The Effect of Probiotic Yogurt Containing Lactobacillus Acidophilus LA-5 and Bifidobacterium Lactis BB-12 on Selected Anthropometric Parameters in Obese Individuals on an Energy-Restricted Diet: A Randomized, Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Test Group
2.2. Anthropometric Measurements
2.3. Research Assumptions and Intervention Design
2.4. Dietary Intervention
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization (WHO). Obesity and Overweight, Fact Sheets. Available online: http://www.who.int/mediacentre/factsheets/fs311/en/ (accessed on 20 June 2020).
- NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 2016, 387, 1377–1396. [Google Scholar] [CrossRef] [Green Version]
- Krzysztoszek, J.; Laudańska-Krzemińska, I.; Bronikowski, M. Assessment of epidemiological obesity among adults in EU countries. Ann. Agric. Environ. Med. 2019, 26, 341–349. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Global Health Observatory (GHO) data. Available online: http://www.who.int/gho/ncd/risk_factors/overweight/en/ (accessed on 20 June 2020).
- Skrzypek, M.; Wdowiak, A.; Marzec, A. Application of dietetics in reproductive medicine. Ann. Agric. Environ. Med. 2017, 24, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Sivamaruthi, B.S.; Kesika, P.; Chaiyasut, C. A review on role of microbiome in obesity and antiobesity properties of probiotic supplements. BioMed. Res. Int. 2019, 20. [Google Scholar] [CrossRef]
- Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Microbial ecology: Human gut microbes associated with obesity. Nature 2006, 444, 1022–1023. [Google Scholar] [CrossRef]
- Tremaroli, V.; Backhed, F. Functional interactions between the gut microbiota and host metabolism. Nature 2012, 489, 242–249. [Google Scholar] [CrossRef]
- Nieuwdorp, M.; Gilijamse, P.W.; Pai, N.; Kaplan, L.M. Role of the microbiome in energy regulation and metabolism. Gastroenterology 2014, 146, 1525–1533. [Google Scholar] [CrossRef]
- Backhed, F.; Ley, R.E.; Sonnenburg, J.L.; Peterson, D.A.; Gordon, J.I. Host-bacterial mutualism in the human intestine. Science 2005, 307, 1915–1920. [Google Scholar] [CrossRef] [Green Version]
- Cani, P.D.; Lecourt, E.; Dewulf, E.M.; Sohet, F.M.; Pachikian, B.D.; Naslain, D.; De Backer, F.; Neyrinck, A.M.; Delzenne, N.M. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am. J. Clin. Nutr. 2009, 90, 1236–1243. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, Y.; Fei, X. Effect of probiotics on body weight and body-mass index: A systematic review and meta-analysis of randomized, controlled trials. Int. J. Food Sci. Nutr. 2015, 67, 571–580. [Google Scholar] [CrossRef]
- FAO/WHO. Probiotics in Food: Health and Nutritional Properties and Guidelines for Evaluation; FAO Food and Nutrition Paper; FAO and WHO: Rome, Italy, 2006; p. 85. [Google Scholar]
- Meybodi, N.M.; Mortazavian, A.M. Probiotic Supplements and Food Products: A Comparative Approach. Biochem. Pharmacol. 2017, 6, 227–234. [Google Scholar] [CrossRef]
