Interval-Based LDA Algorithm for Electrocardiograms for Individual Verification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preprocessing
2.2. Feature Extraction
2.2.1. Calculating the Reference Profile,
2.2.2. Interval-Based Feature Extraction
2.2.3. Deciding the Optimal Interval Size for Interval-Based Feature Vector
2.3. Threshold Values for Classification
2.3.1. Threshold of Amplitude Similarity:
2.3.2. Threshold of Angle Similarity:
2.4. Verification
2.5. Updating Template
2.5.1. Calculating the Amplitude and Angle Distances
2.5.2. Updating the Threshold of Amplitude Similarity
2.5.3. Updating the Threshold of Angle Similarity
3. Experiment and Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Geddes, L.A.; Roeder, R.A. The first electronic electrocardiograph. Cardiovasc. Eng. Int. J. 2002, 2, 73–79. [Google Scholar] [CrossRef]
- Myers, G.B.; Klein, H.A.; Stofer, B.E. The electrocardiographic diagnosis of right ventricular hypertrophy. Am. Heart J. 1948, 35, 1–40. [Google Scholar] [CrossRef]
- Casale, P.N.; Devereux, R.B.; Alonso, D.R.; Campo, E.; Kligfield, P. Improved sex-specific criteria of left ventricular hypertrophy for clinical and computer interpretation of electrocardiograms: Validation with autopsy findings. Circulation 1987, 75, 565–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Addison, P.S.; Watson, J.N.; Clegg, G.R.; Holzer, M.; Sterz, F.; Robertson, C.E. Evaluating arrhythmias in ECG signals using wavelet transforms. IEEE Eng. Med. Biol. Mag. 2000, 19, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Acharya, R.; Kannathal, N.; Krishnan, S.M. Comprehensive analysis of cardiac health using heart rate signals. Physiol. Meas. 2004, 25, 1139. [Google Scholar]
- Bsoul, M.; Minn, H.; Tamil, L. Apnea MedAssist: Real-time Sleep Apnea Monitor Using Single-Lead ECG. IEEE Trans. Inf. Technol. Biomed. 2011, 15, 416–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karthikeyan, P.; Murugappan, M.; Yaacob, S. Detection of human stress using short-term ECG and HRV signals. J. Mech. Med. Biol. 2013, 13, 1350038. [Google Scholar] [CrossRef] [Green Version]
- Kaniusas, E.; Pfutzner, H.; Mehnen, L.; Kosel, J.; Tellez-Blanco, C.; Varoneckas, G.; Alonderis, A.; Meydan, T.; Vazquez, M.; Rohn, M.; et al. Method for continuous nondisturbing monitoring of blood pressure by magnetoelastic skin curvature sensor and ECG. IEEE Sens. J. 2006, 6, 819–828. [Google Scholar] [CrossRef]
- Saul, J.P.; Rea, R.F.; Eckberg, D.L.; Berger, R.D.; Cohen, R.J. Heart rate and muscle sympathetic nerve variability during reflex changes of autonomic activity. Am. J. Physiol. Circ. Physiol. 1990, 258, H713–H721. [Google Scholar] [CrossRef]
- Pomeranz, B.; Macaulay, R.J.; Caudill, M.A.; Kutz, I.; Adam, D.; Gordon, D.; Kilborn, K.M.; Barger, A.C.; Shannon, D.C.; Cohen, R.J.; et al. Assessment of autonomic function in humans by heart rate spectral analysis. Am. J. Physiol. Circ. Physiol. 1985, 248, H151–H153. [Google Scholar] [CrossRef]
- Agrafioti, F.; Gao, J.; Hatzinakos, D.; Yang, J. Heart biometrics: Theory, methods and applications. In Biometrics; InTech: Shanghai, China, 2011; pp. 199–216. [Google Scholar]
- Biel, L.; Pettersson, O.; Philipson, L.; Wide, P. ECG analysis: A new approach in human identification. In Proceedings of the 16th IEEE Instrumentation and Measurement Technology Conference, Venice, Italy, 24–26 May 1999. [Google Scholar]
- US Federal Trade Commission. Consumer Sentinel Network Data Book for January–December 2018. Available online: https://www.ftc.gov/system/files/documents/reports/consumer-sentinel-network-data-book-2018/consumer_sentinel_network_data_book_2018_0.pdf (accessed on 26 August 2020).
