Validation of Five Gas Analysers for Application in Ammonia Emission Measurements at Livestock Houses According to the VERA Test Protocol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Gas Analysers
2.1.1. INNOVA
2.1.2. Rosemount
2.1.3. Picarro
2.1.4. Gasmet
2.1.5. Axetris
2.2. Field Test Set-up
2.3. Reference Method
2.4. Analyser Performance Assessment
3. Results and Discussion
3.1. Reference Measurement
3.2. Comparison between Analysers
3.3. Comparison between Reference Method and Analysers
3.4. Practical Prospects
3.4.1. Calibration and Reliability
3.4.2. Interference
3.4.3. The Sampling Line Set-up
3.4.4. Applicability of EN 14793 within the VERA Protocol
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CRDS | cavity ring-down spectroscopy |
FTIRS | Fourier transform infrared spectroscopy |
LAS | laser absorption spectroscopy |
MAD | median absolute deviations |
PAS | photoacoustic spectroscopy |
ppmv | parts per million by volume |
PTFE | polytetrafluoroethylene |
QCL | quantum-cascade laser |
RMSE | root-mean-square error |
TDL | tunable diode laser |
VERA | Verification of Environmental Technologies for Agricultural Production |
References
- EEA. Ammonia (NH3) Emissions; European Environment Agency (EEA): Copenhagen, Denmark, 2014. [Google Scholar]
- Giner Santonja, G.; Georgitzikis, K.; Scalet, B.; Montobbio, P.; Roudier, S.; Sancho, L. Best Available Techniques (BAT) Reference Document for the Intensive Rearing of Poultry or Pigs; Publications Office of the European Union: Luxembourg, 2017. [Google Scholar]
- Van der Heyden, C.; Brusselman, E.; Volcke, E.; Demeyer, P. Continuous measurements of ammonia, nitrous oxide and methane from air scrubbers at pig housing facilities. J. Environ. Manag. 2016, 181, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Tabase, R.K.; Van Linden, V.; Bagci, Ö.; De Paepe, M.; Aarnink, A.J.; Demeyer, P. CFD simulation of airflows and ammonia emissions in a pig compartment with underfloor air distribution system: Model validation at different ventilation rates. Comput. Electron. Agric. 2020, 171, 105297. [Google Scholar] [CrossRef]
- Rong, L. Effect of partial pit exhaust ventilation system on ammonia removal ratio and mass transfer coefficients from different emission sources in pig houses. Energy Built Environ. 2020, 1, 343–350. [Google Scholar] [CrossRef]
- Costantino, A.; Fabrizio, E.; Biglia, A.; Cornale, P.; Battaglini, L. Energy Use for Climate Control of Animal Houses: The State of the Art in Europe. Energy Procedia 2016, 101, 184–191. [Google Scholar] [CrossRef] [Green Version]
- Kassai, M. Prediction of the HVAC Energy Demand and Consumption of a Single Family House with Different Calculation Methods. Energy Procedia 2017, 112, 585–594. [Google Scholar] [CrossRef]
- Jacobsen, B.H.; Latacz-Lohmann, U.; Luesink, H.; Michels, R.; Ståhl, L. Costs of regulating ammonia emissions from livestock farms near Natura 2000 areas—Analyses of case farms from Germany, Netherlands and Denmark. J. Environ. Manag. 2019, 246, 897–908. [Google Scholar] [CrossRef] [PubMed]
- International VERA Secretariat. Test Protocol for Livestock Housing and Management Systems; International VERA Secretariat: Delft, The Netherlands, 2018. [Google Scholar]
- Stationary Source Emissions—Determination of the Mass Concentration of Ammonia—Manual Method; ISO/DIS 21877; International Organization for Standardization: Geneva, Switzerland, 2018.
- Air Quality—Stationary Sources Emissions—Sampling and Determination of Gaseous Ammonia Content, NEN 2826:1999; Stichting Koninklijk Nederlands Normalisatie Instituut (NEN): Delft, The Netherlands, 1999.
- Gaseous Emission Measurement; Determination of Basic Nitrogen Compounds Seizable by Absorption in Sulphuric Acid, VDI 3496 Blatt 1; The Association of German Engineers (VDI): Düsseldorf, Germany, 1982.
- Stationary Source Emissions—Demonstration of Equivalence of an Alternative Method with a Reference Method; EN 14793; European Committee for Standardization: Brussels, Belgium, 2017.
- Hodgkinson, J.; Tatam, R.P. Optical gas sensing: A review. Meas. Sci. Technol. 2012, 24, 012004. [Google Scholar] [CrossRef] [Green Version]
- EPA. EPA Handbook: Optical and Remote Sensing for Measurement and Monitoring of Emissions Flux of Gases and Particulate Matter; U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Air Quality Assessment Division: Research Triangle Park, NC, USA, 2018.
