A New “Doctor and Patient” Optimization Algorithm: An Application to Energy Commitment Problem
Abstract
:1. Introduction
1.1. Motivation
1.2. Contribution
- Design and present a novel optimization algorithm named “Doctor and Patient” Optimization.
- Evaluate the proposed DPO algorithm on a set of benchmark test functions with 23 objective functions.
- Compare the efficiency of the DPO to eight other optimization algorithms.
- Study the EC issue on a standard energy grid with twenty-six power plants in different sectors of energy consumption (commercial, transportation, industrial, agriculture, residential, and public).
- Apply DPO to EC problem solving.
- Investigate the export and import of energy carriers in the EC problem.
- Investigate oil refining in the EC problem.
- Determine the appropriate pattern of energy carrier use to supply energy demand.
1.3. Paper Structure
2. Background
3. Doctor and Patient Optimization (DPO)
3.1. Mathematical Modeling
3.1.1. Phase A: Vaccination
3.1.2. Phase B: Drug Administration
3.1.3. Phase C: Surgery
3.2. Implementation of DPO
Algorithm 1. The pseudo code of DPO | |||||
Start DPO | |||||
1 | System tuning and parameters determination. | ||||
2 | Formation of the initial population of patients: P. | ||||
3 | For iteration = 1: iteration max | ||||
4 | Fitness function evaluation. | ||||
5 | Updating and based (4). | ||||
6 | Updating and based (5). | ||||
7 | Updating based (3). | ||||
8 | For i = 1:N | ||||
9 | Updating based (2). | ||||
10 | Updating based phase a. | ||||
11 | Updating based phase b. | ||||
12 | Updating based phase c. | ||||
13 | End for i | ||||
14 | Saving and . | ||||
15 | End for iteration | ||||
16 | Return best solution. | ||||
End DPO |
4. Energy Commitment (EC) Problem
5. Simulation Study and Discussion
5.1. Case Study A: Benchmark Test Functions
5.1.1. Experimental Setup
5.1.2. Benchmarking Results of Unimodal Test Function
5.1.3. Benchmarking Results of Multimodal Test Function
5.1.4. Benchmarking Results of Fixed-Dimension Multimodal Test Function
5.2. Case Study B: EC Problem
5.2.1. Objective Function and Constraints
5.2.2. DPO Implementation to EC Problem
Algorithm 2. DPO implementation to EC problem | |||||||
START | |||||||
1: | Problem information. | ||||||
2: | Inputs data: , | ||||||
3: | For Hour = 1: Study period (24 h) | ||||||
4: | . | ||||||
5: | calculation based (13). | ||||||
6: | calculation based (14). | ||||||
7: | and = row number of electrical demand in . | ||||||
8: | END Hour | ||||||
9: | Determine possible combinations of power plants for electrical demand supplying. | ||||||
10: | DPO | ||||||
11: | Initial population formation based on possible combinations of units. | ||||||
12: | ITERATION = 1:T | ||||||
13: | For i = 1:Npopulatio | ||||||
14: | Combination = population (i,:). | ||||||
15: | IF this combination is possible. | ||||||
16: | UC Problem solving. | ||||||
17: | input energy to power plants calculation. | ||||||
18: | END UC solving. | ||||||
19: | calculation based (15) to (18). | ||||||
20: | Refinery simulation based (19). | ||||||
21: | calculation based (20). | ||||||
22: | calculation based (21). | ||||||
23: | Fitness calculation based (22). | ||||||
24: | Else if the combination is impossible. | ||||||
25: | Fitness = 1 × 10. | ||||||
26: | END if | ||||||
27: | END FOR | ||||||
28: | Updating and based (4). | ||||||
29: | Updating and based (5). | ||||||
30: | Updating based (3). | ||||||
31: | FOR i = 1:N | ||||||
32: | Updating based (2). | ||||||
33: | Updating based phase a. (6) and (7). | ||||||
34: | Updating based phase b. (8) and (9). | ||||||
35: | Updating based phase c. (10). | ||||||
36: | END FOR | ||||||
37: | END ITERATION | ||||||
38: | EC outputs (for every hour and whole period of study). | ||||||
39: | Determining the pattern of energy carriers using. | ||||||
40: | Determining the UC output (power plant production). | ||||||
41: | Convergence curve. | ||||||
42: | Cost of energy supply. | ||||||
43: | Import and export of energy carriers. | ||||||
END |
5.2.3. Results and Discussion
5.2.4. Comparison DPO and Other Algorithms on EC Problem
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Row. | Power Plant | Capacity of Unit (MW) | Efficiency | Constant Cost | Priority | MUT (Hour) | MDT (Hour) | Cold Start | Initial Conditions | Hot Start (Dollar) | Cold Start (Dollar) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | |||||||||||
1 | Thermal | 100 | 400 | 0.368 | 312 | 1 | 8 | −5 | 4 | 10 | 800 | 1500 |
2 | Thermal | 100 | 400 | 0.345 | 310 | 2 | 8 | −5 | 4 | 10 | 775 | 1500 |
3 | Combined Cycle | 140 | 350 | 0.455 | 177 | 3 | 8 | −5 | 4 | 10 | 725 | 1200 |
4 | Thermal | 68.95 | 197 | 0.317 | 260 | 4 | 5 | −4 | 2 | 8 | 750 | 1300 |
5 | Gas | 68.95 | 197 | 0.3 | 260 | 5 | 5 | −4 | 2 | 8 | 700 | 1100 |
6 | Combined Cycle | 68.95 | 197 | 0.47 | 260 | 6 | 5 | −4 | 2 | 8 | 650 | 950 |
7 | Thermal | 54.25 | 155 | 0.35 | 143 | 7 | 5 | −3 | 2 | 8 | 600 | 850 |
8 | Gas | 54.25 | 155 | 0.25 | 143 | 8 | 5 | −3 | 2 | 8 | 550 | 900 |
9 | Combined Cycle | 54.25 | 155 | 0.5 | 143 | 9 | 5 | −3 | 2 | −8 | 500 | 700 |
10 | Thermal | 54.25 | 155 | 0.358 | 143 | 10 | 5 | −3 | 2 | −8 | 450 | 800 |
11 | Thermal | 25 | 100 | 0.32 | 218 | 11 | 4 | −2 | 1 | −8 | 200 | 400 |
12 | Gas | 25 | 100 | 0.27 | 218 | 12 | 4 | −2 | 1 | −8 | 600 | 900 |
