Opening Size Effects on Airflow Pattern and Airflow Rate of a Naturally Ventilated Dairy Building—A CFD Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Prototype NVD Building and Seasonal Practices
2.2. Wind Tunnel Experiments for CFD Model Validation
2.2.1. Description of the Wind Tunnel and a Scale Model of NVD Building
2.2.2. Experimental Setup
2.3. CFD Simulations
2.3.1. Geometry and Design of Simulation Cases
2.3.2. Model Set Up and Boundary Conditions in CFD
2.3.3. Numerical Method
2.3.4. Grid Details and Grid Independence Study
2.4. CFD Model Validation
2.5. Calculation of Airflow Rate and Non-dimensional Airflow Rate
3. Results and Discussion
3.1. Airflow Characteristics in and outside the NVD Building
3.2. Air Velocity at the Animal Height and Just above the Emission Surface
3.3. Airflow Rate
4. Conclusions
- Opening combinations play a decisive role in the distribution of fresh air inside the barn. Complete sidewall opening either with door or feeding alley openings in both leeward and windward sides showed better distribution of airflow in the summer season. In Autumn, when the middle part of the sidewall opens, after passing above the resting places and animal walking alley of windward side, major jet diverted at the wall of windward side of the feeding alley. Due to feeding alley wall, the air velocity became weaker when it touched the animal resting floors and walking alleys before leaving the leeward opening. This indicated that animals staying at the leeward side of the feeding alley may have less fresh air than those staying at the windward side.
- Inlet air can be guided by sidewall openings depending on seasonal ambient air temperatures for animal comfort and minimal emission. When opening of the bottom part of the sidewall contributed increased air velocities near emission surfaces. Therefore, the bottom part of the sidewall should not be opened until the cow comfort hampers due to hot summer.
- Different opening combinations showed that airflow rate per m2 floor area was 1 to 2.5 times higher than when only middle part of the sidewall was opened. Larger sidewall openings resulted in higher airflow rate than the small openings while the effect from ridge opening and door opening were minimal in the perpendicular wind direction.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Saha, C.K.; Zhang, G.; Ni, J.Q. Airflow and concentration characterisation and ammonia mass transfer modelling in wind tunnel studies. Biosyst. Eng. 2010. [Google Scholar] [CrossRef]
- Bull, K.R.; Sutton, M.A. Critical loads and the relevance of ammonia to an effects-based nitrogen protocol. Atmos. Environ. 1998, 32, 565–572. [Google Scholar] [CrossRef]
- Samer, M.; Fiedler, M.; Müller, H.J.; Gläser, M.; Ammon, C.; Berg, W.; Sanftleben, P.; Brunsch, R. Winter measurements of air exchange rates using tracer gas technique and quantification of gaseous emissions from a naturally ventilated dairy barn. Appl. Eng. Agric. 2011, 27, 1015–1025. [Google Scholar] [CrossRef]
- Ikeguchi, A.; Zhang, G.; Okushima, L.; Bennetsen, J.C. Windward windbreak effects on airflow in and around a scale model of a naturally ventilated pig barn. Trans. ASAE 2013. [Google Scholar] [CrossRef]
- Heinicke, J.; Ibscher, S.; Belik, V.; Amon, T. Cow individual activity response to the accumulation of heat load duration. J. Therm. Biol. 2019, 82, 23–32. [Google Scholar] [CrossRef]
