Cr(VI) Sorption from Aqueous Solution: A Review
Abstract
:1. Introduction
2. Cr(VI) Behavior in Solution and Proposed Sorption Mechanisms: Effect of pH
3. Equilibrium and Thermodynamic Aspects of Cr(VI) Sorption
3.1. Sorption Isotherms
3.2. Maximum Sorption Capacity
3.3. Sorbent Affinity toward Cr(VI)
3.4. Sorption Thermodynamics
4. Kinetic Modelling
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Roy, P.K.; Swami, V.; Kumar, D.; Rajagopal, C. Removal of toxic metals using superabsorbent polyelectrolytic hydrogels. J. Appl. Polym. Sci. 2011, 122, 2415–2423. [Google Scholar] [CrossRef]
- Norouzian Baghani, A.; Mahvi, A.H.; Gholami, M.; Rastkari, N.; Delikhoon, M. One-Pot synthesis, characterization and adsorption studies of amine-functionalized magnetite nanoparticles for removal of Cr (VI) and Ni (II) ions from aqueous solution: Kinetic, isotherm and thermodynamic studies. J. Environ. Health Sci. Eng. 2016, 14. [Google Scholar] [CrossRef] [Green Version]
- Johnston, C.P.; Chrysochoou, M. Mechanisms of chromate adsorption on hematite. Geochim. Cosmochim. Acta 2014, 138, 146–157. [Google Scholar] [CrossRef]
- Arris, S.; Bencheikh Lehocine, M.; Meniai, A.H. Sorption study of chromium sorption from wastewater using cereal by-products. Int. J. Hydrogen Energy 2016, 41, 10299–10310. [Google Scholar]
- Kowalski, Z. Treatment of chromic tannery wastes. J. Hazard. Mater. 1994, 37, 137–141. [Google Scholar] [CrossRef]
- Janoš, P.; Hůla, V.; Bradnová, P.; Pilařová, V.; Šedlbauer, J. Reduction and immobilization of hexavalent chromium with coal- and humate-based sorbents. Chemosphere 2009, 75, 732–738. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.V.; Tran, T.L.; Le, T.D.; Le, T.D.; Nguyen, H.M.T.; Dang, L.T. Graphene oxide enhanced adsorption capacity of chitosan/magnetite nanocomposite for Cr(VI) removal from aqueous solution. Mater. Res. Express 2019, 6, 025018. [Google Scholar] [CrossRef]
- Mikhaylov, V.I.; Maslennikova, T.P.; Krivoshapkina, E.F.; Tropnikov, E.M.; Krivoshapkin, P.V. Express Al/Fe oxide–oxyhydroxide sorbent systems for Cr(VI) removal from aqueous solutions. Chem. Eng. J. 2018, 350, 344–355. [Google Scholar] [CrossRef]
- Shi, X.; Dalal, N.S. On the hydroxyl radical formation in the reaction between hydrogen peroxide and biologically generated chromium(V) species. Arch. Biochem. Biophys. 1990, 277, 342–350. [Google Scholar] [CrossRef]
- Bagbi, Y.; Sarswat, A.; Mohan, D.; Pandey, A.; Solanki, P.R. Lead and Chromium Adsorption from Water using L-Cysteine Functionalized Magnetite (Fe3O4) Nanoparticles. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef]
- Huang, C.P.; Wu, M.H. Chromium removal by carbon adsorption. J. Water Pollut. Control Fed. 1975, 47, 2437–2446. [Google Scholar]
- Huang, C.P.; Wu, M.H. The removal of chromium(VI) from dilute aqueous solution by activated carbon. Water Res. 1977, 11, 673–679. [Google Scholar] [CrossRef]
- Hamadi, N.K.; Chen, X.D.; Farid, M.M.; Lu, M.G.Q. Adsorption kinetics for the removal of chromium(VI) from aqueous solution by adsorbents derived from used tyres and sawdust. Chem. Eng. J. 2001, 84, 95–105. [Google Scholar] [CrossRef]
- Khan, S.A.; Riaz-ur-Rehman Khan, M.A. Adsorption of chromium (III), chromium (VI) and silver (I) on bentonite. Waste Manag. 1995, 15, 271–282. [Google Scholar] [CrossRef]
- Sharma, D.C.; Forster, C.F. A preliminary examination into the adsorption of hexavalent chromium using low-cost adsorbents. Bioresour. Technol. 1994, 47, 257–264. [Google Scholar] [CrossRef]