13 | Combined Cycle | 25 | 100 | 0.25 | 218 | 13 | 4 | −2 | 1 | −8 | 250 | 500 |
14 | Gas | 15.2 | 76 | 0.3 | 81 | 14 | 3 | −2 | 1 | −8 | 400 | 600 |
15 | Combined Cycle | 15.2 | 76 | 0.3 | 81 | 15 | 3 | −2 | 1 | −8 | 250 | 400 |
16 | Thermal | 15.2 | 76 | 0.29 | 81 | 16 | 3 | −2 | 1 | −8 | 400 | 600 |
17 | Thermal | 15.2 | 76 | 0.29 | 81 | 17 | 3 | −2 | 1 | −8 | 300 | 500 |
18 | Thermal | 4 | 20 | 0.29 | 118 | 18 | 1 | −1 | 0 | −4 | 300 | 450 |
19 | Combined Cycle | 4 | 20 | 0.291 | 118 | 19 | 1 | −1 | 0 | −4 | 200 | 350 |
20 | Gas | 4 | 20 | 0.275 | 118 | 20 | 1 | −1 | 0 | −4 | 200 | 400 |
21 | Gas | 4 | 20 | 0.27 | 118 | 21 | 1 | −1 | 0 | −1 | 150 | 300 |
22 | Thermal | 2.4 | 12 | 0.26 | 24 | 22 | 1 | −1 | 0 | −3 | 50 | 200 |
23 | Thermal | 2.4 | 12 | 0.25 | 24 | 23 | 1 | −1 | 0 | −2 | 100 | 250 |
24 | Combined Cycle | 2.4 | 12 | 0.23 | 24 | 24 | 1 | −1 | 0 | −1 | 150 | 300 |
25 | Combined Cycle | 2.4 | 12 | 0.22 | 24 | 25 | 1 | −1 | 0 | −2 | 100 | 200 |
26 | Gas | 2.4 | 12 | 0.2 | 24 | 26 | 1 | −1 | 0 | −3 | 150 | 250 |
Residential, Commercial and Public | Industrial | Transportation | Agriculture | Other | Non-Energy | |
---|---|---|---|---|---|---|
Petroleum | 0 | 0 | 0 | 0 | 0 | 0 |
Liquid gas | 0.051 | 0.013 | 0.01 | 0 | 0 | 0 |
Fuel oil | 0.023 | 0.212 | 0.014 | 0 | 0 | 0 |
Gas oil | 0.055 | 0.087 | 0.363 | 0.689 | 0 | 0 |
Kerosene | 0.141 | 0.002 | 0 | 0.018 | 0 | 0 |
Gasoline | 0.002 | 0.002 | 0.573 | 0.003 | 0 | 0 |
Plane fuel | 0 | 0 | 0.031 | 0 | 0 | 0 |
Other products | 0 | 0 | 0 | 0 | 0 | 0.402 |
Natural gas | 0.564 | 0.521 | 0.007 | 0 | 0 | 0.497 |
Coke gas | 0 | 0.021 | 0 | 0 | 0 | 0 |
Coal | 0.0003 | 0 | 0 | 0 | 0 | 0.101 |
Non-Commercial fuels | 0.064 | 0 | 0 | 0 | 0 | 0 |
Electricity(power) | 0.102 | 0.142 | 0.0004 | 0.29 | 1 | 0 |
Petroleum | 0 |
liquid Gas | 0.032 |
Fuel Oil | 0.293 |
Gas Oil | 0.293 |
Kerosene | 0.099 |
Gasoline | 0.157 |
plane Fuel | 0 |
Other Products | 0.058 |
Natural Gas | 0 |
Coke Gas | 0 |
Coal | 0 |
Non-Commercial Fuels | 0 |
Electricity(power) | 0 |
Power Plant | Thermal Unit | Combined Cycle Unit | Gas Unit |
---|---|---|---|
Fuel Oil | 0.254 | 0 | 0 |
Gas Oil | 0.003 | 0.082 | 0.166 |
Natural Gas | 0.743 | 0.918 | 0.834 |
Row | Energy Carrier | Energy (Boe) |
---|---|---|
1 | Petroleum | 25,747.64405 |
2 | liquid Gas | 0 |
3 | Fuel Oil | 0 |
4 | Gas Oil | 0 |
5 | Kerosene | 0 |
6 | Gasoline | 0 |
7 | Plane Fuel | 0 |
8 | Other Products | 0 |
9 | Natural Gas | 9861.294929 |
10 | Coke Gas | 65.15249127 |
11 | Coal | 97.72873691 |
12 | Non-Commercial Fuels | 394.0174472 |
13 | Electricity(power) | 0 |
Energy Carrier | Heating Value | Energy Rates |
---|---|---|
Petroleum | 38.5 | 48 dollar/boe |
Liquid Gas | 46.15 | 374 dollar/tone |
Fuel Oil | 42.18 | 180 dollar/tone |
Gas Oil | 43.38 | 350 dollar/tone |
Kerosene | 43.32 | 500 dollar/tone |
Gasoline | 44.75 | 450 dollar/tone |
Plane Fuel | 45.03 | 555 dollar/tone |
Natural Gas | 39 | 237 dollar/1e3m3 |
Coke Gas | 16.9 | 157 dollar/tone |
Coal | 26.75 | 61 dollar/tone |
Petroleum | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Liquid Gas | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Fuel Oil | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Gas Oil | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Kerosene | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Gasoline | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
plane Fuel | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Other Products | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
Natural Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.1601 | 0 | 0 | 0 | 0 |
Coke Gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
Coal | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
Non-Commercial Fuels | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
Electricity(power) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.3158 |
Appendix B
[−5,10][0,15] | |
References
- IEA. Energy Statistics Manual; OECD Publishing: Paris, France, 2004. [Google Scholar]
- Dehghani, M.; Montazeri, Z.; Ehsanifar, A.; Seifi, A.R.; Ebadi, J.M.; Grechko, O. Planning of energy carriers based on final energy consumption using dynamic programming and particle swarm optimization. Elec. Eng. Electromech. 2018, 5, 62–71. [Google Scholar] [CrossRef] [Green Version]
- Dehghani, M.; Montazeri, Z.; Malik, O. Energy commitment: A planning of energy carrier based on energy consumption. Электрoтехника и Электрoмеханика 2019, 6. [Google Scholar] [CrossRef]
- Smith, D.K.; Bertsekas, D.P. Nonlinear Programming. J. Oper. Res. Soc. 1997, 48, 334. [Google Scholar] [CrossRef]
- Bellman, R. Dynamic programming. Science 1966, 153, 34–37. [Google Scholar] [CrossRef] [PubMed]
- Frank, M.; Wolfe, P. An algorithm for quadratic programming. Nav. Res. Logist. Q. 1956, 3, 95–110. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2013, 69, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Yazdani, M.; Jolai, F. Lion Optimization Algorithm (LOA): A nature-inspired metaheuristic algorithm. J. Comput. Des. Eng. 2015, 3, 24–36. [Google Scholar] [CrossRef] [Green Version]
- Dorigo, M.; Stützle, T. Ant Colony Optimization: Overview and Recent Advances. Handb. Metaheuristics. Int. Ser. Oper. Res. Manag. Sci. 2019, 272, 311–351. [Google Scholar]
