Plant Species-Dependent Effects of Liming and Plant Residue Incorporation on Soil Bacterial Community and Activity in an Acidic Orchard Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soils and Test Plants
2.2. Experimental Setup
2.3. Measurement of Soil Chemical Properties, TOC and DOC
2.4. Soil Enzyme Assay
2.5. Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis Analysis of Soil Microbial Community
2.6. Data Analysis and Statistics
3. Results
3.1. The Effects of Liming and Plant Residue Incorporation on Plant Growth
3.2. The Effects of Liming and Llant Residue Incorporation on Soil Properties
3.3. The Effects of Two Practices on Soil Microbial Community
3.4. CCA of the Effects of Two Practices on Soil Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sumner, M.E.; Noble, A.D. Soil acidification: The world story. In Handbook of Soil Acidity; Rengel, Z., Ed.; CRC Press: New York, NY, USA, 2003; pp. 1–28. [Google Scholar]
- Crusciol, C.A.; Artigiani, A.C.; Arf, O.; Carmeis Filho, A.C.; Soratto, R.P.; Nascente, A.S.; Alvarez, R.C. Soil fertility, plant nutrition, and grain yield of upland rice affected by surface application of lime, silicate, and phosphogypsum in a tropical no-till system. Catena 2016, 137, 87–99. [Google Scholar] [CrossRef] [Green Version]
- Zhu, T.; Meng, T.; Zhang, J.; Yin, Y.; Cai, Z.; Yang, W.; Zhong, W. Nitrogen mineralization, immobilization turnover, heterotrophic nitrification, and microbial groups in acid forest soils of subtropical China. Biol. Fertil. Soils 2013, 49, 323–331. [Google Scholar] [CrossRef]
- Xue, D.; Huang, X.; Yao, H.; Huang, C. Effect of lime application on microbial community in acidic tea orchard soils in comparison with those in wasteland and forest soils. J. Environ. Sci. 2010, 22, 1253–1260. [Google Scholar] [CrossRef]
- Xu, J.M.; Tang, C.; Chen, Z.L. The role of plant residues in pH change of acid soils differing in initial pH. Soil Biol. Biochem. 2006, 38, 709–719. [Google Scholar] [CrossRef]
- Hue, N.V. Alleviating soil acidity with crop residues. Soil Sci. 2011, 176, 543–549. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C. Ameliorating soil acidity of tropical oxisols by liming for sustainable crop production. In Advance in Agronomy; Sparks, D.L., Ed.; Academic Press: California, SD, USA, 2008; Volume 99, pp. 345–399. [Google Scholar]
- Sakala, G.M.; Rowell, D.L.; Pilbeam, C.J. Acid-base reactions between an acidic soil and plant residues. Geoderma 2004, 123, 219–232. [Google Scholar] [CrossRef]
- Bierke, A.; Kaiser, K.; Guggenberger, G. Crop residue management effects on organic matter in paddy soils—The lignin component. Geoderma 2008, 146, 48–57. [Google Scholar] [CrossRef]
- Anyanzwa, H.; Okalebo, J.R.; Othieno, C.O.; Bationo, A.; Waswa, B.S.; Kihara, J. Effects of conservation tillage, crop residue and cropping systems on changes in soil organic matter and maize-legume production: A case study in Teso District. Nutr. Cycl. Agroecosyst. 2010, 88, 39–47. [Google Scholar] [CrossRef]
- Pascault, N.; Ranjard, L.; Kaisermann, A.; Bachar, D.; Christen, R.; Terrat, S.; Mathieu, O.; Lévêque, J.; Mougel, C.; Henault, C.; et al. Stimulation of different functional groups of bacteria by various plant residues as a driver of soil priming effect. Ecosystems 2013, 16, 810–822. [Google Scholar] [CrossRef]
