Wetland? Catena 2014, 119, 21–27. [Google Scholar] [CrossRef]
- Nelson, J.D.J.; Schoenau, J.J.; Malhi, S.S. Soil organic carbon changes and distribution in cultivated and restored grassland soils in Saskatchewan. Nutr. Cycl. Agroecosys. 2008, 82, 137–148. [Google Scholar] [CrossRef]
- Lehmann, J.; Skjemstad, J.; Sohi, S.; Carter, J.; Barson, M.; Falloon, P.; Coleman, K.; Woodbury, P.B. Australian climate–carbon cycle feedback reduced by soil black carbon. Nat. Geosci. 2008, 1, 832–835. [Google Scholar] [CrossRef]
- Ma, S.; Xie, Y.; Hu, H.; Ni, B. Relationship between soil water content and soil particle distribution in two kinds of typical community types of desert steppe. Soil Water Conserv. China 2019, 7, 61–65. [Google Scholar]
- Gerke, H.H.; Kuchenbuch, R.O. Root effects on soil water and hydraulic properties. Biologia 2007, 62, 557–561. [Google Scholar] [CrossRef]
- Wang, X.; Song, C.; Sun, X.; Wang, J.; Zhang, X.; Mao, R. Soil carbon and nitrogen across wetland types in discontinuous permafrost zone of the Xiao Xing’an Mountains, Northeastern China. Catena 2013, 101, 31–37. [Google Scholar] [CrossRef]
- Hossler, K. Accumulation of carbon in created wetland soils and the potential to mitigate loss of natural wetland carbon-mediated functions. Ph.D. Thesis, The Ohio State University, Environmental Science, Columbus, OH, USA, 2005. [Google Scholar]
- De Mastro, F.; Cocozza, C.; Brunetti, G.; Traversa, A. Chemical and spectroscopic investigation of different soil fractions as affected by soil management. Appl. Sci. 2020, 10, 2571. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Zhao, H.; Leng, X.; Cheng, X.; An, S. Soil organic carbon and nitrogen dynamics following Spartina alterniflora invasion in a coastal wetland of Eastern China. Catena 2017, 156, 28–289. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, W.; Luo, J.; Donnison, A. Changes in soil organic carbon dynamics in an Eastern Chinese coastal wetland following invasion by a C4 plant Spartina alterniflora. Soil Biol. Biochem. 2010, 42, 1712–1720. [Google Scholar] [CrossRef]
- Singh, M.R.; Theunuo, N. Variation of soil pH, moisture, organic carbon and organic matter content in the invaded and non-invaded areas of Tithonia diversifolia (Hemsl.) A. gray found in Nagaland, North-east India. Eco. Env. Cons. 2017, 23, 2181–2187. [Google Scholar]
- Dhillon, J.; Del Corso, M.R.; Figueiredo, B.; Nambi, E.; Raun, W. Soil organic carbon, total nitrogen, and soil ph, in a long-term continuous winter wheat (Triticum aestivum l.) experiment. Commun. Soil Sci. Plan. 2018, 8, 1–11. [Google Scholar] [CrossRef]
- Fickbohm, S.S.; Zhu, W.X. Exotic purple loosestrife invasion of native cattail freshwater wetlands: Effects on organic matter distribution and soil nitrogen cycling. Appl. Soil Ecol. 2006, 32, 123–131. [Google Scholar] [CrossRef]
- Martini, J.; Orge, C.A.; Faria, J.L.; Pereira, M.F.R.; Soares, O.S.G.P. Catalytic advanced oxidation processes for sulfamethoxazole degradation. Appl. Sci. 2019, 9, 2652. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xu, X.; Li, Y.; Huang, L.; Xie, X.; Dong, J.; Yang, S. Effects of Spartina alterniflora invasion and exogenous nitrogen on soil nitrogen mineralization in the coastal salt marshes. Ecol. Eng. 2016, 87, 281–287. [Google Scholar]