- Dehghani, M.; Mardaneh, M.; Malik, O.P.; NouraeiPour, S.M. DTO: Donkey Theorem Optimization. In Proceedings of the 2019 27th Iranian Conference on Electrical Engineering (ICEE), Yazd, Iran, 30 April–2 May 2019; Institute of Electrical and Electronics Engineers: New Jersey, NJ, USA, 2019; pp. 1855–1859. [Google Scholar]
- Barry, J.; Thron, C. A Computational Physics-Based Algorithm for Target Coverage Problems. In Advances in Nature-Inspired Computing and Applications; Shandilya, S., Nagar, A., Eds.; Springer: Cham, Germany, 2019; pp. 269–290. [Google Scholar]
- Dehghani, M.; Montazeri, Z.; Dehghani, A.; Seifi, A. Spring search algorithm: A new meta-heuristic optimization algorithm inspired by Hooke’s law. In Proceedings of the 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI), Berlin, Germany, 21–23 December 2017; pp. 0210–0214. [Google Scholar]
- Eskandar, H.; Sadollah, A.; Bahreininejad, A.; Hamdi, M. Water cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct. 2012, 110, 151–166. [Google Scholar] [CrossRef]
- Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A Gravitational Search Algorithm. Inf. Sci. 2009, 179, 2232–2248. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, J.C.D.; Vecchi, M.P. Optimization by Simulated Annealing. World Sci. Lect. Notes Phys. 1986, 220, 339–348. [Google Scholar] [CrossRef]
- Moghaddam, F.F.; Moghaddam, R.F.; Cheriet, M. Curved space optimization: A random search based on general relativity theory. arXiv 2012, arXiv:1208.2214. [Google Scholar]
- Shah-Hosseini, H. Principal components analysis by the galaxy-based search algorithm: A novel metaheuristic for continuous optimisation. Int. J. Comput. Sci. Eng. 2011, 6, 132. [Google Scholar] [CrossRef]
- Alatas, B. ACROA: Artificial Chemical Reaction Optimization Algorithm for global optimization. Expert Syst. Appl. 2011, 38, 13170–13180. [Google Scholar] [CrossRef]
- Formato, R.A. Central Force Optimization: A New Nature Inspired Computational Framework for Multidimensional Search and Optimization. In Nature Inspired Cooperative Strategies for Optimization (NICSO 2007); Krasnogon, N., Nicosia, V., Pavone, M., Pelta, D.A., Eds.; Springer Science and Business Media LLC: Berlin, Germany, 2008; Volume 129, pp. 221–238. [Google Scholar]
- Du, H.; Wu, X.; Zhuang, J. Small-World Optimization Algorithm for Function Optimization. In Proceedings of the Computer Vision, Xi’an, China, 24–28 September 2006; Springer Science and Business Media LLC: Berlin, Germany, 2006; pp. 264–273. [Google Scholar]
- Bansal, J.C. Particle Swarm Optimization. In Evolutionary and Swarm Intelligence Algorithms; Springer Science and Business Media LLC: Berlin, Germany, 2018; pp. 11–23. [Google Scholar]
- Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper Optimisation Algorithm: Theory and application. Adv. Eng. Softw. 2017, 105, 30–47. [Google Scholar] [CrossRef]
- Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. Marine Predators Algorithm: A nature-inspired metaheuristic. Expert Syst. Appl. 2020, 152, 113377. [Google Scholar] [CrossRef]
- Gandomi, A.H.; Yang, X.-S.; Alavi, A.H. Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Eng. Comput. 2011, 29, 17–35. [Google Scholar] [CrossRef]
- Karaboga, D.; Basturk, B. Artificial Bee Colony (ABC) Optimization Algorithm for Solving Constrained Optimization Problems. Comput. Vis. 2007, 4529, 789–798. [Google Scholar] [CrossRef]
- Mirjalili, S. The Ant Lion Optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Yang, X.-S. A New Metaheuristic Bat-Inspired Algorithm. In Nature Inspired Cooperative Strategies for Optimization (NICSO 2010); Krasnogon, N., Nicosia, V., Pavone, M., Pelta, D.A., Eds.; Springer Science and Business Media LLC: Berlin, Germany, 2010; Volume 284, pp. 65–74. [Google Scholar]
- Castillo, O.; Aguilar, L.T. Genetic Algorithms. In Type-2 Fuzzy Logic. in Control. of Nonsmooth Systems; Springer: Cham, Switzerland, 2019; pp. 23–39. [Google Scholar]
- Beyer, H.-G.; Schwefel, H.-P. Evolution strategies—A comprehensive introduction. Nat. Comput. 2002, 1, 3–52. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential Evolution-A Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces; Berkeley: Berkeley, CA, USA, 1995. [Google Scholar]
- Mirjalili, S. BiogeographyB-Based Optimisation. In Evolutionary Algorithms and Neural Networks; Krasnogon, N., Nicosia, V., Pavone, M., Pelta, D.A., Eds.; Springer Science and Business Media LLC: Berlin, Germany, 2018; pp. 57–72. [Google Scholar]
- Koza, J.R. Genetic programming: A Paradigm for Genetically Breeding Populations of Computer Programs to Solve Problems; Stanford University, Department of Computer Science: Stanford, CA, USA, 1990. [Google Scholar]
- Dehghani, M.; Montazeri, Z.; Malik, O.P. DGO: Dice Game Optimizer. Gazi Univ. J. Sci. 2019, 32, 871–882. [Google Scholar] [CrossRef] [Green Version]
- Dehghani, M.; Montazeri, Z.; Malik, O.P.; Ehsanifar, A.; Dehghani, A. 0OSA: Orientation Search Algorithm. Int. J. Ind. Elect. Control. Optim. 2019, 2, 99–112. [Google Scholar]
- Dehghani, M.; Shiraz University of Technology; Montazeri, Z.; Malik, O.; Givi, H.; Guerrero, J. University of Calgary; University of Shahreza; Aalborg University Shell Game Optimization: A Novel Game-Based Algorithm. Int. J. Intell. Eng. Syst. 2020, 13, 10. [Google Scholar] [CrossRef]
- Wood, A.J.; Wollenberg, B.F. Power Generation, Operation, and Control; John Wiley & Sons: New Jersey, NJ, USA, 2012. [Google Scholar]