- Elmajdoub, B.; Marschner, P. Responses of soil microbial activity and biomass to salinity after repeated additions of plant residues. Pedosphere 2015, 25, 177–185. [Google Scholar] [CrossRef]
- Geisseler, D.; Horwath, W.R.; Scow, K.M. Soil moisture and plant residue addition interact in their effect on extracellular enzyme activity. Pedobiologia 2011, 54, 71–78. [Google Scholar] [CrossRef]
- Van der Heijden, M.G.A.; Bardgett, R.D.; van Straalen, N.M. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 2008, 11, 296–310. [Google Scholar] [CrossRef] [PubMed]
- Baumann, K.; Dignac, M.F.; Rumpel, C.; Bardoux, G.; Sarr, A.; Steffens, M.; Maron, P.A. Soil microbial diversity affects soil organic matter decomposition in a silty grassland soil. Biogeochemistry 2013, 114, 201–212. [Google Scholar] [CrossRef]
- Broughton, R.C.I.; Newsham, K.K.; Hill, P.W.; Stott, A.; Jones, D.L. Differential acquisition of amino acid and peptide enantiomers within the soil microbial community and its implications for carbon and nitrogen cycling in soil. Soil Biol. Biochem. 2015, 88, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Cleveland, C.C.; Nemergut, D.R.; Schmidt, S.K.; Townsend, A.R. Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry 2007, 82, 229–240. [Google Scholar] [CrossRef]
- Yadav, R.L.; Shukla, S.K.; Suman, A.; Singh, P.N. Trichoderma inoculation and trash management effects on soil microbial biomass, soil respiration, nutrient uptake and yield of ratoon sugarcane under subtropical conditions. Biol. Fertil. Soils 2009, 45, 461–468. [Google Scholar] [CrossRef]
- Rousk, J.; Bååth, E.; Brookes, P.C.; Lauber, C.L.; Lozupone, C.; Caporaso, J.G.; Knight, R.; Fierer, N. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010, 4, 1340–1351. [Google Scholar] [CrossRef]
- Hu, Y.; Xiang, D.; Veresoglou, S.D.; Chen, F.; Chen, Y.; Hao, Z.; Zhang, X.; Chen, B. Soil organic carbon and soil structure are driving microbial abundance and community composition across the arid and semi-arid grasslands in northern China. Soil Biol. Biochem. 2014, 77, 51–57. [Google Scholar] [CrossRef]
- Zhalnina, K.; Dias, R.; de Quadros, P.D.; Davis-Richardson, A.; Camargo, F.A.O.; Clark, I.M.; McGrath, S.P.; Hirsch, P.R.; Triplett, E.W. Soil pH determines microbial diversity and composition in the park grass experiment. Microb. Ecol. 2015, 69, 395–406. [Google Scholar] [CrossRef]
- Cui, H.; Zhou, Y.; Gu, Z.; Zhu, H.; Fu, S.; Yao, Q. The combined effects of cover crops and symbiotic microbes on phosphatase gene and organic phosphorus hydrolysis in subtropical orchard soils. Soil Biol. Biochem. 2015, 82, 119–126. [Google Scholar] [CrossRef]
- Wang, C.; Gu, Z.; Cui, H.; Zhu, H.; Fu, S.; Yao, Q. Differences in arbuscular mycorrhizal fungal community composition in soils of three land use types in subtropical hilly area of southern China. PLoS ONE 2015, 10, e0130983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, H.; Zhang, B.; Yin, R.; Wang, H.; Mitchell, S.M.; Griffiths, B.S.; Daniell, T.J. Long-term effect of re-vegetation on the microbial community of a severely eroded soil in sub-tropical China. Plant Soil 2010, 328, 447–458. [Google Scholar] [CrossRef]
