Mechanical Properties and Freeze–Thaw Durability of Basalt Fiber Reactive Powder Concrete
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mixture Proportion and Specimen Preparation
2.3. Testing Methods
2.3.1. Flexural Strength
2.3.2. Compressive Strength
2.3.3. Freeze–Thaw Cycle
3. Results and Discussion
3.1. Mechanical Properties
3.1.1. Compressive Strength
3.1.2. Flexural Strength
3.2. Effect of Fiber on Freeze–Thaw Durability of RPC
3.2.1. Mass Loss
3.2.2. Compressive Strength Loss
3.3. Effect of Freeze–Thaw Condition on the Freeze–Thaw Durability of RPC
3.3.1. Mass Loss
3.3.2. Compressive Strength Loss
4. Conclusions
- The compressive strength and flexural strength can be improved by adding basalt fiber into RPC, and the compressive and flexural strength of BFRPC increase as the basalt fiber content increases. Compared with PRPC, the compressive strength and flexural strength of BFRPC (12 kg/m3 content) are increased by 6% and 18.5%, respectively; the improvement of basalt fiber on the flexural strength of RPC is greater than compressive strength.
- The freeze–thaw durability of BFRPC increases as the basalt fiber content increases. After 800 freeze–thaw cycles, the mass loss rate and compressive strength loss rates of BFRPC with a basalt fiber content of 12 kg/m3 are 0.85% and 19.17%, respectively, which are lower than that of PRPC. The addition of basalt fiber could significantly improve the freeze–thaw durability of RPC.
- Compared with the fresh-water freeze–thaw cycle, the mass loss rate and compressive strength loss rate of RPC are higher under the chloride-salt freeze–thaw cycle, and the damage of the chloride-salt freeze–thaw cycle on RPC is great.
- After 800 freeze–thaw cycles, the mass loss rate and compressive strength loss rates of SFRPC are greater than 2% and 20%, respectively, which are higher than that of BFRPC. Steel fiber is not as effective at enhancing the freeze–thaw durability of RPC as basalt fiber.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Glasser, F.P.; Marchand, J.; Samson, E. Durability of concrete—Degradation phenomena involving detrimental chemical reactions. Cem. Concr. Res. 2008, 38, 226–246. [Google Scholar] [CrossRef]
- Wang, Y.; An, M.Z.; Yu, Z.R.; Han, S.; Ji, W.Y. Durability of reactive powder concrete under chloride-salt freeze–thaw cycling. Mater. Struct. 2017, 50, 18. [Google Scholar] [CrossRef]
- Wang, Y.R.; Cao, Y.B.; Zhang, P.; Ma, Y.W.; Zhao, T.J.; Wang, H.; Zhang, Z.H. Water absorption and chloride diffusivity of concrete under the coupling effect of uniaxial compressive load and freeze-thaw cycles. Constr. Build. Mater. 2019, 209, 566–576. [Google Scholar] [CrossRef]
- Sun, W.; Mu, R.; Luo, X.; Miao, C.W. Effect of chloride salt, freeze–thaw cycling and externally applied load on the performance of the concrete. Cem. Concr. Res. 2002, 32, 1859–1864. [Google Scholar] [CrossRef]
- Cai, H.; Liu, X. Freeze-thaw durability of concrete: Ice formation process in pores. Cem. Concr. Res. 1998, 28, 1281–1287. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Zhang, Y.S.; Jiang, Q. Continuous tracking of the relationship between resistivity and pore structure of cement pastes. Constr. Build. Mater. 2014, 53, 26–31. [Google Scholar] [CrossRef]