- Abdou, I.; Tkiouat, M. Unit Commitment Problem in Electrical Power System: A Literature Review. Int. J. Electr. Comput. Eng. 2018, 8, 1357–1372. [Google Scholar] [CrossRef]
- Gögler, P.; Dorfner, M.; Hamacher, T. Hybrid Robust/Stochastic Unit Commitment With Iterative Partitions of the Continuous Uncertainty Set. Front. Energy Res. 2018, 6, 71. [Google Scholar] [CrossRef]
- Tiwari, S.; Dwivedi, B.; Dave, M. A two stage solution methodology for deterministic unit commitment problem. In Proceedings of the 2016 IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics Engineering (UPCON), Varanasi, India, 9–11 December 2016; pp. 317–322. [Google Scholar]
- Del Nozal, A.R.; Tapia, A.; Alvarado-Barrios, L.; Reina, D.G. Application of Genetic Algorithms for Unit Commitment and Economic Dispatch Problems in Microgrids. In Nature Inspired Computing for Data Science; Krasnogon, N., Nicosia, V., Pavone, M., Pelta, D.A., Eds.; Springer Science and Business Media LLC: Berlin, Germany, 2019; pp. 139–167. [Google Scholar]
- Gutiérrez-Alcaraz, G.; Hinojosa, V. Using Generalized Generation Distribution Factors in a MILP Model to Solve the Transmission-Constrained Unit Commitment Problem. Energies 2018, 11, 2232. [Google Scholar] [CrossRef] [Green Version]
- Hussein, B.M.; Jaber, A.S. Unit commitment based on modified firefly algorithm. Meas. Control. 2020, 53, 320–327. [Google Scholar] [CrossRef] [Green Version]
- Dhaliwal, J.S.; Dhillon, J.S. Profit based unit commitment using memetic binary differential evolution algorithm. Appl. Soft Comput. 2019, 81, 105502. [Google Scholar] [CrossRef]
- Nikzad, H.R.; Abdi, H. A robust unit commitment based on GA-PL strategy by applying TOAT and considering emission costs and energy storage systems. Electr. Power Syst. Res. 2020, 180, 106154. [Google Scholar] [CrossRef]
- Hussain, A.N.; Ismail, A.A. Operation cost reduction in unit commitment problem using improved quantum binary PSO algorithm. Int. J. Electr. Comput. Eng. 2020, 10, 1149–1155. [Google Scholar] [CrossRef]
- Strikanth, R.K.; Panwar, L.; Panigrahi, B.K.; Kumar, R. Binary whale optimization algorithm: A new metaheuristic approach for profit-based unit commitment problems in competitive electricity markets. Eng. Optim. 2018, 51, 369–389. [Google Scholar] [CrossRef]
- Panwar, L.K.; Reddy, S.; Verma, A.; Panigrahi, B.K.; Kumar, R. Binary Grey Wolf Optimizer for large scale unit commitment problem. Swarm Evol. Comput. 2018, 38, 251–266. [Google Scholar] [CrossRef]
- Ebrahimi, J.; Hosseinian, S.H.; Gharehpetian, G.B. Unit Commitment Problem Solution Using Shuffled Frog Leaping Algorithm. IEEE Trans. Power Syst. 2010, 26, 573–581. [Google Scholar] [CrossRef]
- Jo, K.-H.; Kim, M.-K. Improved Genetic Algorithm-Based Unit Commitment Considering Uncertainty Integration Method. Energies 2018, 11, 1387. [Google Scholar] [CrossRef] [Green Version]
- Simopoulos, D.; Kavatza, S.; Vournas, C. Reliability Constrained Unit Commitment Using Simulated Annealing. Ieee Trans. Power Syst. 2006, 21, 1699–1706. [Google Scholar] [CrossRef]
- Carrión, M.; Zarate-Minano, R.; Domínguez, R. A Practical Formulation for Ex-Ante Scheduling of Energy and Reserve in Renewable-Dominated Power Systems: Case Study of the Iberian Peninsula. Energies 2018, 11, 1939. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Niu, D.; Wu, M.; Wang, Y.; Li, F.; Dong, H. Research on Battery Energy Storage as Backup Power in the Operation Optimization of a Regional Integrated Energy System. Energies 2018, 11, 2990. [Google Scholar] [CrossRef] [Green Version]
- Dominković, D.F.; Stark, G.; Hodge, B.-M.; Pedersen, A.S. Integrated Energy Planning with a High Share of Variable Renewable Energy Sources for a Caribbean Island. Energies 2018, 11, 2193. [Google Scholar] [CrossRef] [Green Version]
- Kaur, S.; Awasthi, L.K.; Sangal, A.; Dhiman, G. Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 2020, 90, 103541. [Google Scholar] [CrossRef]
- Dhiman, G.; Garg, M.; Nagar, A.K.; Kumar, V.; Dehghani, M. A Novel Algorithm for Global Optimization: Rat Swarm Optimizer. J. Ambient Int. Human. Comp. 2020, 11, 1868–5145. [Google Scholar]
- Digalakis, J.; Margaritis, K.G. On benchmarking functions for genetic algorithms. Int. J. Comput. Math. 2001, 77, 481–506. [Google Scholar] [CrossRef]
- Wang, G.; Gandomi, A.H.; Yang, X.-S.; Alavi, A.H. A novel improved accelerated particle swarm optimization algorithm for global numerical optimization. Eng. Comput. 2014, 31, 1198–1220. [Google Scholar] [CrossRef]
- Yang, X.-S. Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Comput. 2010, 2, 78. [Google Scholar] [CrossRef]
- Mirjalili, S. Genetic Algorithm. In Evolutionary Algorithms and Neural Networks; Krasnogon, N., Nicosia, V., Pavone, M., Pelta, D.A., Eds.; Springer: Berlin, Germany, 2019; pp. 43–55. [Google Scholar]
- Mirjalili, S. Optimisation. In Evolutionary Algorithms and Neural Networks; Krasnogon, N., Nicosia, V., Pavone, M., Pelta, D.A., Eds.; Springer: Berlin, Germany, 2019; pp. 15–31. [Google Scholar]
- Rao, R.V.; Savsani, V.J.; Vakharia, D. Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput. Des. 2011, 43, 303–315. [Google Scholar] [CrossRef]
- Birol, F. International Energy Agency. Global Energy Review Report; IEA: Paris, France, 2004; pp. 1–50. [Google Scholar]
- U.S. Energy Information Administration (EIA). Available online: http://www.eia.gov (accessed on 12 August 2020).