- Mavi, M.S.; Marschner, P.; Chittleborough, D.J.; Cox, J.W.; Sanderman, J. Salinity and sodicity affect soil respiration and dissolved organic matter dynamics differentially in soils varying in texture. Soil Biol. Biochem. 2012, 45, 8–13. [Google Scholar] [CrossRef]
- ISO/TS 22939. Soil Quality—Measurement of Enzyme Activity Patterns in Soil Samples Using Fluorogenic Substrates in Micro-Well Plates; International Organization for Standardization: Geneva, Switzerland, 2010. [Google Scholar]
- Giacometti, C.; Cavani, L.; Baldoni, G.; Ciavatta, C.; Marzadori, C.; Kandeler, E. Microplate-scale fluorometric soil enzyme assays as tools to assess soil quality in a long-term agricultural field experiment. Appl. Soil Ecol. 2014, 75, 80–85. [Google Scholar] [CrossRef]
- Karpouzas, D.G.; Kandeler, E.; Bru, D.; Friedel, I.; Auer, Y.; Kramer, S.; Vasileiadis, S.; Petric, I.; Udikovic-Kolic, N.; Djuric, S.; et al. A tiered assessment approach based on standardized methods to estimate the impact of nicosulfuron on the abundance and function of the soil microbial community. Soil Biol. Biochem. 2014, 75, 282–291. [Google Scholar] [CrossRef]
- Hu, B.; Liang, D.; Liu, J.; Lei, L.; Yu, D. Transformation of heavy metal fractions on soil urease and nitrate reductase activities in copper and selenium co- contaminated soil. Ecotox. Environ. Safe. 2014, 110, 41–48. [Google Scholar] [CrossRef]
- Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef] [Green Version]
- Muyzer, G.; De Waal, E.C.; Uitterlinden, A.G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 1993, 59, 695–700. [Google Scholar] [CrossRef] [Green Version]
- Ishii, T.; Matsumura, A.; Horii, S.; Motosugi, H.; Cruz, A.F. Network establishment of arbuscular mycorrhizal hyphae in the rhizospheres between citrus rootstocks and Paspalum notatum or Vulpia myuros grown in sand substrate. Biol. Fertil. Soils 2007, 44, 217. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.D.; Lee, S.B.; Taylor, J.W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols and Applications—A Laboratory Manual; Innis, N., Gelfand, D., Sninsky, J., White, T.J., Eds.; Academic: New York, NY, USA, 1990; pp. 315–322. [Google Scholar]
- Lee, J.; Lee, S.; Young, J.P.W. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol. Ecol. 2008, 65, 339–349. [Google Scholar] [CrossRef] [Green Version]
- Liang, Z.; Drijber, R.A.; Lee, D.J.; Dwiekat, I.M.; Harris, S.D.; Wedin, D.A. A DGGE-cloning method to characterize arbuscular mycorrhizal community structure in soil. Soil Biol. Biochem. 2008, 40, 956–966. [Google Scholar] [CrossRef] [Green Version]
- Lepš, J.; Šmilauer, P. Multivariate Analysis of Ecological Data Using Canoco™; Cambrige University Press: New York, NY, USA, 2003. [Google Scholar]
- Nelson, D.R.; Mele, P.M. The impact of crop residue amendments and lime on microbial community structure and nitrogen-fixing bacteria in the wheat rhizosphere. Aust. J. Soil Res. 2006, 44, 319–329. [Google Scholar] [CrossRef]
- Garbuio, F.J.; Jones, D.L.; Alleoni, L.R.F.; Murphy, D.V.; Caires, E.F. Carbon and nitrogen dynamics in an oxisol as affected by liming and crop residues under no-till. Soil Sci. Soc. Am. J. 2011, 75, 1723–1730. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Friedel, J.K.; Stahr, K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 2000, 32, 1485–1498. [Google Scholar] [CrossRef]