- Moore, T.R.; Trofymow, J.; Prescott, C.E.; Titus, B.; Group, C.W. Nature and nurture in the dynamics of C, N and P during litter decomposition in Canadian forests. Plant Soil 2011, 339, 163–175. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, Y.; Wei, H.; Zhang, R.; Luo, G.; Hou, H.; Chen, S.; Zhang, R. NO removal by Plasma-Enhanced NH3-SCR using methane as an assistant reduction agent at low temperature. Appl. Sci. 2019, 9, 2751. [Google Scholar] [CrossRef] [Green Version]
- Huo, L.; Chen, Z.; Zou, Y.; Lu, X.; Guo, J.; Tang, X. Effect of Zoige Alpine Wetland degradation on the density and fractions of soil organic carbon. Ecol. Eng. 2013, 51, 287–295. [Google Scholar] [CrossRef]
- Zhang, W.; Peng, P.; Tong, C.; Wang, X.; Wu, J. Characteristics of distribution and composition of organic carbon in Dongting Lake Floodplain. Environ. Sci. 2005, 26, 56–60. [Google Scholar]
- Six, J.; Merckx, R.; Kimpe, K.; Paustian, K.; Elliott, E.T. A re-evaluation of the enriched labile soil organic matter fraction. Eur. J. Soil Sci. 2000, 51, 283–293. [Google Scholar] [CrossRef]
- Adrados, B.; Sánchez, O.; Arias, C.A.; Becares, E.; Garrido, L.; Mas, J.; Brix, H.; Morató, J. Microbial communities from different types of natural wastewater treatment systems: Vertical and horizontal flow constructed wetlands and biofilters. Water Res. 2014, 55, 304–312. [Google Scholar] [CrossRef] [Green Version]
- Kirchman, D. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol. Ecol. 2002, 39, 91–100. [Google Scholar] [CrossRef]
- Dorador, C.; Meneses, D.; Urtuvia, V.; Demergasso, C.; Vila, I.; Witzel, K.P.; Imhoff, J.F. Diversity of Bacteroidetes in high altitude saline evaporitic basins in northern Chile. J. Geophys. Res. Biogeoences 2015, 114, 65. [Google Scholar]
- Yan, Z.; Jiang, H.; Li, X.; Shi, Y. Accelerated removal of pyrene and benzo[a]pyrene in freshwater sediments with amendment of cyanobacteria-derived organic matter. J. Hazard. Mater. 2014, 272, 66–74. [Google Scholar] [CrossRef]
- Liu, X.; Gao, C.; Zhang, A.; Jin, P.; Wang, L.; Feng, L. The nos gene cluster from Gram-positive bacterium Geobacillus thermodenitrificans NG80-2 and functional characterization of the recombinant NosZ. FEMS Microbiol. Lett. 2008, 289, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Zhao, R.; Cao, Q.; Quan, Q.; Sun, R.; Liu, J. Effects of emergent aquatic plants on nitrogen transformation processes and related microorganisms in a constructed wetland in Northern China. Plant Soil 2019, 443, 473–492. [Google Scholar] [CrossRef]
- De Vrieze, J.; Saunders, A.M.; He, Y.; Fang, J.; Nielsen, P.H.; Verstraete, W.; Boon, N. Ammonia and temperature determine potential clustering in the anaerobic digestion microbiome. Water Res. 2015, 75, 312–323. [Google Scholar]
Parameters | XRCW | NLE | XR | NL | p-Values |
---|---|---|---|---|---|
LFOC | 0.771 ± 0.28 | 0.834 ± 0.41 | 0.460 ± 0.24 | 0.601 ± 0.04 | 0.173 |
LFON | 0.043 ± 0.021 | 0.042 ± 0.024 | 0.022 ± 0.014 | 0.025 ± 0.005 | 0.182 |