DPO | MPA | WOA | GWO | GOA | TLBO | GSA | PSO | GA | ||
---|---|---|---|---|---|---|---|---|---|---|
0 | 3.27 × 10−21 | 1.41 × 10−30 | 6.59 × 10−28 | 2.81 × 10−1 | 3.55 × 10−2 | 1.16 × 10−16 | 4.98 × 10−9 | 1.95 × 10−12 | Ave | F1 |
0 | 4.61 × 10−21 | 4.91 × 10−30 | 6.34 × 10−5 | 1.11 × 10−1 | 1.06 × 10−1 | 6.10 × 10−17 | 1.40 × 10−8 | 2.01 × 10−11 | std | |
5.20 × 10−185 | 1.57 × 10−12 | 1.06 × 10−21 | 7.18 × 10−17 | 3.96 × 10−1 | 3.23 × 10−5 | 1.70 × 10−1 | 7.29 × 10−4 | 6.53 × 10−18 | Ave | F2 |
0 | 1.42 × 10−12 | 2.39 × 10−21 | 2.90 × 10−2 | 1.41 × 10−1 | 8.57 × 10−5 | 9.29 × 10−1 | 1.84 × 10−3 | 5.10 × 10−17 | std | |
1.13 × 10−118 | 8.64 × 10−2 | 5.39 × 10−7 | 3.29 × 10−6 | 4.31 × 10 | 4.91 × 103 | 4.16 × 102 | 1.4 × 10 | 7.70 × 10−10 | Ave | F3 |
5.32 × 10−118 | 1.444 × 10−1 | 2.93 × 10−6 | 7.91 | 8.97 | 3.89 × 103 | 1.56 × 102 | 7.13 | 7.36 × 10−9 | std | |
1.48 × 10−152 | 2.60 × 10−8 | 7.25 × 10−2 | 8.73 × 10−1 | 8.80 × 10−1 | 1.87 × 10 | 1.12 | 6.00 × 10−1 | 9.17 × 10 | Ave | F4 |
0 | 9.25 × 10−9 | 3.97 × 10−1 | 1.19 × 10−1 | 2.50 × 10−1 | 8.21 | 9.89 × 10−1 | 1.72 × 10−1 | 5.67 × 10 | std | |
25.10614 | 4.6049 × 10 | 2.79 × 10 | 8.91 × 102 | 1.18 × 102 | 7.37 × 102 | 3.85 × 10 | 4.93 × 10 | 5.57 × 102 | Ave | F5 |
1.43 × 10−14 | 4.22 × 10−1 | 7.63 × 10−1 | 2.97 × 102 | 1.43 × 102 | 1.98 × 103 | 3.47 × 10 | 3.89 × 10 | 4.16 × 10 | std | |
0 | 3.98 × 10−1 | 3.11 | 8.18 × 10−17 | 3.15 × 10−1 | 4.88 | 1.08 × 10−16 | 9.23 × 10−9 | 3.15 × 10−1 | Ave | F6 |
0 | 1.91 × 10−1 | 5.32 × 10−1 | 1.70 × 10−18 | 9.98 × 10−2 | 9.75 × 10−1 | 4.00 × 10−17 | 1.78 × 10−8 | 9.98 × 10−2 | std | |
4.15 × 10−5 | 1.80 × 10−3 | 1.42 × 10−3 | 5.37 × 10−3 | 2.02 × 10−2 | 3.88 × 10−2 | 7.68 × 10−1 | 6.92 × 10−2 | 6.79 × 10−4 | Ave | F7 |
1.82 × 10−20 | 1.00 × 10−3 | 1.14 × 10−3 | 1.89 × 10−1 | 7.43 × 10−3 | 5.79 × 10−2 | 2.77 | 2.87 × 10−2 | 3.29 × 10−3 | std |
DPO | MPA | WOA | GWO | GOA | TLBO | GSA | PSO | GA | ||
---|---|---|---|---|---|---|---|---|---|---|
−8548.93 | −8.36 × 102 | −5.10 × 102 | −6.12 × 10 | −6.92 × 102 | −3.81 × 102 | −2.75 × 102 | −5.01 × 102 | −5.11 × 102 | Ave | F8 |
8.13 × 10−13 | 8.11 × 102 | 6.95 × 102 | 3.94 × 10 | 9.19 × 10 | 2.83 × 10 | 5.72 × 10 | 4.28 × 10 | 4.37 × 10 | std | |
0 | 0 | 0 | 3.10 × 10−1 | 1.01 × 102 | 2.23 × 10 | 3.35 × 10 | 1.20 × 10−1 | 1.23 × 10 | Ave | F9 |
0 | 0 | 0 | 3.91 × 10 | 1.89 × 10 | 3.25 × 10 | 1.19 × 10 | 4.01 × 10 | 4.11 × 10 | std | |
4.44 × 10−15 | 9.69 × 10−12 | 7.40 | 1.06 × 10−13 | 1.15 | 1.55 × 10 | 8.25 × 10−9 | 5.20 × 10−11 | 5.31 × 10−11 | Ave | F10 |
7.06 × 10−31 | 6.13 × 10−12 | 9.89 | 4.34 × 10−2 | 7.87 × 10−1 | 8.11 | 1.90 × 10−9 | 1.08 × 10−10 | 1.11 × 10−10 | std | |
0 | 0 | 2.89 × 10−4 | 2.49 × 10−3 | 5.74 × 10−1 | 3.01 × 10−1 | 8.19 | 3.24 × 10−6 | 3.31 × 10−6 | Ave | F11 |
0 | 0 | 1.58 × 10−3 | 1.34 × 10−4 | 1.12 × 10−1 | 2.89 × 10−1 | 3.70 | 4.11 × 10−5 | 4.23 × 10−5 | std | |
1.35 × 10−3 | 8.50 × 10−3 | 3.39 × 10−1 | 1.34 × 10−2 | 1.27 | 5.21 × 10 | 2.65 × 10−1 | 8.93 × 10−8 | 9.16 × 10−8 | Ave | F12 |
9.31 × 10−18 | 5.20 × 10−3 | 2.14 × 10−1 | 6.23 × 10−2 | 1.02 | 2.47 × 102 | 3.14 × 10−1 | 4.77 × 10−7 | 4.88 × 10−7 | std | |
7.44 × 10−1 | 9.90 × 10−1 | 1.89 | 6.54 × 10−1 | 6.60 × 10−2 | 2.81 × 102 | 5.73 | 8.26 × 10−1 | 9.39 × 10−1 | Ave | F13 |
6.95 × 10−16 | 1.93 × 10−1 | 2.66 × 10−1 | 4.47 × 10−3 | 4.33 × 10−2 | 8.63 × 102 | 8.95 | 4.39 × 10−2 | 4.49 × 10−2 | std |
DPO | MPA | WOA | GWO | GOA | TLBO | GSA | PSO | GA | ||
---|---|---|---|---|---|---|---|---|---|---|
9.98 × 10−1 | 9.98 × 10−1 | 2.11 × 10 | 1.26 × 10 | 9.98 × 10 | 6.79 × 10 | 3.61 × 10 | 2.77 × 10 | 4.39 × 10 | Ave | F14 |
1.02 × 10−15 | 2.47 × 10−13 | 2.49 × 10 | 6.86 × 10−1 | 9.14 × 10−1 | 1.12 × 10 | 2.96 × 10 | 2.32 × 10 | 4.41 × 10−2 | std | |
3.11 × 10−4 | 8.21 × 10−3 | 3.66 × 10−3 | 1.01 × 10−2 | 7.15 × 10−2 | 5.15 × 10−2 | 6.84 × 10−2 | 9.09 × 10−3 | 7.36 × 10−2 | Ave | F15 |
2.42 × 10−19 | 4.09 × 10−15 | 7.60 × 10−2 | 3.75 × 10−3 | 1.26 × 10−1 | 3.45 × 10−3 | 7.37 × 10−2 | 2.38 × 10−3 | 2.39 × 10−3 | std | |
−1.03 × 10 | −1.02 × 10 | −1.02 × 10 | −1.02 × 10 | −1.02 × 10 | −1.01 × 10 | −1.02 × 10 | −1.02 × 10 | −1.02 × 10 | Ave | F16 |