- Blagodatskaya, E.; Kuzyakov, Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: Critical review. Biol. Fert. Soils 2008, 45, 115–131. [Google Scholar] [CrossRef]
- Chantigny, M.H.; Angers, D.A.; Rochette, P. Fate of carbon and nitrogen from animal manure and crop residues in wet and cold soils. Soil Biol. Biochem. 2002, 34, 509–517. [Google Scholar] [CrossRef]
- Chantigny, M.H. Dissolved and water-extractable organic matter in soils: A review on the influence of land use and management practices. Geoderma 2003, 113, 357–380. [Google Scholar] [CrossRef]
- Hassan, W. C and N mineralization and dissolved organic matter potentials of two contrasting plant residues: Effects of residue type, moisture, and temperature. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2013, 63, 642–652. [Google Scholar] [CrossRef]
- Ye, G.; Lin, Y.; Liu, D.; Chen, Z.; Luo, J.; Bolan, N.; Fan, J.; Ding, W. Long-term application of manure over plant residues mitigates acidification, builds soil organic carbon and shifts prokaryotic diversity in acidic Ultisols. Appl. Soil Ecol. 2019, 133, 24–33. [Google Scholar] [CrossRef]
- Ramesh, A.; Sharma, S.K.; Yadav, N.; Joshi, O.P. Phosphorus mobilization from native soil P-pool upon inoculation with phytate-mineralizing and phosphate-solubilizing Bacillus aryabhattai isolates for improved P-acquisition and growth of soybean and wheat crops in microcosm conditions. Agric. Res. 2014, 3, 118–127. [Google Scholar] [CrossRef]
- Lin, Y.; Ye, G.; Liu, D.; Ledgard, S.; Luo, J.; Fan, J.; Yuan, J.; Chen, Z.; Ding, W. Long-term application of lime or pig manure rather than plant residues suppressed diazotroph abundance and diversity and altered community structure in an acidic Ultisol. Soil Biol. Biochem. 2018, 123, 218–228. [Google Scholar] [CrossRef]
- Jarvis, S.C.; Robson, A.D. The effects of nitrogen nutrition of plants on the development of acidity in Western Australian soils. II. Effects of differences in cation/anion balance between plant species grown under non-leaching conditions. Aust. J. Agric. Res. 1983, 34, 355–365. [Google Scholar] [CrossRef]
- Tang, C.; Barton, L.; Raphael, C. Pasture legume species differ in their capacity to acidify soil. Aust. J. Agric. Res. 1998, 49, 53–58. [Google Scholar] [CrossRef]
- Tang, C.; McLay, C.D.A.; Barton, L. A comparison of proton excretion of twelve pasture legumes grown in nutrient solution. Aust. J. Exp. Agric. 1997, 37, 563–570. [Google Scholar] [CrossRef]
- Vinther, F.P.; Hansen, E.M.; Olesen, J.E. Effects of plant residues on crop performance, N mineralisation and microbial activity including field CO2 and N2O fluxes in unfertilised crop rotations. Nutr. Cycl. Agroecosyst. 2004, 70, 189–199. [Google Scholar] [CrossRef]
- Arshad, M.A.; Soon, Y.K.; Azooz, R.H.; Lupwayi, N.Z.; Chang, S.X. Soil and crop response to wood ash and lime application in acidic soils. Agron. J. 2012, 104, 715–721. [Google Scholar] [CrossRef]
- Pagani, A.; Mallarino, A.P. On-farm evaluation of corn and soybean grain yield and soil pH responses to liming. Agron. J. 2015, 107, 71–82. [Google Scholar] [CrossRef]