- Kechagia, M.; Basoulis, D.; Konstantopoulou, S.; Dimitriadi, D.; Gyftopoulou, K.; Skarmoutsou, N.; Fakiri, E.M. Health benefits of probiotics: A review. ISRN Nutr. 2013, 2013, 481651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, C.N.; Nielsen, S.; Kaestel, P.; Brockmann, E.; Bennedsen, M.; Christensen, H.R.; Eskesen, D.C.; Jacobsen, B.L.; Michaelsen, K.F. Dose-response study of probiotic bacteria Bifidobacterium animalis subsp. lactis BB-12 and Lactobacillus paracasei subsp. paracasei CRL-341 in healthy young adults. Eur. J. Clin. Nutr. 2006, 60, 1284–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weichert, S.; Schroten, H.; Adam, R. The role of prebiotics and probiotics in prevention and treatment of childhood infectious diseases. Pediatr. Infect. Dis. J. 2012, 31, 859–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dotterud, C.K.; Storrø, O.; Johnsen, R.; Oien, T. Probiotics inpregnant women to prevent allergic disease: A randomized, double-blind trial. Br. J. Dermatol. 2010, 163, 616–623. [Google Scholar] [CrossRef]
- Zarrati, M.; Shidfar, F.; Nourijelyani, K.; Mofid, V.; Hossein zadeh-Attar, M.J.; Bidad, K.; Najafi, F.; Gheflati, Z.; Chamari, M.; Salehi, E. Lactobacillus acidophilus La5, Bifidobacterium BB12, and Lactobacillus casei DN001 modulate gene expression of subset specific transcription factors and cytokines in peripheral blood mononuclear cells of obese and overweight people. Biofactors 2013, 39, 633–643. [Google Scholar] [CrossRef]
- Nabavi, S.; Rafraf, M.; Somi, M.H.; Homayouni-Rad, A.; Asghari-Jafarabadi, M. Effects of probiotic yogurt consumption on metabolic factors in individuals with nonalcoholic fatty liver disease. J. Dairy Sci. 2014, 97, 7386–7393. [Google Scholar] [CrossRef]
- Zawistowska-Rojek, A.; Zareba, T.; Mrówka, A.; Tyski, S. Assessment of the Microbiological Status of Probiotic Products. Pol. J. Microbiol. 2016, 65, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Mojka, K. Probiotyki, prebiotyki i synbiotyki – charakterystyka i funkcje. Probl. Hig. Epidemiol. 2014, 95, 541–549. [Google Scholar]
- Schulz, K.F.; Altman, D.G.; Moher, D. CONSORT 2010 statement: Updated guidelines for reporting parallel group randomised trials. BMC Med. 2010, 8, 18. [Google Scholar] [CrossRef] [Green Version]
- Garvey, W.T.; Mechanick, J.I.; Brett, E.M.; Garber, A.J.; Hurley, D.L.; Jastreboff, A.M.; Nadolsky, K.; Pessah-Pollack, R.; Plodkowski, R. American Association of Clinical Endocrinologists and American Collego of Endocrinology Comprehensive clinical practice guidelines for medical care of patients with obesity. Endocr. Pract. 2016, 22, 1–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polish Society of Dietetics (PSD). Standardy leczenia dietetycznego otyłości prostej u osób dorosłych. Dietetyka – Oficjalne Czasopismo Polskiego Towarzystwa Dietetyki 2019, 11, 10–22. [Google Scholar]
- Hernández-Reyes, A.; Cámara-Martos, F.; Molina-Luque, R.; Romero-Saldaña, M.; Molina-Recio, G.; Moreno-Rojas, R. Changes in body composition with a hypocaloric diet combined with sedentary, moderate and high-intense physical activity: A randomized controlled trial. BMC Womens Health 2019, 19, 167–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raynor, H.A.; Champagne, C.M. Position of the Academy of Nutrition and Dietetics: Interventions for the Treatment of Overweight and Obesity in Adults. J. Acad. Nutr. Diet. 2016, 116, 129–147. [Google Scholar] [CrossRef] [PubMed]