- Sharma, D.C.; Forster, C.F. Removal of hexavalent chromium using sphagnum moss peat. Water Res. 1993, 27, 1201–1208. [Google Scholar] [CrossRef]
- Salvestrini, S.; Vanore, P.; Bogush, A.; Mayadevi, S.; Campos, L.C. Sorption of metaldehyde using granular activated carbon. J. Water Reuse Desalin. 2017, 7, 280–287. [Google Scholar] [CrossRef]
- Zhou, Y.F.; Haynes, R.J. Removal of Pb(II), Cr(III) and Cr(VI) from aqueous solutions using alum-derived water treatment sludge. Water. Air. Soil Pollut. 2011, 215, 631–643. [Google Scholar] [CrossRef]
- Javadian, H.; Ahmadi, M.; Ghiasvand, M.; Kahrizi, S.; Katal, R. Removal of Cr(VI) by modified brown algae Sargassum bevanom from aqueous solution and industrial wastewater. J. Taiwan Inst. Chem. Eng. 2013, 44, 977–989. [Google Scholar] [CrossRef]
- Shi, T.; Wang, Z.; Liu, Y.; Jia, S.; Changming, D. Removal of hexavalent chromium from aqueous solutions by D301, D314 and D354 anion-exchange resins. J. Hazard. Mater. 2009, 161, 900–906. [Google Scholar] [CrossRef]
- Das, S.K.; Guha, A.K. Biosorption of hexavalent chromium by Termitomyces clypeatus biomass: Kinetics and transmission electron microscopic study. J. Hazard. Mater. 2009, 167, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Kantar, C.; Ari, C.; Keskin, S.; Dogaroglu, Z.G.; Karadeniz, A.; Alten, A. Cr(VI) removal from aqueous systems using pyrite as the reducing agent: Batch, spectroscopic and column experiments. J. Contam. Hydrol. 2015, 174, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Gherasim, C.V.; Bourceanu, G.; Olariu, R.I.; Arsene, C. A novel polymer inclusion membrane applied in chromium (VI) separation from aqueous solutions. J. Hazard. Mater. 2011, 197, 244–253. [Google Scholar] [CrossRef]
- Gheju, M.; Balcu, I.; Mosoarca, G. Removal of Cr(VI) from aqueous solutions by adsorption on MnO2. J. Hazard. Mater. 2016, 310, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Kyzas, G.Z.; Kostoglou, M.; Lazaridis, N.K. Copper and chromium(VI) removal by chitosan derivatives-Equilibrium and kinetic studies. Chem. Eng. J. 2009, 152, 440–448. [Google Scholar] [CrossRef]
- Ozer, T.B.; Erkaya, I.A.; Udoh, A.U.; Duygu, D.Y.; Akbulut, A.; Bayramoglu, G.; Arica, M.Y. Biosorption of Cr(VI) by free and immobilized Pediastrum boryanum biomass: Equilibrium, kinetic, and thermodynamic studies. Environ. Sci. Pollut. Res. 2012, 19, 2983–2993. [Google Scholar] [CrossRef]
- Cui, Y.; Masud, A.; Aich, N.; Atkinson, J.D. Phenol and Cr(VI) removal using materials derived from harmful algal bloom biomass: Characterization and performance assessment for a biosorbent, a porous carbon, and Fe/C composites. J. Hazard. Mater. 2019, 368, 477–486. [Google Scholar] [CrossRef]
- Campos, V. The sorption of toxic elements onto natural zeolite, synthetic goethite and modified powdered block carbon. Environ. Earth Sci. 2009, 59, 737–744. [Google Scholar] [CrossRef] [Green Version]
- Di Natale, F.; Erto, A.; Lancia, A.; Musmarra, D. Equilibrium and dynamic study on hexavalent chromium adsorption onto activated carbon. J. Hazard. Mater. 2015, 281, 47–55. [Google Scholar] [CrossRef]
- Koujalagi, P.S.; Divekar, S.V.; Kulkarni, R.M.; Nagarale, R.K. Kinetics, thermodynamic, and adsorption studies on removal of chromium(VI) using Tulsion A-27(MP) resin. Desalin. Water Treat. 2013, 51, 3273–3283. [Google Scholar] [CrossRef]