- Smith, J.F.; Bradford, B.J.; Harner, J.P.; Potts, J.C.; Allen, J.D.; Overton, M.W.; Ortiz, X.A.; Collier, R.J. Short communication: Effect of cross ventilation with or without evaporative pads on core body temperature and resting time of lactating cows. J. Dairy Sci. 2016. [Google Scholar] [CrossRef]
- Van Buggenhout, S.; Van Brecht, A.; Eren Özcan, S.; Vranken, E.; Van Malcot, W.; Berckmans, D. Influence of sampling positions on accuracy of tracer gas measurements in ventilated spaces. Biosyst. Eng. 2009, 104, 216–223. [Google Scholar] [CrossRef]
- Samer, M.; Loebsin, C.; Fiedler, M.; Ammon, C.; Berg, W.; Sanftleben, P.; Brunsch, R. Heat balance and tracer gas technique for airflow rates measurement and gaseous emissions quantification in naturally ventilated livestock buildings. Energy Build. 2011. [Google Scholar] [CrossRef]
- Saha, C.K.; Ammon, C.; Berg, W.; Loebsin, C.; Fiedler, M.; Brunsch, R.; Von Bobrutzki, K. The effect of external wind speed and direction on sampling point concentrations, air change rate and emissions from a naturally ventilated dairy building. Biosyst. Eng. 2013, 114. [Google Scholar] [CrossRef]
- Samer, M.; Ammon, C.; Loebsin, C.; Fiedler, M.; Berg, W.; Sanftleben, P.; Brunsch, R. Moisture balance and tracer gas technique for ventilation rates measurement and greenhouse gases and ammonia emissions quantification in naturally ventilated buildings. Build. Environ. 2012. [Google Scholar] [CrossRef]
- Fiedler, M.; Berg, W.; Ammon, C.; Loebsin, C.; Sanftleben, P.; Samer, M.; von Bobrutzki, K.; Kiwan, A.; Saha, C.K. Air velocity measurements using ultrasonic anemometers in the animal zone of a naturally ventilated dairy barn. Biosyst. Eng. 2013. [Google Scholar] [CrossRef]
- Snell, H.G.J.; Seipelt, F.; Van Den Weghe, H.F.A. Ventilation rates and gaseous emissions from naturally ventilated dairy houses. Biosyst. Eng. 2003. [Google Scholar] [CrossRef]
- Saha, C.K.; Fiedler, M.; Ammon, C.; Berg, W.; Loebsin, C.; Amon, B.; Amon, T. Uncertainty in calculating air exchange rate of naturally ventilated dairy building based on point concentrations. Environ. Eng. Manag. J. 2014, 13, 2349–2355. [Google Scholar] [CrossRef]
- Yi, Q.; König, M.; Janke, D.; Hempel, S.; Zhang, G.; Amon, B.; Amon, T. Wind tunnel investigations of sidewall opening effects on indoor airflows of a cross-ventilated dairy building. Energy Build. 2018. [Google Scholar] [CrossRef]
- Yi, Q.; Zhang, G.; König, M.; Janke, D.; Hempel, S.; Amon, T. Investigation of discharge coefficient for wind-driven naturally ventilated dairy barns. Energy Build. 2018, 165, 132–140. [Google Scholar] [CrossRef]
- Norton, T.; Sun, D.W.; Grant, J.; Fallon, R.; Dodd, V. Applications of computational fluid dynamics (CFD) in the modelling and design of ventilation systems in the agricultural industry: A review. Bioresour. Technol. 2007, 98, 2386–2414. [Google Scholar] [CrossRef]
- Yi, Q.; Li, H.; Wang, X.; Zong, C.; Zhang, G. Numerical investigation on the effects of building configuration on discharge coefficient for a cross-ventilated dairy building model. Biosyst. Eng. 2019. [Google Scholar] [CrossRef]
- Gebremedhin, K.G.; Wu, B. Simulation of flow field of a ventilated and occupied animal space with different inlet and outlet conditions. J. Therm. Biol. 2005, 30, 343–353. [Google Scholar] [CrossRef]