- Haisch, C. Photoacoustic spectroscopy for analytical measurements. Meas. Sci. Technol. 2011, 23, 012001. [Google Scholar] [CrossRef]
- Schilt, S.; Thévenaz, L.; Niklès, M.; Emmenegger, L.; Hüglin, C. Ammonia monitoring at trace level using photoacoustic spectroscopy in industrial and environmental applications. Spectrochim. Acta Part A 2004, 60, 3259–3268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, N.A.; Ferracci, V.; Cassidy, N.; Hoffnagle, J.A. The application of a cavity ring-down spectrometer to measurements of ambient ammonia using traceable primary standard gas mixtures. Appl. Phys. B Lasers Opt. 2016, 122, 219. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, S.; Van Overbeke, P.; Vangeyte, J.; Sonck, B.; Demeyer, P. Evaluation of a Cost-Effective Ammonia Monitoring System for Continuous Real-Time Concentration Measurements in a Fattening Pig Barn. Sensors 2019, 19, 3669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NH3 Rendementsbepaling Van Luchtwassers Bij Stalsystemen; LUC/VII/001; Energie- en milieu-informatiesysteem voor het Vlaamse Gewes (EMIS): Mol, Belgium, 2017.
- Water Quality—Determination of Ammonium Nitrogen—Method by Flow Analysis (CFA and FIA) and Spectrometric Detection; ISO 11732; International Organization for Standardization: Geneva, Switzerland, 2005.
- Watson, P.; Petrie, A. Method agreement analysis: A review of correct methodology. Theriogenology 2010, 73, 1167–1179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, L.I.K. A Concordance Correlation Coefficient to Evaluate Reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Altman, D.; Bland, J. Measurement in Medicine: The Analysis of Method Comparison Studies. J. R. Stat. Soc. Series D 1983, 32, 307–317. [Google Scholar] [CrossRef]
- Revelle, W. Psych: Procedures for Psychological, Psychometric, and Personality Research; R Package Version 1.8.12; Northwestern University: Evanston, IL, USA, 2018. [Google Scholar]
- Swaans, W.; Fré, R.D.; Otten, G.; Damen, E.; Daems, J.; Aerts, W.; Moonen, N. Validatie Van Een Meetmethode Voor NH3 in Emissies, VITO Verslag 2007/MIM/R/81; Energie- en milieu-informatiesysteem voor het Vlaamse Gewes (EMIS): Mol, Belgium, 2007. [Google Scholar]
- Ni, J.Q.; Heber, A.J. Sampling and Measurement of Ammonia at Animal Facilities. Adv. Agron. 2008, 98, 201–269. [Google Scholar] [CrossRef]
Analyser | Model | Accuracy a | Calibration | ||
---|---|---|---|---|---|
Range (ppmv) | Execution | Interval b | |||
INNOVA | 1314 | not specified | 0–44 | Manufacturer | 3 |
Picarro | G2103 | 5% reading + 0.5 ppbv | 0–50 | Manufacturer | 18 |
Rosemount | CT5100 | 2% full-scale | 0–52 | Manufacturer | 12 |
Gasmet | CX4000 | 2% full-scale | 0–150 | Manufacturer c | 9 |
Axetris | LGD F200-A | 2% full-scale | 0–69 | Authors | 7 |
INNOVA | Picarro | Rosemount | Axetris | Gasmet | Mean | ||
---|---|---|---|---|---|---|---|
RMSE [ppmv] | |||||||
INNOVA | r | - | 1.078 | 0.646 | 1.846 | 1.216 | 0.872 |
Picarro | 0.999 | - | 0.637 | 0.542 | 0.462 | 0.300 | |
Rosemount | 0.999 | 1.000 | - | 1.205 | 0.562 | 0.327 | |
Axetris | 0.889 | 0.971 | 0.976 | - | 0.272 | 0.750 | |
Gasmet | 0.998 | 0.999 | 1.000 | 0.991 | - | 0.424 | |
Mean | 0.999 | 0.999 | 0.999 | 0.936 | 0.999 | - |
Analyser | Correlation Coefficient (r) | Intercept () | Slope ( ) | Variability a |
---|---|---|---|---|
INNOVA | 0.998 | −0.282 | 1.032 | 0.16 |
Picarro | 0.999 | −0.194 | 1.105 | 0.16 |
Rosemount | 0.999 | −0.370 | 1.052 | 0.17 |
Axetris | 0.998 b | −0.063 | 1.122 | 0.22 |
Gasmet | 0.999 | 0.187 | 1.096 | 0.29 |
Criteria | N/A |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuang, S.; Brusselman, E.; Sonck, B.; Demeyer, P. Validation of Five Gas Analysers for Application in Ammonia Emission Measurements at Livestock Houses According to the VERA Test Protocol. Appl. Sci. 2020, 10, 5034. https://doi.org/10.3390/app10155034
Zhuang S, Brusselman E, Sonck B, Demeyer P. Validation of Five Gas Analysers for Application in Ammonia Emission Measurements at Livestock Houses According to the VERA Test Protocol. Applied Sciences. 2020; 10(15):5034. https://doi.org/10.3390/app10155034
Chicago/Turabian StyleZhuang, Shaojie, Eva Brusselman, Bart Sonck, and Peter Demeyer. 2020. "Validation of Five Gas Analysers for Application in Ammonia Emission Measurements at Livestock Houses According to the VERA Test Protocol" Applied Sciences 10, no. 15: 5034. https://doi.org/10.3390/app10155034
APA StyleZhuang, S., Brusselman, E., Sonck, B., & Demeyer, P. (2020). Validation of Five Gas Analysers for Application in Ammonia Emission Measurements at Livestock Houses According to the VERA Test Protocol. Applied Sciences, 10(15), 5034. https://doi.org/10.3390/app10155034