- Durrer Schutz, D.; Busetto, L.; Dicker, D.; Farpour-Lambert, N.; Pryke, R.; Toplak, H.; Widmer, D.; Yumuk, V.; Schutz, Y. European Practical and Patient-Centred Guidelines for Adult Obesity Management in Primary Care. Obes. Facts. 2019, 12, 40–66. [Google Scholar] [CrossRef] [PubMed]
- Peine, S.; Knabe, S.; Carrero, I.; Brundert, M.; Wilhelm, J.; Ewert, A.; Denzer, U.; Björn, J.; Philipp, L. Generation of normal ranges for measures of body composition in adults based on bioelectrical impedance analysis using the seca mBCA. Int. J. Body Comp. Res. 2013, 11, 67–76. [Google Scholar]
- Abe, T.; Dankel, S.J.; Loenneke, J.P. Body Fat Loss Automatically Reduces Lean Mass by Changing the Fat-Free Component of Adipose Tissue. Obesity (Silver Spring) 2019, 27, 357–358. [Google Scholar] [CrossRef]
- Bosy-Westphal, A.; Danielzik, S.; Dörhöfer, R.P.; Later, W.; Wiese, S.; Müller, M.J. Phase angle from bioelectrical impedance analysis: Population reference values by age, sex, and body mass index. JPEN J. Parenter Enter. Nutr. 2006, 30, 309–316. [Google Scholar] [CrossRef]
- Uemura, K.; Yamada, M.; Okamoto, H. Association of Bioimpedance Phase Angle and Prospective Falls in Older Adults. Geriatr. Gerontol. Int. 2019, 19, 503–507. [Google Scholar] [CrossRef]
- Dror, T.; Dickstein, Y.; Dubourg, G.; Paul, M. Microbiota manipulation for weight change. Microb. Pathog. 2017, 106, 146–161. [Google Scholar] [CrossRef]
- Seagle, H.M.; Strain, G.W.; Makris, A.; Reeves, R.S.; American Dietetic Association. Position of the American Dietetic Association: Weight Management. J. Acad. Nutr. Diet. 2009, 109, 330–346. [Google Scholar] [CrossRef]
- Foster, G.D.; Wadden, T.A.; Vogt, R.A.; Brewer, G. What is a reasonable weight loss? Patients’ expectations and evaluations of obesity treatment outcomes. J. Consult. Clin. Psychol. 1997, 65, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Wing, R.R.; Phelan, S. Long-term weight loss maintenance. Am. J. Clin. Nutr. 2005, 82, 222–225. [Google Scholar] [CrossRef] [PubMed]
- John, G.K.; Wang, L.; Nanavati, J.; Singh, R.; Mullin, G. Mo1963 - Lactobacillus Probiotics Reduce Body Mass Index, Body Weight, and Fat Mass in Overweight and Obese Subjects: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Gastroenterology 2018, 154, 865–866. [Google Scholar] [CrossRef]
- Chang, B.J.; Park, S.U.; Jang, Y.S.; Ko, S.H.; Joo, N.M.; Kim, S.I.; Kim, C.-H.; Chang, D.K. Effect of functional yogurt NY-YP901 in improving the trait of metabolic syndrome. Eur. J. Clin. Nutr. 2011, 65, 1250–1255. [Google Scholar] [CrossRef] [Green Version]
- Crovesy, L.; Ostrowski, M.; Ferreira, D.M.T.P.; Rosado, E.L.; Soares-Mota, M. Effect of Lactobacillus on body weight and body fat in overweight subjects: A systematic review of randomized controlled clinical trials. Int. J. Obes. (Lond.) 2017, 41, 1607–1614. [Google Scholar] [CrossRef]