- Wang, L.C.; Ueda, T. Mesoscale Modeling of Chloride Penetration in Unsaturated Concrete Damaged by Freeze-Thaw Cycling. J. Mater. Civ. Eng. 2014, 26, 955–965. [Google Scholar] [CrossRef]
- Richard, P.; Cheyrezy, M. Composition of reactive powder concretes. Cem. Concr. Res. 1995, 25, 1501–1511. [Google Scholar] [CrossRef]
- Chan, Y.W.; Chu, S.H. Effect of silica fume on steel fiber bond characteristics in reactive powder concrete. Cem. Concr. Res. 2004, 34, 1167–1172. [Google Scholar] [CrossRef]
- Bonneau, O.; Vernet, C.; Moranville, M.; Aitcin, P.C. Characterization of the granular packing and percolation threshold of reactive powder concrete. Cem. Concr. Res. 2000, 30, 1861–1867. [Google Scholar] [CrossRef]
- Mostofinejad, D.; Nikoo, M.R.; Hosseini, S.A. Determination of optimized mix design and curing conditions of reactive powder concrete (RPC). Constr. Build. Mater. 2016, 123, 754–767. [Google Scholar] [CrossRef]
- Yazıcı, H.; Yardımcı, M.Y.; Aydın, S.; Karabulut, A.S. Mechanical properties of reactive powder concrete containing mineral admixtures under different curing regimes. Constr. Build. Mater. 2009, 23, 1223–1231. [Google Scholar] [CrossRef]
- Long, G.C.; Wang, X.Y.; Xie, Y.J. Very-high-performance concrete with ultrafine powders. Cem. Concr. Res. 2002, 32, 601–605. [Google Scholar] [CrossRef]
- Yazıcı, H.; Yardımcı, M.Y.; Yiğiter, H.; Aydın, S.; Türkel, S. Mechanical properties of reactive powder concrete containing high volumes of ground granulated blast furnace slag. Cem. Concr. Compos. 2010, 32, 639–648. [Google Scholar] [CrossRef]
- Afroughsabet, V.; Biolzi, L.; Ozbakkaloglu, T. High-performance fiber-reinforced concrete: A review. J. Mater. Sci. 2016, 51, 6517–6551. [Google Scholar] [CrossRef] [Green Version]
- Al-Masoodi, A.H.H.; Kawan, A.; Kasmuri, M.; Hamid, R.; Khan, M.N.N. Static and dynamic properties of concrete with different types and shapes of fibrous reinforcement. Constr. Build. Mater. 2016, 104, 247–262. [Google Scholar] [CrossRef]
- Zhou, W.; Hu, H.B.; Zheng, W.Z. Bearing capacity of reactive powder concrete reinforced by steel fibers. Constr. Build. Mater. 2013, 48, 1179–1186. [Google Scholar] [CrossRef]
- Al-Tikrite, A.; Hadi, M.N.S. Stress–Strain Relationship of Unconfined RPC Reinforced with Steel Fibers under Compression. J. Mater. Civ. Eng. 2018, 30, 04018234. [Google Scholar] [CrossRef]
- Hiremath, P.N.; Yaragal, S.C. Performance evaluation of reactive powder concrete with polypropylene fibers at elevated temperatures. Constr. Build. Mater. 2018, 169, 499–512. [Google Scholar] [CrossRef]
- Wang, H.; Gao, X.J.; Liu, J.Z.; Ren, M.; Lu, A.X. Multi-functional properties of carbon nanofiber reinforced reactive powder concrete. Constr. Build. Mater. 2018, 187, 699–707. [Google Scholar] [CrossRef]
- Tai, Y.S.; Pan, H.H.; Kung, Y.N. Mechanical properties of steel fiber reinforced reactive powder concrete following exposure to high temperature reaching 800 °C. Nucl. Eng. Des. 2011, 241, 2416–2424. [Google Scholar] [CrossRef]