- Burge, M.; Burger, W. Ear Biometrics. In Biometrics; Springer US: Boston, MA, USA, 1996; pp. 273–285. [Google Scholar]
- Hossain, S.M.E.; Chetty, G. Next generation identity verification based on face-gait Biometrics. In Proceedings of the International Conference on Biomedical Engineering and Technology, Kuala Lumpur, Malaysia, 4–5 June 2011. [Google Scholar]
- Prabhakar, S.; Pankanti, S.; Jain, A.K. Biometric recognition: Security and privacy concerns. IEEE Secur. Priv. 2003, 1, 33–42. [Google Scholar] [CrossRef]
- Sanchit; Ramalho, M.; Correia, P.L.; Soares, L.D. Biometric identification through palm and dorsal hand vein patterns. In Proceedings of the 2011 IEEE EUROCON—International Conference on Computer as a Tool, Lisbon, Portugal, 27–29 April 2011; pp. 1–4. [Google Scholar]
- Boulgouris, N.V.; Plataniotis, K.N.; Micheli-Tzanakou, E. (Eds.) Biometrics: Theory, Methods, and Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; Volume 9, ISBN 9780470522356. [Google Scholar]
- Jain, A.K.; Arun, R.; Salil, P. An introduction to biometric recognition. IEEE Trans. Circuits Syst. Video Technol. 2004, 14, 4–20. [Google Scholar] [CrossRef] [Green Version]
- Israel, S.A.; Irvine, J.M.; Cheng, A.; Wiederhold, M.D.; Wiederhold, B.K. ECG to identify individuals. Pattern Recognit. 2005, 38, 133–142. [Google Scholar] [CrossRef]
- Irvine, J.; Israel, S.; Wiederhold, M.; Wiederhold, B. A new biometric: Human identification from circulatory function. In Proceedings of the Joint Statistical Meetings of the American Statistical Association, San Francisco, CA, USA, 3–7 August 2003. [Google Scholar]
- Zhang, Z.; Wei, D. A New ECG Identification Method Using Bayes’ Teorem. In Proceedings of the Tencon 2006 IEEE Region 10 Conference, Hong Kong, China, 14–17 November 2006. [Google Scholar]
- Singh, Y.N.; Gupta, P. ECG to Individual Identification. In Proceedings of the 2008 IEEE Second International Conference on Biometrics: Theory, Applications and Systems, Arlington, VA, USA, 29 September–1 October 2008. [Google Scholar]
- Simon, B.P.; Eswaran, C. An ECG Classifier Designed Using Modified Decision Based Neural Networks. Comput. Biomed. Res. 1997, 30, 257–272. [Google Scholar] [CrossRef] [PubMed]
- Hoekema, R.; Uijen, G.J.H.; van Oosterom, A. Geometrical aspects of the interindividual variability of multilead ECG recordings. IEEE Trans. Biomed. Eng. 2001, 48, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Tan, R.; Perkowski, M. ECG Biometric Identification Using Wavelet Analysis Coupled with Probabilistic Random Forest. In Proceedings of the 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA), Anaheim, CA, USA, 18–20 December 2016. [Google Scholar]
- Agrafioti, F.; Hatzinakos, D.; Bui, F.M. Cardiac biometric security in welfare monitoring. In Proceedings of the 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, 25–30 March 2012. [Google Scholar]
- Singh, Y.N.; Gupta, P. Correlation-based classification of heartbeats for individual identification. Soft Comput. 2011, 15, 449–460. [Google Scholar] [CrossRef]
- Fratini, A.; Sansone, M.; Bifulco, P.; Cesarelli, M. Individual identification via electrocardiogram analysis. Biomed. Eng. Online 2015, 14, 78. [Google Scholar] [CrossRef] [Green Version]
- Singh, Y.N.; Singh, S.K. Evaluation of Electrocardiogram for Biometric Authentication. J. Inf. Secur. 2011, 03, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Guennoun, M.; Abbad, N.; Talom, J.; Rahman, S.M.M.; El-Khatib, K. Continuous authentication by electrocardiogram data. In Proceedings of the 2009 IEEE Toronto International Conference Science and Technology for Humanity (TIC-STH), Toronto, ON, Canada, 26–27 September 2009. [Google Scholar]
- Kyoso, M.; Uchiyama, A. Development of an ECG identification system. In Proceedings of the 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Istanbul, Turkey, 25–28 October 2001. [Google Scholar]
- Kass, R.E.; Colleen, E.C. (Eds.) Basis and Treatment of Cardiac Arrhythmias; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2005; Volume 171. [Google Scholar]
- Physionet, Physiobank Archives, Massachusetts Institute of Technology Cambridge, January 2011. Available online: https://www.physionet.org/physiobank/database/#ecg (accessed on 26 August 2020).