3.97 × 10−16 | 4.46 × 10−16 | 7.02 × 10−9 | 3.23 × 10−5 | 4.74 × 10−8 | 3.64 × 10−8 | 0.00 × 10 | 0.00 × 10 | 4.19 × 10−7 | std | |
3.98 × 10−1 | 3.98 × 10−1 | 3.98 × 10−1 | 3.98 × 10−1 | 3.98 × 10−1 | 3.98 × 10−1 | 3.98 × 10−1 | 3.98 × 10−1 | 3.98 × 10−1 | Ave | F17 |
9.93 × 10−17 | 9.12 × 10−15 | 7.00 × 10−5 | 7.61 × 10−4 | 1.15 × 10−7 | 9.45 × 10−15 | 1.13 × 10−16 | 9.03 × 10−16 | 3.71 × 10−17 | std | |
3.00 × 10 | 3.00 × 10 | 3.00 × 10 | 3.00 × 10 | 3.00 × 10 | 3.00 × 10 | 3.00 × 10 | 3.00 × 10 | 3.00 × 10 | Ave | F18 |
8.94 × 10−16 | 1.95 × 10−15 | 7.16 × 10−6 | 2.25 × 10−5 | 1.48 × 10 | 1.94 × 10−10 | 3.24 × 10−2 | 6.59 × 10−5 | 6.33 × 10−7 | std | |
−3.86 × 10 | −3.86 × 10 | −3.84 × 10 | −3.75 × 10 | −3.77 × 10 | −3.73 × 10 | −3.86 × 10 | −3.80 × 10 | −3.81 × 10 | Ave | F19 |
2.68 × 10−15 | 2.42 × 10−7 | 1.57 × 10−3 | 2.55 × 10−3 | 3.53 × 10−7 | 9.69 × 10−4 | 4.15 × 10−1 | 3.37 × 10−15 | 4.37 × 10−10 | std | |
−3.32 × 10 | −3.32 × 10 | −2.98 × 10 | −2.84 × 10 | −3.23 × 10 | −2.17 × 10 | −1.47 × 10 | −3.32 × 10 | −2.39 × 10 | Ave | F20 |
1.29 × 10−15 | 1.14 × 10−11 | 3.76 × 10−1 | 3.71 × 10−1 | 5.37 × 10−2 | 1.64 × 10−1 | 5.32 × 10−1 | 2.66 × 10−1 | 4.37 × 10−1 | std | |
−10.15 × 10 | −8.11 × 10 | −7.05 × 10 | −2.28 × 10 | −7.38 × 10 | −7.33 × 10 | −4.57 × 10 | −7.54 × 10 | −5.19 × 10 | Ave | F21 |
4.57 × 10−15 | 2.53 × 10−11 | 3.62 × 10 | 1.80 × 10 | 2.91 × 10 | 1.29 × 10 | 1.30 × 10 | 2.77 × 10 | 2.34 × 10 | std | |
−1.04 × 10 | −1.00 × 10 | −8.18 × 10 | −3.99 × 10 | −8.50 × 10 | −1.00 × 10 | −6.58 × 10 | −8.55 × 10 | −2.97 × 10 | Ave | F22 |
2.78 × 10−15 | 2.81 × 10−11 | 3.82 × 10 | 1.99 × 10 | 3.02 × 10 | 2.89 × 10−4 | 2.64 × 10 | 3.08 × 10 | 1.37 × 10−2 | std | |
−10.53 × 10 | −10.41 × 10 | −9.34 × 10 | −4.49 × 10 | −8.41 × 10 | −2.46 × 10 | −9.37 × 10 | −9.19 × 10 | −3.10 × 10 | Ave | F23 |
2.98 × 10−15 | 3.89 × 10−11 | 2.41 × 10−4 | 1.96 × 10 | 3.13 × 10 | 1.19 × 10 | 2.75 × 10 | 2.52 × 10 | 2.37 × 10 | std |
Hour | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Residential, Commercial, and Public | 4609.373 | 4690.715 | 4582.259 | 4609.373 | 4744.943 | 5016.082 | 5422.792 | 6588.692 |
Industrial | 2169.252 | 2207.533 | 2156.492 | 2169.252 | 2233.054 | 2360.657 | 2552.062 | 3100.755 |
Transportation | 2931.142 | 2982.868 | 2913.9 | 2931.142 | 3017.352 | 3189.772 | 3448.402 | 4189.808 |
Agriculture | 384.9789 | 391.7726 | 382.7143 | 384.9789 | 396.3018 | 418.9476 | 452.9163 | 550.2934 |
Other | 28.81579 | 29.3243 | 28.64628 | 28.81579 | 29.66331 | 31.35835 | 33.90092 | 41.18962 |
Non-Energy | 983.1946 | 1000.545 | 977.4111 | 983.1946 | 1012.112 | 1069.947 | 1156.7 | 1405.39 |
Hour | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
Residential, Commercial, and Public | 6886.946 | 7049.629 | 7239.427 | 7022.515 | 7022.515 | 6914.06 | 7103.857 | 7185.199 |
Industrial | 3241.118 | 3317.68 | 3407.002 | 3304.92 | 3304.92 | 3253.879 | 3343.201 | 3381.482 |
Transportation | 4379.471 | 4482.923 | 4603.617 | 4465.681 | 4465.681 | 4396.713 | 4517.407 | 4569.133 |
Agriculture | 575.2038 | 588.7913 | 604.6433 | 586.5267 | 586.5267 | 577.4683 | 593.3204 | 600.1142 |
Other | 43.05417 | 44.0712 | 45.25773 | 43.9017 | 43.9017 | 43.22368 | 44.41021 | 44.91872 |
Non-Energy | 1469.008 | 1503.709 | 1544.194 | 1497.926 | 1497.926 | 1474.792 | 1515.276 | 1532.627 |
Hour | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
Residential, Commercial, and Public | 6914.06 | 6859.832 | 6778.49 | 6914.06 | 7049.629 | 6724.262 | 5965.071 | 4988.968 |
Industrial | 3253.879 | 3228.358 | 3190.077 | 3253.879 | 3317.68 | 3164.556 | 2807.268 | 2347.897 |
Transportation | 4396.713 | 4362.229 | 4310.503 | 4396.713 | 4482.923 | 4276.018 | 3793.242 | 3172.53 |
Agriculture | 577.4683 | 572.9392 | 566.1454 | 577.4683 | 588.7913 | 561.6163 | 498.208 | 416.683 |
Other | 43.22368 | 42.88467 | 42.37616 | 43.22368 | 44.0712 | 42.03715 | 37.29102 | 31.18885 |
Non-Energy | 1474.792 | 1463.225 | 1445.874 | 1474.792 | 1503.709 | 1434.307 | 1272.369 | 1064.164 |
Hour | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Liquid Gas | 292.5897 | 297.7531 | 290.8686 | 292.5897 | 301.1953 | 318.4065 | 344.2232 | 418.2312 |
Fuel Oil | 1107.223 | 1133.425 | 1098.565 | 1114.323 | 1132.174 | 1206.242 | 1284.84 | 1520.263 |