- Norton, T.; Grant, J.; Fallon, R.; Sun, D.W. Optimising the ventilation configuration of naturally ventilated livestock buildings for improved indoor environmental homogeneity. Build. Environ. 2010. [Google Scholar] [CrossRef]
- Yi, Q.; Zhang, G.; Li, H.; Wang, X.; Janke, D.; Amon, B.; Hempel, S.; Amon, T. Estimation of opening discharge coefficient of naturally ventilated dairy buildings by response surface methodology. Comput. Electron. Agric. 2020. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, G.; Bjerg, B. Investigation of response surface methodology for modelling ventilation rate of a naturally ventilated building. Build. Environ. 2012. [Google Scholar] [CrossRef]
- De Paepe, M.; Pieters, J.G.; Cornelis, W.M.; Gabriels, D.; Merci, B.; Demeyer, P. Airflow measurements in and around scale model cattle barns in a wind tunnel: Effect of ventilation opening height. Biosyst. Eng. 2012, 113, 22–32. [Google Scholar] [CrossRef]
- Franke, J.; Hellsten, A.; Schlünzen, H.; Carissimo, B. Best Practice Guideline for the CFD Simulation of Flows in the Urban Environment; Cost Office: Brussels, Belgium, 2007; ISBN 3000183124. [Google Scholar]
- Barlow, J.B.; Rae, W.H.; Pope, A. Low-Speed Wind Tunnel Testing, 3rd ed.; A Wiley-Interscience Publication, John Wiley & Sons: Hoboken, NJ, USA, 1999; ISBN 0471557749. [Google Scholar]
- VDI. Guideline 3783/12. In Physical Modelling of Flow and Dispersion Processes in the Atmospheric Boundary Layer—Application of Wind Tunnels; Beuth Verlag: Berlin, Germany, 2000; Volume 3783/12. [Google Scholar]
- Janke, D.; Caiazzo, A.; Ahmed, N.; Alia, N.; Knoth, O.; Moreau, B.; Wilbrandt, U.; Willink, D.; Amon, T.; John, V. On the feasibility of using open source solvers for the simulation of a turbulent air flow in a dairy barn. Comput. Electron. Agric. 2020. [Google Scholar] [CrossRef]
- Cermak, J.E.; Poreh, M.; Peterka, J.A.; Ayad, S.S. Wind tunnel investigations of natural ventilation. J. Transp. Eng. 1984. [Google Scholar] [CrossRef]
- Yi, Q.; Wang, X.; Zhang, G.; Li, H.; Janke, D.; Amon, T. Assessing effects of wind speed and wind direction on discharge coefficient of sidewall opening in a dairy building model—A numerical study. Comput. Electron. Agric. 2019. [Google Scholar] [CrossRef]
- Hajdukiewicz, M.; Geron, M.; Keane, M.M. Formal calibration methodology for CFD models of naturally ventilated indoor environments. Build. Environ. 2013. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Zhang, G.; Wu, W.; Bjerg, B. Model-based control of natural ventilation in dairy buildings. Comput. Electron. Agric. 2013. [Google Scholar] [CrossRef]
- Wu, W.; Wang, B.; Malkawi, A.; Yoon, N.; Sehovic, Z.; Yan, B. A Method toward Real-Time CFD Modeling for Natural Ventilation. Fluids 2018. [Google Scholar] [CrossRef] [Green Version]
- Ntinas, G.K.; Dados, I.N.; Shen, X.; Malamataris, N.A.; Fragos, V.P.; Zhang, G. Characteristics of unsteady flow around two successive rectangular ribs on floor of a wind tunnel. Eur. J. Mech. B Fluids 2017. [Google Scholar] [CrossRef]
- Hempel, S.; Menz, C.; Pinto, S.; Galán, E.; Janke, D.; Estellés, F.; Müschner-Siemens, T.; Wang, X.; Heinicke, J.; Zhang, G.; et al. Heat stress risk in European dairy cattle husbandry under different climate change scenarios-uncertainties and potential impacts. Earth Syst. Dyn. 2019, 10, 859–884. [Google Scholar] [CrossRef] [Green Version]