- Sörnmo, L.; Laguna, P. Bioelectrical Signal Processing in Cardiac and Neurological Applications; Academic Press: New York, NY, USA, 2005; Volume 8. [Google Scholar]
- Chan, A.D.C.; Hamdy, M.M.; Badre, A.; Badee, V. Wavelet Distance Measure for Person Identification Using Electrocardiograms. IEEE Trans. Instrum. Meas. 2008, 57, 248–253. [Google Scholar] [CrossRef]
- Ye, C.; Coimbra, M.T.; Vijaya Kumar, B.V.K. Arrhythmia detection and classification using morphological and dynamic features of ECG signals. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010. [Google Scholar]
- Belgacem, N. ECG Based Human Authentication using Wavelets and Random Forests. Int. J. Cryptogr. Inf. Secur. 2012, 2, 1–11. [Google Scholar] [CrossRef]
- Choudhary, T.; Manikandan, M.S. A novel unified framework for noise-robust ECG-based biometric authentication. In Proceedings of the 2015 2nd International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 19–20 February 2015. [Google Scholar]
- Gutta, S. Biomedical Signal Processing and Inference in Wearable Sensing Applications. Ph.D. Thesis, Oklahoma State University, Stillwater, OK, USA, 1 December 2016. [Google Scholar]
- Plataniotis, K.N.; Hatzinakos, D.; Lee, J.K.M. ECG Biometric Recognition Without Fiducial Detection. In Proceedings of the 2006 Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference, Baltimore, MD, USA, 19–21 September 2006. [Google Scholar]
- Matta, R.; Lau, J.K.H.; Agrafioti, F.; Hatzinakos, D. Real-Time Continuous Identification System Using ECG Signals. In Proceedings of the 2011 Canadian Conference on Electrical and Computer Engineering, Niagara Falls, ON, Canada, 8–11 May 2011; pp. 1313–1316. [Google Scholar]
- Wang, Y.; Agrafioti, F.; Hatzinakos, D.; Plataniotis, K.N. Analysis of Human Electrocardiogram for Biometric Recognition. EURASIP J. Adv. Signal Process. 2007, 2008, 148658. [Google Scholar] [CrossRef] [Green Version]
- Safie, S.I.; Soraghan, J.J.; Petropoulakis, L. Pulse Active Ratio (PAR): A new feature extraction technique for ECG biometric authentication. In Proceedings of the 2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), Kuala Lumpur, Malaysia, 16–18 November 2011. [Google Scholar]
- Mücke, D. Elektrokardiographie Systematisch; UNI-MED-Verlag: Bremen, Germany, 1996. [Google Scholar]
- Khalil, I.; Sufi, F. Legendre Polynomials based biometric authentication using QRS complex of ECG. In Proceedings of the 2008 International Conference on Intelligent Sensors, Sensor Networks and Information Processing, Sydney, Australia, 15–18 December 2008. [Google Scholar]
- Pan, J.; Tompkins, W.J. A Real-Time QRS Detection Algorithm. IEEE Trans. Biomed. Eng. 1985, BME-32, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Agrafioti, F.; Hatzinakos, D. ECG biometric analysis in cardiac irregularity conditions. Signal, Image Video Process. 2009, 3, 329–343. [Google Scholar] [CrossRef]
- Ye, C.; Coimbra, M.T.; Kumar, B.V.K.V. Investigation of human identification using two-lead Electrocardiogram (ECG) signals. In Proceedings of the 2010 Fourth IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS), Washington, DC, USA, 27–29 September 2010. [Google Scholar]
- Singh, Y.N.; Singh, S.K. Identifying Individuals Using Eigenbeat Features of Electrocardiogram. J. Eng. 2013, 2013, 539284. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, A.; Abbott, A.L.; Doerzaph, Z. ECG biometric authentication using a dynamical model. In Proceedings of the 2015 IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS), Arlington, VA, USA, 8–11 September 2015. [Google Scholar]
- Arteaga-Falconi, J.S.; Al Osman, H.; El Saddik, A. ECG Authentication for Mobile Devices. IEEE Trans. Instrum. Meas. 2016, 65, 591–600. [Google Scholar] [CrossRef]
- Dar, M.N.; Akram, M.U.; Usman, A.; Khan, S.A. ECG biometric identification for general population using multiresolution analysis of DWT based features. In Proceedings of the 2015 Second International Conference on Information Security and Cyber Forensics (InfoSec), Cape Town, South Africa, 15–17 November 2015. [Google Scholar]
- Heart Monitor AC-002 User Manual; AliveCor, Inc.: San Francisco, CA, USA, 2015.