- Scheinherrová, L.; Vejmelková, E.; Keppert, M.; Bezdička, P.; Doleželová, M.; Krejsová, J.; Grzeszczyk, S.; Matuszek-Chmurowska, A.; Černý, R. Effect of Cu-Zn coated steel fibers on high temperature resistance of reactive powder concrete. Cem. Concr. Res. 2019, 117, 45–57. [Google Scholar] [CrossRef]
- Scrivener, K.L.; Kirkpatrick, R.J. Innovation in use and research on cementitious material. Cem. Concr. Res. 2008, 38, 128–136. [Google Scholar] [CrossRef]
- Olivito, R.S.; Zuccarello, F.A. An experimental study on the tensile strength of steel fiber reinforced concrete. Compos. Part B Eng. 2010, 41, 246–255. [Google Scholar] [CrossRef]
- Branston, J.; Das, S.; Kenno, S.Y.; Taylor, C. Mechanical behaviour of basalt fibre reinforced concrete. Constr. Build. Mater. 2016, 124, 878–886. [Google Scholar] [CrossRef]
- Algin, Z.; Ozen, M. The properties of chopped basalt fibre reinforced self-compacting concrete. Constr. Build. Mater. 2018, 186, 678–685. [Google Scholar] [CrossRef]
- Kizilkanat, A.B.; Kabay, N.; Akyüncü, V.; Chowdhury, S.; Akça, A.H. Mechanical properties and fracture behavior of basalt and glass fiber reinforced concrete: An experimental study. Constr. Build. Mater. 2015, 100, 218–224. [Google Scholar] [CrossRef]
- Wang, D.H.; Ju, Y.Z.; Shen, H.; Xu, L.B. Mechanical properties of high performance concrete reinforced with basalt fiber and polypropylene fiber. Constr. Build. Mater. 2019, 197, 464–473. [Google Scholar] [CrossRef]
- Grzeszczyk, S.; Matuszek-Chmurowska, A.; Vejmelková, E.; Černý, R. Reactive Powder Concrete Containing Basalt Fibers: Strength, Abrasion and Porosity. Materials 2020, 13, 2948. [Google Scholar] [CrossRef]
- Liu, H.; Lyu, X.; Zhang, Y.; Luo, G.; Li, W. Bending Resistance and Failure Type Evaluation of Basalt Fiber RPC Beam Affected by Notch and Interfacial Damage Using Acoustic Emission. Appl. Sci. 2020, 10, 1138. [Google Scholar] [CrossRef] [Green Version]
- An, M.Z.; Wang, Y.; Yu, Z.R. Damage mechanisms of ultra-high-performance concrete under freeze–thaw cycling in salt solution considering the effect of rehydration. Constr. Build. Mater. 2019, 198, 546–552. [Google Scholar] [CrossRef]
- Liu, H.; Liu, S.; Wang, S.; Gao, X.; Gong, Y. Effect of Mix Proportion Parameters on Behaviors of Basalt Fiber RPC Based on Box-Behnken Model. Appl. Sci. 2019, 9, 2031. [Google Scholar] [CrossRef] [Green Version]
- Quality and Technology Supervision Bureau of the People’s Republic of China. Method of Testing Cements–Determination of Strength; Quality and Technology Supervision Bureau of the People’s Republic of China: Beijing, China, 1999. (In Chinese) [Google Scholar]
- Ministry of Housing and Urban-Rural Construction of the People’s Republic of China. Standard for Test Methods of Long-Term Performance and Durability of Ordinary Concrete; Ministry of Housing and Urban-Ural Construction of the People’s Republic of China: Beijing, China, 2009. (In Chinese)
- Liu, H.; Liu, S.; Zhou, P.; Zhang, Y.; Jiao, Y. Mechanical Properties and Crack Classification of Basalt Fiber RPC Based on Acoustic Emission Parameters. Appl. Sci. 2019, 9, 3931. [Google Scholar] [CrossRef] [Green Version]
- Rybin, V.A.; Utkin, A.V.; Baklanova, N.I. Alkali resistance, microstructural and mechanical performance of zirconia-coated basalt fibers. Cem. Concr. Res. 2013, 53, 1–8. [Google Scholar] [CrossRef]