- Morsing, S.; Ikeguchi, A.; Bennetsen, J.C.; Strøm, J.S.; Ravn, P.; Okushima, L. Wind induced isothermal airflow patterns in a scale model of a naturally ventilated swine barn with cathedral ceiling. Appl. Eng. Agric. 2002, 18, 97–101. [Google Scholar] [CrossRef]
- Ni, J. Mechanistic models of ammonia release from liquid manure: A review. J. Agric. Eng. Res. 1999, 72, 1–17. [Google Scholar] [CrossRef]
- Mackay, D.; Yeun, A.T.K. Mass Transfer Coefficient Correlations for Volatilization of Organic Solutes from Water. Environ. Sci. Technol. 1983. [Google Scholar] [CrossRef] [PubMed]
- Arogo, J.; Zhang, R.H.; Riskowski, G.L.; Christianson, L.L.; Day, D.L. Mass transfer coefficient of ammonia in liquid swine manure and aqueous solutions. J. Agric. Eng. Res. 1999. [Google Scholar] [CrossRef]
- Vlek, P.L.G.; Stumpe, J.M. Effects of Solution Chemistry and Environmental Conditions on Ammonia Volatilization Losses from Aqueous Systems. Soil Sci. Soc. Am. J. 1978. [Google Scholar] [CrossRef]
- Saha, C.K.; Zhang, G.; Kai, P. Modeling ammonia mass transfer process from a model pig house based on ventilation characteristics. Trans. ASABE 2012, 55, 1597–1607. [Google Scholar] [CrossRef]
Cases | Opening Combination | U at WT Inlet (m∙s−1) | Ainlet (m2) | Aoutlet (m2) | Aroof (m2) | Adoors (m2) | Afa (m2) | ∑Aoutlet (m2) |
---|---|---|---|---|---|---|---|---|
Case 1 | SM | 8 | 0.019 | 0.019 | 0.002 | 0.021 | ||
Case 2 | SMT | 8 | 0.031 | 0.031 | 0.002 | 0.033 | ||
Case 3 | SMB | 8 | 0.032 | 0.032 | 0.002 | 0.034 | ||
Case 4 | SWC | 8 | 0.043 | 0.043 | 0.002 | 0.045 | ||
Case 5 | SWFD | 8 | 0.043 | 0.043 | 0.002 | 0.004 | 0.049 | |
Case 6 | SMTD | 8 | 0.031 | 0.031 | 0.002 | 0.012 | 0.045 | |
Case 7 | SMBD | 8 | 0.032 | 0.032 | 0.002 | 0.012 | 0.046 | |
Case 8 | SWCD | 8 | 0.043 | 0.043 | 0.002 | 0.012 | 0.057 | |
Case 9 | SM | 1 | 0.019 | 0.019 | 0.002 | 0.021 | ||
Case 10 | SM | 2 | 0.019 | 0.019 | 0.002 | 0.021 | ||
Case 11 | SM | 3 | 0.019 | 0.019 | 0.002 | 0.021 | ||
Case 12 | SM | 4 | 0.019 | 0.019 | 0.002 | 0.021 | ||
Case 13 | SM | 5 | 0.019 | 0.019 | 0.002 | 0.021 | ||
Case 14 | SM | 6 | 0.019 | 0.019 | 0.002 | 0.021 | ||
Case 15 | SM | 7 | 0.019 | 0.019 | 0.002 | 0.021 | ||
Case 16 | SM | 8 | 0.019 | 0.019 | 0.002 | 0.021 | ||
Case 17 | SM | 9 | 0.019 | 0.019 | 0.002 | 0.021 | ||
Case 18 | SM | 10 | 0.019 | 0.019 | 0.002 | 0.021 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saha, C.K.; Yi, Q.; Janke, D.; Hempel, S.; Amon, B.; Amon, T. Opening Size Effects on Airflow Pattern and Airflow Rate of a Naturally Ventilated Dairy Building—A CFD Study. Appl. Sci. 2020, 10, 6054. https://doi.org/10.3390/app10176054
Saha CK, Yi Q, Janke D, Hempel S, Amon B, Amon T. Opening Size Effects on Airflow Pattern and Airflow Rate of a Naturally Ventilated Dairy Building—A CFD Study. Applied Sciences. 2020; 10(17):6054. https://doi.org/10.3390/app10176054
Chicago/Turabian StyleSaha, Chayan Kumer, Qianying Yi, David Janke, Sabrina Hempel, Barbara Amon, and Thomas Amon. 2020. "Opening Size Effects on Airflow Pattern and Airflow Rate of a Naturally Ventilated Dairy Building—A CFD Study" Applied Sciences 10, no. 17: 6054. https://doi.org/10.3390/app10176054
APA StyleSaha, C. K., Yi, Q., Janke, D., Hempel, S., Amon, B., & Amon, T. (2020). Opening Size Effects on Airflow Pattern and Airflow Rate of a Naturally Ventilated Dairy Building—A CFD Study. Applied Sciences, 10(17), 6054. https://doi.org/10.3390/app10176054