Gas Oil | 1931.791 | 1963.236 | 1921.292 | 1930.419 | 1997.848 | 2110.83 | 2310.59 | 2837.866 |
Kerosene | 661.1897 | 672.8578 | 657.3004 | 661.1897 | 680.6365 | 719.53 | 777.8703 | 945.1124 |
Gasoline | 1694.256 | 1724.155 | 1684.29 | 1694.256 | 1744.087 | 1843.75 | 1993.243 | 2421.79 |
Plane Fuel | 90.86539 | 92.4689 | 90.33089 | 90.86539 | 93.5379 | 98.88293 | 106.9005 | 129.8841 |
Natural Gas | 7559.858 | 7691.954 | 7515.844 | 7564.33 | 7822.283 | 8285.097 | 9021.851 | 11,060.32 |
Coke Gas | 45.5543 | 46.3582 | 45.28633 | 45.5543 | 46.89413 | 49.5738 | 53.59329 | 65.11585 |
Coal | 100.6855 | 102.4623 | 100.0932 | 100.6855 | 103.6468 | 109.5695 | 118.4535 | 143.921 |
Hour | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
Liquid Gas | 437.1635 | 447.4902 | 459.538 | 445.7691 | 445.7691 | 438.8846 | 450.9324 | 456.0957 |
Fuel Oil | 1603.173 | 1653.536 | 1693.215 | 1651.406 | 1649.966 | 1612.975 | 1662.116 | 1685.183 |
Gas Oil | 2960.847 | 3026.316 | 3117.653 | 3013.492 | 3013.89 | 2971.341 | 3054.712 | 3091.246 |
Kerosene | 987.8952 | 1011.231 | 1038.457 | 1007.342 | 1007.342 | 991.7846 | 1019.01 | 1030.678 |
Gasoline | 2531.418 | 2591.216 | 2660.979 | 2581.249 | 2581.249 | 2541.385 | 2611.148 | 2641.047 |
Plane Fuel | 135.7636 | 138.9706 | 142.7121 | 138.4361 | 138.4361 | 136.2981 | 140.0396 | 141.6431 |
Natural Gas | 11,593.93 | 11,881.31 | 12249.3 | 11,829.5 | 11,829.94 | 11,641.09 | 11982.27 | 12134.19 |
Coke Gas | 68.06348 | 69.67128 | 71.54705 | 69.40331 | 69.40331 | 68.33145 | 70.20721 | 71.01111 |
Coal | 150.4359 | 153.9895 | 158.1354 | 153.3973 | 153.3973 | 151.0282 | 155.1741 | 156.9509 |
Hour | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
Liquid Gas | 438.8846 | 435.4424 | 430.279 | 438.8846 | 447.4902 | 426.8368 | 378.6455 | 316.6853 |
Fuel Oil | 1614.772 | 1593.371 | 1563.759 | 1619.075 | 1654.976 | 1550.461 | 1418.204 | 1209.212 |
Gas Oil | 2969.852 | 2950.352 | 2918.868 | 2967.727 | 3025.918 | 2894.268 | 2530.552 | 2097.053 |
Kerosene | 991.7846 | 984.0059 | 972.3378 | 991.7846 | 1011.231 | 964.5591 | 855.6573 | 715.6406 |
Gasoline | 2541.385 | 2521.452 | 2491.554 | 2541.385 | 2591.216 | 2471.621 | 2192.567 | 1833.783 |
Plane Fuel | 136.2981 | 135.2291 | 133.6256 | 136.2981 | 138.9706 | 132.5566 | 117.5905 | 98.34843 |
Natural Gas | 11,638.75 | 11,546.77 | 11,404.7 | 11,636.14 | 11,880.87 | 11,306.04 | 9885.869 | 8211.221 |
Coke Gas | 68.33145 | 67.79552 | 66.99162 | 68.33145 | 69.67128 | 66.45568 | 58.95262 | 49.30583 |
Coal | 151.0282 | 149.8437 | 148.0669 | 151.0282 | 153.9895 | 146.8823 | 130.2988 | 108.9772 |
Hour | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Cost ($) |
Combination | 10 | 10 | 10 | 11 | 13 | 17 | 19 | 22 | 23 | 22 | 26 | 22 | |
Hour | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 2.1153 × 107 |
Combination | 21 | 23 | 22 | 24 | 20 | 23 | 22 | 18 | 22 | 17 | 15 | 12 |
Hour | unit 1 | Unit 2 | unit 3 | unit 4 | unit 5 | unit 6 | unit 7 | unit 8 | unit 9 | unit 10 | unit 11 | unit 12 | unit 13 |
1 | 400 | 400 | 350 | 197 | 197 | 197 | 65.66526 | 54.25 | 54.25 | 54.25 | 0 | 0 | 0 |
2 | 400 | 400 | 350 | 197 | 197 | 197 | 100.4196 | 54.25 | 54.25 | 54.25 | 0 | 0 | 0 |
3 | 400 | 400 | 350 | 197 | 197 | 196.8305 | 54.25 | 54.25 | 54.25 | 54.25 | 0 | 0 | 0 |
4 | 400 | 400 | 350 | 197 | 197 | 183.4153 | 54.25 | 54.25 | 54.25 | 54.25 | 25 | 0 | 0 |
5 | 400 | 400 | 350 | 197 | 197 | 191.3392 | 54.25 | 54.25 | 54.25 | 54.25 | 25 | 25 | 25 |
6 | 400 | 400 | 350 | 197 | 197 | 197 | 103.6372 | 54.25 | 54.25 | 54.25 | 25 | 25 | 25 |
7 | 400 | 400 | 350 | 197 | 197 | 197 | 155 | 155 | 67.90913 | 54.25 | 25 | 25 | 25 |
8 | 400 | 400 | 350 | 197 | 197 | 197 | 155 | 155 | 155 | 155 | 100 | 100 | 100 |
9 | 400 | 400 | 350 | 197 | 197 | 197 | 155 | 155 | 155 | 155 | 100 | 100 | 100 |
10 | 400 | 400 | 350 | 197 | 197 | 197 | 155 | 155 | 155 | 155 | 100 | 100 | 100 |
11 | 400 | 400 | 350 | 197 | 197 | 197 | 155 | 155 | 155 | 155 | 100 | 100 | 100 |
12 | 400 | 400 | 350 | 197 | 197 | 197 | 155 | 155 | 155 | 155 | 100 | 100 | 100 |
13 | 400 | 400 | 350 | 197 | 197 | 197 | 155 | 155 | 155 | 155 | 100 | 100 | 100 |
14 | 400 | 400 | 350 | 197 | 197 | 197 | 155 | 155 | 155 | 155 | 100 | 100 | 100 |