- Agerholm-Larsen, L.; Raben, A.; Haulrik, N.; Hasen, A.S.; Manders, M.; Astrup, A. Effect of 8 week intake of probiotic milk products on risk factors for cardiovascular diseases. Eur. J. Clin. Nutr. 2000, 54, 288–297. [Google Scholar] [CrossRef]
- Chung, H.J.; Yu, J.G.; Lee, I.A.; Liu, M.J.; Shen, Y.F.; Sharma, S.P.; Jamal, M.A.; Yoo, J.H.; Kim, H.J.; Hong, S.T. Intestinal removal of free fatty acids from hosts by Lactobacilli for the treatment of obesity. FEBS Open Bio. 2016, 6, 64–76. [Google Scholar] [CrossRef] [Green Version]
- Casas, I.A.; Dobrogosz, W.J. Validation of the probiotic concept: Lactobacillus reuteri confers broad-spectrum protection against disease in humans and animals. Microb. Ecol. Health Dis. 2000, 12, 247–285. [Google Scholar] [CrossRef]
- Madjd, A.; Taylor, M.A.; Mousavi, N.; Delavari, A.; Malekzadeh, R.; Macdonald, I.A.; Farshchi, H.R. Comparison of the effect of daily consumption of probiotic compared with low-fat conventional yogurt on weight loss in healthy obese women following an energy-restricted diet: A randomized controlled trial. Am. J. Clin. Nutr. 2016, 103, 323–329. [Google Scholar] [CrossRef] [Green Version]
- Savard, P.; Lamarche, B.; Paradis, M.E.; Thiboutot, H.; Laurin, É.; Roy, D. Impact of Bifidobacterium animalis subsp. lactis BB-12 and, Lactobacillus acidophilus LA-5 containing yoghurt, on fecal bacterial counts of healthy adults. Int. J. Food Microbiol. 2011, 149, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Xavier-Santos, D.; Lima, E.D.; Colado Simao, A.N.; Bedani, R.; Isay Saad, S.M. Effect of the consumption of a synbiotic diet mousse containing Lactobacillus acidophilus La-5 by individuals with metabolic syndrome: A randomized controlled trial. J. Funct. Foods 2018, 41, 55–61. [Google Scholar] [CrossRef]
- Buriti, F.C.A.; Castro, I.A.; Saad, S.M.I. Viability of Lactobacillus acidophilus in synbiotic guava mousses and its survival under in vitro simulated gastrointestinal conditions. Int. J. Food Microbiol. 2010, 137, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Jungersen, M.; Wind, A.; Johansen, E.; Christensen, J.E.; Stuer-Lauridsen, B.; Eskesen, D. The Science behind the Probiotic Strain Bifidobacterium animalis subsp. lactis BB-12(®). Microorganisms 2014, 2, 92–110. [Google Scholar] [CrossRef]
Parameter | GP (n = 27) Women (n = 17), men (n = 10) | GRD (n = 27) Women (n = 18), men (n = 9) | p-Value |
---|---|---|---|
Age (years) | 34.85 ± 9.22 | 34.18 ± 10.80 | 0.64662 |
Height (m) | 1.71 ± 0.10 | 1.72 ± 0.09 | 0.63568 |
Body Weight (kg) | 104.37 ± 20.93 | 101.25 ± 14.12 | 0.52382 |
BMI (kg/m2) | 35.55 ± 4.40 | 34.21 ± 3.15 | 0.20520 |
Fat Mass (kg) | 43.72 ± 9.13 | 41.46 ± 8.35 | 0.44653 |
Visceral Adipose Tissue (VAT) (L) | 4.01 ± 2.74 | 3.22 ± 1.98 | 0.41122 |
Free Fat Mass (kg) | 60.65 ± 15.01 | 59.79 ± 10.33 | 0.76868 |
Muscle Mass (kg) | 29.93 ± 8.37 | 29.43 ± 6.07 | 0.86265 |
Total Body Water (L) | 45.11 ± 10.86 | 44.51 ± 7.38 | 0.84230 |
Phase Angle (°) | 5.57 ± 0.59 | 5.61 ± 0.63 | 0.88309 |
Parameter | GP (n = 27) Women (n = 17), Men (n = 10) | GRD (n = 27) Women (n = 18), Men (n = 9) | p-Value |
---|---|---|---|