- Chakravarty, R.; Khan, M.M.R.; Das, A.R.; Guha, A.K. Biosorptive removal of chromium by husk of Lathyrus sativus: Evaluation of the binding mechanism, kinetic and equilibrium study. Eng. Life Sci. 2013, 13, 312–322. [Google Scholar] [CrossRef]
- Wu, S.; Hu, J.; Wei, L.; Du, Y.; Shi, X.; Deng, H.; Zhang, L. Construction of porous chitosan-xylan-TiO2 hybrid with highly efficient sorption capability on heavy metals. J. Environ. Chem. Eng. 2014, 2, 1568–1577. [Google Scholar] [CrossRef]
- Salvestrini, S.; Sagliano, P.; Iovino, P.; Capasso, S.; Colella, C. Atrazine adsorption by acid-activated zeolite-rich tuffs. Appl. Clay Sci. 2010, 49, 330–335. [Google Scholar] [CrossRef]
- González, P.S.; Ambrosio, L.F.; Paisio, C.E.; Talano, M.A.; Medina, M.I.; Agostini, E. Chromium (VI) remediation by a native strain: Effect of environmental conditions and removal mechanisms involved. Environ. Sci. Pollut. Res. 2014, 21, 13551–13559. [Google Scholar] [CrossRef]
- Khitous, M.; Salem, Z.; Halliche, D. Effect of interlayer anions on chromium removal using Mg-Al layered double hydroxides: Kinetic, equilibrium and thermodynamic studies. Chin. J. Chem. Eng. 2016, 24, 433–445. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Yakout, A.A.; Abdel-Aal, H.; Osman, M.M. Speciation and selective biosorption of Cr(III) and Cr(VI) using nanosilica immobilized-fungi biosorbents. J. Environ. Eng. 2015, 141. [Google Scholar] [CrossRef]
- Do Vale, M.S.; do Nascimento, R.F.; Leitão, R.C.; Santaella, S.T. Cr and Zn biosorption by Aspergillus niger. Environ. Earth Sci. 2016, 75. [Google Scholar] [CrossRef]
- Hans, R.; Senanayake, G.; Dharmasiri, L.C.S.; Mathes, J.A.P.; Kim, D.J. A preliminary batch study of sorption kinetics of Cr(VI) ions from aqueous solutions by a magnetic ion exchange (MIEX®) resin and determination of film/pore diffusivity. Hydrometallurgy 2016, 164, 208–218. [Google Scholar] [CrossRef]
- Bibi, I.; Niazi, N.K.; Choppala, G.; Burton, E.D. Chromium(VI) removal by siderite (FeCO3) in anoxic aqueous solutions: An X-ray absorption spectroscopy investigation. Sci. Total Environ. 2018, 640–641, 1424–1431. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, G.; Li, X.; Zhao, Q.; Bi, X.; Wu, K.; Chen, H. Effects of hydrogen-peroxide supply rate on schwertmannite microstructure and chromium(VI) adsorption performance. J. Hazard. Mater. 2019, 367, 520–528. [Google Scholar] [CrossRef]
- Zhang, S.; Lyu, H.; Tang, J.; Song, B.; Zhen, M.; Liu, X. A novel biochar supported CMC stabilized nano zero-valent iron composite for hexavalent chromium removal from water. Chemosphere 2019, 217, 686–694. [Google Scholar] [CrossRef] [PubMed]
- Erto, A.; Andreozzi, R.; Di Natale, F.; Lancia, A.; Musmarra, D. Experimental and isotherm-models analysis on TCE and PCE adsorption onto activated carbon. Chem. Eng. Trans. 2009, 17, 293–298. [Google Scholar] [CrossRef]
- Di Natale, F.; Lancia, A.; Molino, A.; Musmarra, D. Removal of chromium ions form aqueous solutions by adsorption on activated carbon and char. J. Hazard. Mater. 2007, 145, 381–390. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Salvestrini, S. Analysis of the Langmuir rate equation in its differential and integrated form for adsorption processes and a comparison with the pseudo first and pseudo second order models. React. Kinet. Mech. Catal. 2018, 123, 455–472. [Google Scholar] [CrossRef]
- Salvestrini, S. A modification of the Langmuir rate equation for diffusion-controlled adsorption kinetics. React. Kinet. Mech. Catal. 2019, 128, 571–586. [Google Scholar] [CrossRef]