- Kassel, P. Report on the Effects of Eggshells and Aglime on Soil pH and Crop Yields. Northwest Research Farm and Allee Demonstration Farm Annual Report. Iowa State University, Ames. 2008. RFR—A1056. ISRF08-29, 31. Available online: http://lib.dr.iastate.edu/farms_reports/594 (accessed on 14 April 2020).
- Judd, K.E.; Crump, B.C.; Kling, G.W. Variation in dissolved organic matter controls bacterial production and community composition. Ecology 2006, 87, 2068–2079. [Google Scholar]
- Lauber, C.L.; Hamady, M.; Knight, R.; Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 2009, 75, 5111–5120. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Shen, H.; He, X.; Thomas, B.W.; Lupwayi, N.Z.; Hao, X.; Thomas, M.C.; Shi, X. Fertilization shapes bacterial community structure by alteration of soil pH. Front Microbiol. 2017, 8, 1325. [Google Scholar] [CrossRef] [Green Version]
- Underwood, G.J.; Michel, C.; Meisterhans, G.; Niemi, A.; Belzile, C.; Witt, M.; Dumbrell, A.J.; Koch, B.P. Organic matter from Arctic sea-ice loss alters bacterial community structure and function. Nat. Clim. Chang. 2019, 9, 170–176. [Google Scholar] [CrossRef]
- Penn, C.J.; Camberato, J.J. A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture 2019, 9, 120. [Google Scholar] [CrossRef] [Green Version]
- Adetunji, A.T.; Lewu, F.B.; Mulidzi, R.; Ncube, B. The biological activities of β-glucosidase, phosphatase and urease as soil quality indicators: A review. J. Soil Sci. Plant Nutr. 2017, 17, 794–807. [Google Scholar] [CrossRef] [Green Version]
- Spohn, M.; Kuzyakov, Y. Distribution of microbial- and root-derived phosphatase activities in the rhizosphere depending on P availability and C allocation e coupling soil zymography with 14C imaging. Soil Biol. Biochem. 2013, 67, 106–113. [Google Scholar] [CrossRef]
Plant Species | Treatment | pH | TOC (g·kg−1) | DOC (mg·kg−1) | TN (g·kg−1) | AN (mg·kg−1) | TP (g·kg−1) | AP (mg·kg−1) | TK (g·kg−1) | AK (mg·kg−1) |
---|---|---|---|---|---|---|---|---|---|---|
S. guianensis | Control | 4.50 ± 0.03 a | 14.7 ± 0.5 a | 237.1 ± 28.5 a | 1.63 ± 0.03 a | 121.85 ± 4.87 a | 0.56 ± 0.01 a | 56.25 ± 0.82 a | 11.52 ± 0.43 a | 17.87 ± 0.62 a |
CaCO3 | 5.93 ± 0.03 c | 16.4 ± 0.2 b | 260.1 ± 8.3 a | 1.64 ± 0.01 a | 130.62 ± 8.15 a | 0.68 ± 0.01 b | 69.80 ± 0.67 b | 12.28 ± 0.26 a | 22.69 ± 1.19 a | |
OM | 4.89 ± 0.04 b | 18.5 ± 0.5 c | 456.8 ± 28.4 b | 2.29 ± 0.02 b | 135.28 ± 4.06 a | 0.67 ± 0.01 b | 86.45 ± 2.06 c | 11.32 ± 0.21 a | 58.70 ± 3.12 b | |
P. natatum | Control | 4.89 ± 0.04 a | 15.8 ± 0.2 a | 251.1 ± 17.2 a | 1.77 ± 0.01 b | 126.92 ± 6.17 a | 0.62 ± 0.01 b | 61.40 ± 0.46 c | 12.10 ± 0.17 b | 19.06 ± 0.86 a |
CaCO3 | 6.44 ± 0.03 c | 14.8 ± 0.5 a | 282.1 ± 12.0 a | 1.52 ± 0.04 a | 123.63 ± 5.47 a | 0.55 ± 0.01 a | 57.88 ± 0.87 b | 11.18 ± 0.34 a | 18.55 ± 0.47 a | |
OM | 5.31 ± 0.04 b | 19.7 ± 0.6 b | 423.2 ± 16.6 b | 2.28 ± 0.03 c | 144.46 ± 5.61 b | 0.60 ± 0.011 b | 47.75 ± 0.60 a | 11.86 ± 0.21 a | 36.79 ± 0.81 b | |
Two-way ANOVA (p value) | ||||||||||
Plant species (P) | 0.000 | 0.485 | 0.499 | 0.906 | 0.621 | 0.000 | 0.000 | 0.977 | 0.000 | |
Soil treatments (T) | 0.000 | 0.000 | 0.000 | 0.000 | 0.032 | 0.001 | 0.000 | 0.738 | 0.000 | |
P × T | 0.177 | 0.004 | 0.356 | 0.000 | 0.357 | 0.000 | 0.000 | 0.009 | 0.000 |
Plant Species | Treatment | α-GLU | β-GLU | β-XYL | CEL | URA | NR | CHI | ACP | ALP |
---|---|---|---|---|---|---|---|---|---|---|