- Zhao, Y.R.; Wang, L.; Lei, Z.K.; Han, X.F.; Shi, J.N. Study on bending damage and failure of basalt fiber reinforced concrete under freeze-thaw cycles. Constr. Build. Mater. 2018, 163, 460–470. [Google Scholar] [CrossRef]
- Vaitkevičius, V.; Šerelis, E.; Rudžionis, Ž. Nondestructive testing of ultra-high performance concrete to evaluate freeze-thaw resistance. Mechanika 2012, 18, 164–169. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.D.; Qiao, P.Z. Durability of ultra-high performance concrete in tension under cold weather conditions. Cem. Concr. Compos. 2018, 94, 94–106. [Google Scholar] [CrossRef]
Density (kg/m3) | Specific Surface Area (m2/kg) | Setting Time (min) | Compressive Strength (MPa) | Flexural Strength (MPa) | |
---|---|---|---|---|---|
Initial Setting | Final Setting | ||||
3160 | 385 | 91 | 145 | 62.2 | 9.1 |
Material | Chemical Composition (%) | |||||
---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | |
Cement | 22.60 | 5.60 | 4.30 | 62.70 | 1.70 | 2.50 |
Silica fume | 93.3 | 0.73 | 0.49 | 0.85 | 1.21 | 1.02 |
Material | Chemical Composition (%) | |||||
---|---|---|---|---|---|---|
SiO2 | Fe | Al2O3 | K2O | Na2O | H2O | |
Quartz Sand | 99.68 | 0.0062 | 0.0122 | 0.0011 | 0.002 | 0.02 |
Type | Length (mm) | Diameter (μm) | Linear Density (tex) | Tensile Strength (MPa) | Elastic Modulus (GPa) | Breaking Strength (N/tex) | Elongation (%) |
---|---|---|---|---|---|---|---|
Basalt fiber | 22 | 23 | 2392 | 2836 | 62 | 0.69 | 3 |
Mix ID | Basalt Fiber (kg/m3) | Steel Fiber (%) | Cement (kg/m3) | Quartz Sand (kg/m3) | Silica Fume (kg/m3) | Quartz Powder (kg/m3) | Water (kg/m3) | Water Reducer (kg/m3) |
---|---|---|---|---|---|---|---|---|
R | - | - | 834.73 | 939.03 | 208.68 | 308.85 | 166.95 | 52.17 |
BF4 | 4 | - | 834.73 | 939.03 | 208.68 | 308.85 | 166.95 | 52.17 |
BF8 | 8 | - | 834.73 | 939.03 | 208.68 | 308.85 | 166.95 | 52.17 |
BF12 | 12 | - | 834.73 | 939.03 | 208.68 | 308.85 | 166.95 | 52.17 |
SF | - | 2 | 834.73 | 939.03 | 208.68 | 308.85 | 166.95 | 52.17 |
Mix ID | WR | WBF12 | WSF | NR | NBF4 | NBF8 | NBF12 | NSF |
---|---|---|---|---|---|---|---|---|
Freeze–thaw medium | fresh water | fresh water | fresh water | 5 wt% NaCl | 5 wt% NaCl | 5 wt% NaCl | 5 wt% NaCl | 5 wt% NaCl |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Liu, H.; Zhu, B.; Lyu, X.; Gao, X.; Liang, C. Mechanical Properties and Freeze–Thaw Durability of Basalt Fiber Reactive Powder Concrete. Appl. Sci. 2020, 10, 5682. https://doi.org/10.3390/app10165682
Li W, Liu H, Zhu B, Lyu X, Gao X, Liang C. Mechanical Properties and Freeze–Thaw Durability of Basalt Fiber Reactive Powder Concrete. Applied Sciences. 2020; 10(16):5682. https://doi.org/10.3390/app10165682
Chicago/Turabian StyleLi, Wenjun, Hanbing Liu, Bing Zhu, Xiang Lyu, Xin Gao, and Chunyu Liang. 2020. "Mechanical Properties and Freeze–Thaw Durability of Basalt Fiber Reactive Powder Concrete" Applied Sciences 10, no. 16: 5682. https://doi.org/10.3390/app10165682
APA StyleLi, W., Liu, H., Zhu, B., Lyu, X., Gao, X., & Liang, C. (2020). Mechanical Properties and Freeze–Thaw Durability of Basalt Fiber Reactive Powder Concrete. Applied Sciences, 10(16), 5682. https://doi.org/10.3390/app10165682