- Freundlich, H. Über die Adsorption in Lösungen. Z. Phys. Chem. 2017, 57, 385–470. [Google Scholar] [CrossRef]
- Paul, M.L.; Samuel, J.; Chandrasekaran, N.; Mukherjee, A. Comparative kinetics, equilibrium, thermodynamic and mechanistic studies on biosorption of hexavalent chromium by live and heat killed biomass of Acinetobacter junii VITSUKMW2, an indigenous chromite mine isolate. Chem. Eng. J. 2012, 187, 104–113. [Google Scholar] [CrossRef]
- Jain, M.; Yadav, M.; Kohout, T.; Lahtinen, M.; Garg, V.K.; Sillanpää, M. Development of iron oxide/activated carbon nanoparticle composite for the removal of Cr(VI), Cu(II) and Cd(II) ions from aqueous solution. Water Resour. Ind. 2018, 20, 54–74. [Google Scholar] [CrossRef]
- Kim, E.J.; Park, S.; Hong, H.J.; Choi, Y.E.; Yang, J.W. Biosorption of chromium (Cr(III)/Cr(VI)) on the residual microalga Nannochloris oculata after lipid extraction for biodiesel production. Bioresour. Technol. 2011, 102, 11155–11160. [Google Scholar] [CrossRef]
- Albadarin, A.B.; Mangwandi, C.; Al-Muhtaseb, A.H.; Walker, G.M.; Allen, S.J.; Ahmad, M.N.M. Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent. Chem. Eng. J. 2012, 179, 193–202. [Google Scholar] [CrossRef]
- Sirusbakht, S.; Vafajoo, L.; Soltani, S.; Habibi, S. Sawdust bio sorption of chromium (VI) ions from aqueous solutions. Chem. Eng. Trans. 2018, 70, 1147–1152. [Google Scholar] [CrossRef]
- Liu, L.; Yang, Z.; Zhao, L.; Liu, J.; Liu, X.; Xue, J.; Tang, A. Removal performance and mechanism of poly(N1,N1,N3,N3-tetraallylpropane-1,3-diaminium chloride) toward Cr(VI). Environ. Technol. 2020, 41, 2450–2463. [Google Scholar] [CrossRef] [PubMed]
- Anandaraj, B.; Eswaramoorthi, S.; Rajesh, T.P.; Aravind, J.; Suresh Babu, P. Chromium(VI) adsorption by Codium tomentosum: Evidence for adsorption by porous media from sigmoidal dose–response curve. Int. J. Environ. Sci. Technol. 2018, 15, 2595–2606. [Google Scholar] [CrossRef]
- Sutkowy, M.; Klosowski, G. Use of the coenobial green algae Pseudopediastrum boryanum (Chlorophyceae) to remove hexavalent chromium from contaminated aquatic ecosystems and industrialwastewaters. Water 2018, 10, 712. [Google Scholar] [CrossRef] [Green Version]
- Jemima, W.S.; Magesan, P.; Chiranjeevi, P.; Umapathy, M.J. Sorption Properties of Organo Modified Montmorillonite Clay for the Reclamation of Chromium (VI) from Waste Water. Silicon 2019, 11, 925–933. [Google Scholar] [CrossRef]
- Shariati, S.; Khabazipour, M.; Safa, F. Synthesis and application of amine functionalized silica mesoporous magnetite nanoparticles for removal of chromium(VI) from aqueous solutions. J. Porous Mater. 2017, 24, 129–139. [Google Scholar] [CrossRef]
- Kumar, R.; Kim, S.J.; Kim, K.H.; Lee, S.H.; Park, H.S.; Jeon, B.H. Removal of hazardous hexavalent chromium from aqueous phase using zirconium oxide-immobilized alginate beads. Appl. Geochem. 2018, 88, 113–121. [Google Scholar] [CrossRef]
- Prabhu, S.G.; Srinikethan, G.; Hegde, S. Spontaneous Cr(VI) and Cd(II) biosorption potential of native pinnae tissue of Pteris vittata L., a tropical invasive pteridophyte. Int. J. Phytoremediat. 2019, 21, 380–390. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.F.; Liu, C.; Ma, Y.; Wang, S.G.; Gao, B.Y.; Li, X.M. Enhanced Cu(II) and Cr(VI) biosorption capacity on poly(ethylenimine) grafted aerobic granular sludge. Colloids Surf. B Biointerfaces 2011, 82, 456–462. [Google Scholar] [CrossRef]