Energy (kcal/day) | 1843.46 ± 270.02 | 1824.69 ± 257.46 | 0.64662 |
Carbohydrate (g/day) | 230.37 ± 35.94 | 228.90 ± 37.53 | 0.84907 |
Carbohydrate (%) | 45.83 ± 2.59 | 45.79 ± 2.34 | 0.94312 |
Protein (g/day) | 109.44 ± 14.06 | 110.20 ± 20.78 | 0.95860 |
Protein (%) | 23.84 ± 1.69 | 24.08 ± 2.42 | 0.73585 |
Total Fat (g/day) | 61.99 ± 10.67 | 60.77 ± 6.43 | 0.94483 |
Total Fat (%) | 30.23 ± 2.32 | 30.22 ± 2.70 | 0.98281 |
Dietary Fiber (g/day) | 37.85 ± 7.72 | 38.59 ± 5.61 | 0.68687 |
Saturated Fatty Acids (g/day) | 14.45 ± 4.17 | 15.74 ± 5.4 | 0.45693 |
n-3 Fatty Acids (g/day) | 2.47 ± 1.03 | 2.12 ± 0.68 | 0.34575 |
n-6 Fatty Acids (g/day) | 9.96 ± 3.45 | 9.42 ± 3.74 | 0.56221 |
Parameter | GP (n = 27) | GRD (n = 27) | p-Value | ||||
---|---|---|---|---|---|---|---|
Week 0 | Week 12 | Difference | Week 0 | Week 12 | Difference | ||
Body weight (kg) | 104.37 ± 20.93 | 98.78 ± 20.01 | −5.59 | 101.25 ± 14.12 | 96.54 ± 13.25 | −4.71 | 0.62995 |
BMI (kg/m2) | 35.55 ± 4.40 | 33.65 ± 4.28 | −1.89 | 34.21 ± 3.15 | 32.60 ± 3.04 | −1.61 | 0.30169 |
Fat mass (kg) | 43.72 ± 9.13 | 38.92 ± 8.89 | −4.80* | 41.46 ± 8.35 | 37.39 ± 7.66 | −4.07 * | 0.50138 |
VAT (L) | 4.01 ± 2.74 | 3.33 ± 2.44 | −0.68 | 3.22 ± 1.98 | 2.57 ± 1.58 | −0.65 | 0.47813 |
Free fat mass (kg) | 60.65 ± 15.01 | 59.82 ± 14.48 | −0.83 | 59.79 ± 10.33 | 59.15 ± 10.71 | −0.64 | 0.66537 |
Muscle mass (kg) | 29.93 ± 8.37 | 28.89 ± 8.67 | −1.04 | 29.43 ± 6.07 | 28.88 ± 6.13 | −0.55 | 0.72934 |
Total body water (L) | 45.11 ± 10.86 | 44.12 ± 10.75 | −0.99 | 44.51 ± 7.38 | 43.87 ± 7.66 | −0.64 | 0.65285 |
Phase angle (°) | 5.57 ± 0.59 | 5.61 ± 0.65 | 0.04 | 5.61 ± 0.63 | 5.61 ± 0.60 | 0.00 | 0.96553 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banach, K.; Glibowski, P.; Jedut, P. The Effect of Probiotic Yogurt Containing Lactobacillus Acidophilus LA-5 and Bifidobacterium Lactis BB-12 on Selected Anthropometric Parameters in Obese Individuals on an Energy-Restricted Diet: A Randomized, Controlled Trial. Appl. Sci. 2020, 10, 5830. https://doi.org/10.3390/app10175830
Banach K, Glibowski P, Jedut P. The Effect of Probiotic Yogurt Containing Lactobacillus Acidophilus LA-5 and Bifidobacterium Lactis BB-12 on Selected Anthropometric Parameters in Obese Individuals on an Energy-Restricted Diet: A Randomized, Controlled Trial. Applied Sciences. 2020; 10(17):5830. https://doi.org/10.3390/app10175830
Chicago/Turabian StyleBanach, Katarzyna, Paweł Glibowski, and Paulina Jedut. 2020. "The Effect of Probiotic Yogurt Containing Lactobacillus Acidophilus LA-5 and Bifidobacterium Lactis BB-12 on Selected Anthropometric Parameters in Obese Individuals on an Energy-Restricted Diet: A Randomized, Controlled Trial" Applied Sciences 10, no. 17: 5830. https://doi.org/10.3390/app10175830
APA StyleBanach, K., Glibowski, P., & Jedut, P. (2020). The Effect of Probiotic Yogurt Containing Lactobacillus Acidophilus LA-5 and Bifidobacterium Lactis BB-12 on Selected Anthropometric Parameters in Obese Individuals on an Energy-Restricted Diet: A Randomized, Controlled Trial. Applied Sciences, 10(17), 5830. https://doi.org/10.3390/app10175830