S. guianensis | Control | 0.23 ± 0.01 a | 0.24 ± 0.01 a | 0.15 ± 0.00 a | 0.16 ± 0.01 a | 335.4 ± 11.6 a | 3.38 ± 0.07 a | 0.06 ± 0.00 a | 5.27 ± 0.70 ab | 0.63 ± 0.11 a |
CaCO3 | 0.24 ± 0.01 a | 0.25 ± 0.01 a | 0.16 ± 0.01 ab | 0.15 ± 0.01 a | 436.1 ± 9.1 b | 5.09 ± 0.36 b | 0.07 ± 0.00 a | 7.61 ± 1.04 b | 5.65 ± 0.70 b | |
OM | 0.25 ± 0.01 a | 0.49 ± 0.04 b | 0.18 ± 0.00 b | 0.16 ± 0.00 a | 631.3 ± 6.9 c | 5.18 ± 0.22 b | 0.10 ± 0.01 b | 4.22 ± 1.16 a | 0.73 ± 0.12 a | |
P. natatum | Control | 0.20 ± 0.01 a | 0.27 ± 0.02 a | 0.13 ± 0.01 a | 0.15 ± 0.00 a | 197.6 ± 6.7 a | 3.37 ± 0.17 a | 0.08 ± 0.01 a | 7.21 ± 1.15 a | 0.82 ± 0.28 a |
CaCO3 | 0.23 ± 0.01 a | 0.33 ± 0.03 a | 0.16 ± 0.01 b | 0.16 ± 0.00 a | 514.2 ± 16.9 b | 3.55 ± 0.20 a | 0.08 ± 0.01 a | 4.55 ± 1.11 a | 2.60 ± 0.41 b | |
OM | 0.23 ± 0.01 a | 0.41 ± 0.02 b | 0.16 ± 0.00 b | 0.16 ± 0.00 a | 589.7 ± 7.5 c | 6.30 ± 0.11 b | 0.10 ± 0.01 a | 4.79 ± 0.88 a | 1.71 ± 0.16 ab | |
Two-way ANOVA (p value) | ||||||||||
Plant species (P) | 0.036 | 0.497 | 0.004 | 0.800 | 0.001 | 0.420 | 0.150 | 0.820 | 0.052 | |
Soil treatments (T) | 0.124 | 0.000 | 0.002 | 0.405 | 0.000 | 0.000 | 0.001 | 0.140 | 0.000 | |
P × T | 0.447 | 0.015 | 0.323 | 0.286 | 0.000 | 0.000 | 0.408 | 0.045 | 0.000 |
Plant Species | Treatment | Diversity Index (H) | Species Abundance (S) | Species Evenness E |
---|---|---|---|---|
S. guianensis | Control | 3.64 ± 0.01 a | 42.4 ± 0.4 a | 0.97 ± 0.00 a |
CaCO3 | 3.82 ± 0.01 c | 49.6 ± 0.5 b | 0.98 ± 0.00 a | |
OM | 3.69 ± 0.01 b | 43.0 ± 0.5 a | 0.98 ± 0.00 a | |
P. natatum | Control | 3.76 ± 0.03 a | 46.2 ± 1.1 a | 0.98 ± 0.00 a |
CaCO3 | 3.69 ± 0.05 a | 45.8 ± 0.7 a | 0.97 ± 0.01 a | |
OM | 3.79 ± 0.03 a | 48.0 ± 1.1 a | 0.98 ± 0.00 a | |
Two-way ANOVA (p value) | ||||
Plant species (P) | 0.220 | 0.016 | 0.524 | |
Soil treatments (T) | 0.119 | 0.001 | 0.210 | |
P × T | 0.000 | 0.000 | 0.101 |
Treatment | Diversity Index (H) | Species Abundance (S) | Species Evenness (E) |
---|---|---|---|
Control | 2.55 ± 0.06 a | 14.6 ± 0.2 a | 1.06 ± 0.03 a |
CaCO3 | 2.92 ± 0.10 b | 21.8 ± 0.9 b | 1.05 ± 0.03 a |
OM | 2.54 ± 0.06 a | 14.4 ± 0.2 a | 1.05 ± 0.02 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Feng, Z.; Zhou, Y.; Zhu, H.; Yao, Q. Plant Species-Dependent Effects of Liming and Plant Residue Incorporation on Soil Bacterial Community and Activity in an Acidic Orchard Soil. Appl. Sci. 2020, 10, 5681. https://doi.org/10.3390/app10165681
Liu X, Feng Z, Zhou Y, Zhu H, Yao Q. Plant Species-Dependent Effects of Liming and Plant Residue Incorporation on Soil Bacterial Community and Activity in an Acidic Orchard Soil. Applied Sciences. 2020; 10(16):5681. https://doi.org/10.3390/app10165681
Chicago/Turabian StyleLiu, Xiaodi, Zengwei Feng, Yang Zhou, Honghui Zhu, and Qing Yao. 2020. "Plant Species-Dependent Effects of Liming and Plant Residue Incorporation on Soil Bacterial Community and Activity in an Acidic Orchard Soil" Applied Sciences 10, no. 16: 5681. https://doi.org/10.3390/app10165681
APA StyleLiu, X., Feng, Z., Zhou, Y., Zhu, H., & Yao, Q. (2020). Plant Species-Dependent Effects of Liming and Plant Residue Incorporation on Soil Bacterial Community and Activity in an Acidic Orchard Soil. Applied Sciences, 10(16), 5681. https://doi.org/10.3390/app10165681