Ref. | NS | ST | DB | Method | EER | IDA |
---|---|---|---|---|---|---|
[48] | 56 | 2-lead Direct Contact type | MITDB NSRDB PTB database | Normalized AC and LDA | 3.8 % | 96.2 % |
[49] | 145 | 2-lead Direct Contact type | (a) MITDB (b) NSRDB (c) LTSTDB | WT and ICA | (a) 0.43 % (b) 0.67 % (c) 1.89 % | (a) 99.57 % (b) 99.33 % (c) 98.11 % |
[28] | 50 | 2-lead Direct Contact type (Only single lead of data used) | MITDB NSRDB | Delineation of P and T wave, Correlation | 1.01 % | 98.99 % |
[50] | 73 | 2-lead Direct Contact type (Only single lead of data used) | (a) MITDB (b) IIT(BHU) database (laboratory experiment) | Delineation of P and T wave, Eigenbeat feature extraction | (a) 8.58 % (b) 4.45 % | (a) 91.42 % (b) 95.55 % |
[51] | 47 | 2-lead Direct Contact type (Only single lead of data used) | MITDB | Sum of Gaussian, QDA | 3 % | 97 % |
[52] | 83 | 2-lead Direct Contact type (Only single lead of data used), AliveCor single lead Contact type [54] | (a) MITDB NSRDB (b) Laboratory experiment database | FP (Time and amplitude), Proposed hierarchical algorithm | (a) 9.795 % (b) 8.18 % | (a) 90.205 % (b) 91.82 % |
[53] | 65 | 2-lead Direct Contact type (Only single lead of data used) | (a) MITDB (b) NSRDB | DWT | (a) 6.9 % (b) 0.6 % | (a) 93.1 % (b) 99.4 % |
Proposed method | 72 | 2-lead Direct Contact type (Only single lead of data used) | MITDB | Unnormalized AC and Interval based LDA algorithm | 0.143 % | 99.857 % |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Ku, G.W.; Lee, J.-G.; Lee, S.-H. Interval-Based LDA Algorithm for Electrocardiograms for Individual Verification. Appl. Sci. 2020, 10, 6025. https://doi.org/10.3390/app10176025
Yang C, Ku GW, Lee J-G, Lee S-H. Interval-Based LDA Algorithm for Electrocardiograms for Individual Verification. Applied Sciences. 2020; 10(17):6025. https://doi.org/10.3390/app10176025
Chicago/Turabian StyleYang, Chulseung, Gi Won Ku, Jeong-Gi Lee, and Sang-Hyun Lee. 2020. "Interval-Based LDA Algorithm for Electrocardiograms for Individual Verification" Applied Sciences 10, no. 17: 6025. https://doi.org/10.3390/app10176025
APA StyleYang, C., Ku, G. W., Lee, J. -G., & Lee, S. -H. (2020). Interval-Based LDA Algorithm for Electrocardiograms for Individual Verification. Applied Sciences, 10(17), 6025. https://doi.org/10.3390/app10176025