HFOC | 13.92 ± 5.05 | 14.80 ± 8.70 | 13.27 ± 5.37 | 15.55 ± 8.03 | 0.961 |
HFON | 0.290 ± 0.21 | 0.414 ± 0.32 | 0.115 ± 0.11 | 0.308 ± 0.27 | 0.360 |
S(LFOC) | 0.170 ± 0.06 | 0.164 ± 0.07 | 0.147 ± 0.09 | 0.168 ± 0.014 | 0.937 |
S(LFON) | 0.010 ± 0.01 | 0.008 ± 0.005 | 0.007 ± 0.005 | 0.0068 ± 0.003 | 0.798 |
S(HFOC) | 3.20 ± 1.14 | 2.75 ± 1.30 | 3.80 ± 1.27 | 4.199 ± 1.58 | 0.350 |
S(HFON) | 0.061 ± 0.06 | 0.071 ± 0.06 | 0.031 ± 0.04 | 0.078 ± 0.09 | 0.619 |
Moisture content (%) | 0.682 ± 0.17 | 0.925 ± 0.55 | 0.441 ± 0.10 | 0.464 ± 0.14 | 0.054 |
Bulk density (g·cm−3) | 0.979 ± 0.16 | 0.852 ± 0.29 | 1.146 ± 0.16 | 1.125 ± 0.18 | 0.087 |
Parameters (0–15 cm) | LFOC | LFON | HFOC | HFON | S(LFOC) | S(LFON) | S(HFOC) | S(HFON) |
---|---|---|---|---|---|---|---|---|
Constructed wetlands | 0.791 ± 0.32 | 0.043 ± 0.022 | 14.20 ± 6.23 | 0.313 ± 0.24 | 0.168 ± 0.07 | 0.010 ± 0.008 | 3.058 ± 1.18 | 0.064 ± 0.056 |
Natural wetlands | 0.500 ± 0.21 | 0.022 ± 0.011 | 13.92 ± 5.59 | 0.175 ± 0.14 | 0.153 ± 0.07 | 0.007 ± 0.004 | 3.913 ± 1.23 | 0.044 ± 0.055 |
p values | 0.012 | 0.004 | 0.912 | 0.146 | 0.633 | 0.255 | 0.138 | 0.431 |
Invaded habitats | 0.885 ± 0.29 | 0.056 ± 0.019 | 17.40 ± 5.31 | 0.464 ± 0.26 | 0.174 ± 0.08 | 0.012 ± 0.011 | 3.610 ± 1.24 | 0.087 ± 0.060 |
Normal habitats | 0.620 ± 0.29 | 0.027 ± 0.015 | 12.13 ± 5.598 | 0.186 ± 0.18 | 0.159 ± 0.06 | 0.007 ± 0.003 | 3.053 ± 1.21 | 0.042 ± 0.046 |
p values | 0.027 | 0.000 | 0.019 | 0.014 | 0.585 | 0.152 | 0.249 | 0.046 |
Parameters (15–25 cm) | LFOC | LFON | HFOC | HFON | S(LFOC) | S(LFON) | S(HFOC) | S(HFON) |
Constructed wetlands | 0.572 ± 0.45 | 0.026 ± 0.018 | 15.27 ± 6.36 | 0.295 ± 0.18 | ||||
Natural wetlands | 0.245 ± 0.19 | 0.006 ± 0.002 | 12.11 ± 4.01 | 0.180 ± 0.15 | ||||
p values | 0.137 | 0.042 | 0.23 | 0.169 | ||||
Invaded habitats | 0.688 ± 0.58 | 0.030 ± 0.02 | 16.29 ± 6.91 | 0.328 ± 0.15 | ||||
Normal habitats | 0.390 ± 0.26 | 0.017 ± 0.01 | 13.42 ± 5.23 | 0.232 ± 0.18 | ||||
p values | 0.082 | 0.079 | 0.214 | 0.202 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Q.; Zhang, H.; Ma, W.; Wang, R.; Liu, J. Composition Characteristics of Organic Matter and Bacterial Communities under the Alternanthera philoxeroide Invasion in Wetlands. Appl. Sci. 2020, 10, 5571. https://doi.org/10.3390/app10165571
Cao Q, Zhang H, Ma W, Wang R, Liu J. Composition Characteristics of Organic Matter and Bacterial Communities under the Alternanthera philoxeroide Invasion in Wetlands. Applied Sciences. 2020; 10(16):5571. https://doi.org/10.3390/app10165571
Chicago/Turabian StyleCao, Qingqing, Haijie Zhang, Wen Ma, Renqing Wang, and Jian Liu. 2020. "Composition Characteristics of Organic Matter and Bacterial Communities under the Alternanthera philoxeroide Invasion in Wetlands" Applied Sciences 10, no. 16: 5571. https://doi.org/10.3390/app10165571
APA StyleCao, Q., Zhang, H., Ma, W., Wang, R., & Liu, J. (2020). Composition Characteristics of Organic Matter and Bacterial Communities under the Alternanthera philoxeroide Invasion in Wetlands. Applied Sciences, 10(16), 5571. https://doi.org/10.3390/app10165571