15 | 400 | 400 | 350 | 197 | 197 | 197 | 155 | 155 | 155 | 155 | 100 | 100 | 100 |
16 | 400 | 400 | 350 | 197 | 197 | 197 | 155 | 155 | 155 | 155 | 100 | 100 | 100 |
17 | 400 | 400 | 350 | 197 | 197 | 197 | 155 | 155 | 155 | 155 | 100 | 100 | 100 |
18 | 400 | 400 | 350 | 197 | 197 | 197 | 155 | 155 | 155 | 155 | 100 | 100 | 100 |
19 | 400 | 400 | 350 | 197 | 197 | 197 | 155 | 155 | 155 | 155 | 100 | 100 | 100 |
20 | 400 | 400 | 350 | 197 | 197 | 197 | 155 | 155 | 155 | 155 | 100 | 100 | 100 |
21 | 400 | 400 | 350 | 197 | 197 | 197 | 155 | 155 | 155 | 155 | 100 | 100 | 100 |
22 | 400 | 400 | 350 | 197 | 197 | 197 | 155 | 155 | 155 | 155 | 100 | 100 | 100 |
23 | 400 | 400 | 350 | 197 | 197 | 197 | 155 | 155 | 155 | 155 | 100 | 32.25505 | 25 |
24 | 400 | 400 | 350 | 197 | 197 | 197 | 155 | 77.1024 | 54.25 | 54.25 | 25 | 25 | 0 |
Hour | unit 14 | unit 15 | unit 16 | unit 17 | unit 18 | unit 19 | unit 20 | unit 21 | unit 22 | unit 23 | unit 24 | unit 25 | unit 26 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 15.2 | 15.2 | 15.2 | 15.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 15.2 | 15.2 | 15.2 | 15.2 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 76 | 29.30535 | 15.2 | 15.2 | 4 | 4 | 4 | 4 | 2.4 | 0 | 0 | 0 | 0 |
9 | 76 | 76 | 76 | 32.7381 | 4 | 4 | 4 | 4 | 2.4 | 2.4 | 0 | 0 | 0 |
10 | 76 | 76 | 76 | 76 | 20 | 19.04687 | 4 | 4 | 0 | 0 | 0 | 0 | 0 |
11 | 76 | 76 | 76 | 76 | 20 | 20 | 20 | 20 | 12 | 12 | 12 | 9.740442 | 2.4 |
12 | 76 | 76 | 76 | 76 | 20 | 5.062077 | 4 | 4 | 2.4 | 0 | 0 | 0 | 0 |
13 | 76 | 76 | 76 | 76 | 20 | 7.462077 | 4 | 4 | 0 | 0 | 0 | 0 | 0 |
14 | 76 | 76 | 76 | 44.32289 | 4 | 4 | 4 | 4 | 2.4 | 2.4 | 0 | 0 | 0 |
15 | 76 | 76 | 76 | 76 | 20 | 20 | 20 | 7.816464 | 2.4 | 0 | 0 | 0 | 0 |
16 | 76 | 76 | 76 | 76 | 20 | 20 | 20 | 20 | 12 | 10.57085 | 2.4 | 0 | 0 |
17 | 76 | 76 | 76 | 53.12289 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
18 | 76 | 76 | 76 | 21.1533 | 4 | 4 | 4 | 4 | 2.4 | 2.4 | 0 | 0 | 0 |
19 | 76 | 76 | 49.59892 | 15.2 | 4 | 4 | 4 | 4 | 2.4 | 0 | 0 | 0 | 0 |
20 | 76 | 76 | 76 | 61.12289 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
21 | 76 | 76 | 76 | 76 | 20 | 16.64687 | 4 | 4 | 2.4 | 0 | 0 | 0 | 0 |
22 | 76 | 76 | 44.82932 | 15.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
23 | 15.2 | 15.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Hour | Import | Export |
---|---|---|
Petroleum | 0 | −399,217 |
Liquid Gas | 2451.409 | 0 |
Fuel Oil | 0 | −29,054.3 |
Gas Oil | 0 | −478.824 |
Kerosene | 0 | −297.468 |
Gasoline | 20,384.46 | 0 |
Plane Fuel | 29,34.952 | 0 |
Natural Gas | 12,502.36 | 0 |
Coke Gas | 0 | −92.2559 |
Coal | 906.6509 | 0 |
Algorithm | Avg (Dollar) | Std (Dollar) | Rank |
---|---|---|---|
GA | 8.5146 | 2.6145 | 9 |
PSO | 5.2158 | 1.2485 | 8 |
GSA | 6.7624 | 5.2176 | 7 |
TLBO | 3.2648 | 7.5423 | 6 |
GOA | 2.7592 | 8.6427 | 5 |
GWO | 2.4257 | 6.5654 | 4 |
WOA | 2.1739 | 2.7865 | 2 |
MPA | 2.2365 | 1.4552 | 3 |
DPO | 2.1153 | 7.5142 | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dehghani, M.; Mardaneh, M.; Guerrero, J.M.; Malik, O.P.; Ramirez-Mendoza, R.A.; Matas, J.; Vasquez, J.C.; Parra-Arroyo, L. A New “Doctor and Patient” Optimization Algorithm: An Application to Energy Commitment Problem. Appl. Sci. 2020, 10, 5791. https://doi.org/10.3390/app10175791
Dehghani M, Mardaneh M, Guerrero JM, Malik OP, Ramirez-Mendoza RA, Matas J, Vasquez JC, Parra-Arroyo L. A New “Doctor and Patient” Optimization Algorithm: An Application to Energy Commitment Problem. Applied Sciences. 2020; 10(17):5791. https://doi.org/10.3390/app10175791
Chicago/Turabian StyleDehghani, Mohammad, Mohammad Mardaneh, Josep M. Guerrero, Om Parkash Malik, Ricardo A. Ramirez-Mendoza, José Matas, Juan C. Vasquez, and Lizeth Parra-Arroyo. 2020. "A New “Doctor and Patient” Optimization Algorithm: An Application to Energy Commitment Problem" Applied Sciences 10, no. 17: 5791. https://doi.org/10.3390/app10175791
APA StyleDehghani, M., Mardaneh, M., Guerrero, J. M., Malik, O. P., Ramirez-Mendoza, R. A., Matas, J., Vasquez, J. C., & Parra-Arroyo, L. (2020). A New “Doctor and Patient” Optimization Algorithm: An Application to Energy Commitment Problem. Applied Sciences, 10(17), 5791. https://doi.org/10.3390/app10175791