- Sips, R. On the structure of a catalyst surface. II. J. Chem. Phys. 1950, 18, 1024–1026. [Google Scholar] [CrossRef]
- Setshedi, K.Z.; Bhaumik, M.; Onyango, M.S.; Maity, A. High-performance towards Cr(VI) removal using multi-active sites of polypyrrole-graphene oxide nanocomposites: Batch and column studies. Chem. Eng. J. 2015, 262, 921–931. [Google Scholar] [CrossRef]
- Dragan, E.S.; Humelnicu, D.; Dinu, M.V.; Olariu, R.I. Kinetics, equilibrium modeling, and thermodynamics on removal of Cr(VI) ions from aqueous solution using novel composites with strong base anion exchanger microspheres embedded into chitosan/poly(vinyl amine) cryogels. Chem. Eng. J. 2017, 330, 675–691. [Google Scholar] [CrossRef]
- Karthik, R.; Meenakshi, S. Facile synthesis of cross linked-chitosan-grafted-polyaniline composite and its Cr(VI) uptake studies. Int. J. Biol. Macromol. 2014, 67, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Dudek, B.; Kuśtrowski, P.; Bialas, A.; Natkanśki, P.; Piwowarska, Z.; Chmielarz, L.; Kozak, M.; Michalik, M. Influence of textural and structural properties of Mg Al and Mg Zn Al containing hydrotalcite derived oxides on Cr(VI) adsorption capacity. Mater. Chem. Phys. 2012, 132, 929–936. [Google Scholar] [CrossRef]
- Lv, G.; Li, Z.; Jiang, W.T.; Ackley, C.; Fenske, N.; Demarco, N. Removal of Cr(VI) from water using Fe(II)-modified natural zeolite. Chem. Eng. Res. Des. 2014, 92, 384–390. [Google Scholar] [CrossRef]
- Mikhaylov, V.I.; Maslennikova, T.P.; Ugolkov, V.L.; Krivoshapkin, P.V. Hydrothermal synthesis, characterization and sorption properties of Al/Fe oxide-oxyhydroxide composite powders. Adv. Powder Technol. 2016, 27, 756–764. [Google Scholar] [CrossRef]
- Song, W.; Gao, B.; Zhang, T.; Xu, X.; Huang, X.; Yu, H.; Yue, Q. High-capacity adsorption of dissolved hexavalent chromium using amine-functionalized magnetic corn stalk composites. Bioresour. Technol. 2015, 190, 550–557. [Google Scholar] [CrossRef]
- Sreenivas, K.M.; Inarkar, M.B.; Gokhale, S.V.; Lele, S.S. Re-utilization of ash gourd (Benincasa hispida) peel waste for chromium (VI) biosorption: Equilibrium and column studies. J. Environ. Chem. Eng. 2014, 2, 455–462. [Google Scholar] [CrossRef]
- Wassie, A.B.; Srivastava, V.C. Teff straw characterization and utilization for chromium removal from wastewater: Kinetics, isotherm and thermodynamic modelling. J. Environ. Chem. Eng. 2016, 4, 1117–1125. [Google Scholar] [CrossRef]
- Arcos-Casarrubias, J.A.; Cruz-Díaz, M.R.; Cardoso-Martínez, J.; Vázquez-Arenas, J.; Caballero-Domínguez, F.V. Chromium adsorption into a macroporous resin based on vinylpyridine–divinylbenzene copolymers: Thermodynamics, kinetics, and process dynamic in a fixed bed column. Adsorption 2018, 24, 105–120. [Google Scholar] [CrossRef]
- Badruddoza, A.Z.M.; Bhattarai, B.; Suri, R.P.S. Environmentally Friendly β-Cyclodextrin-Ionic Liquid Polyurethane-Modified Magnetic Sorbent for the Removal of PFOA, PFOS, and Cr(VI) from Water. ACS Sustain. Chem. Eng. 2017, 5, 9223–9232. [Google Scholar] [CrossRef]
- Muthusamy, S.; Venkatachalam, S.; Jeevamani, P.M.K.; Rajarathinam, N. Biosorption of Cr(VI) and Zn(II) ions from aqueous solution onto the solid biodiesel waste residue: Mechanistic, kinetic and thermodynamic studies. Environ. Sci. Pollut. Res. 2014, 21, 593–608. [Google Scholar] [CrossRef]
- Olguín, M.T.; López-González, H.; Serrano-Gómez, J. Hexavalent chromium removal from aqueous solutions by Fe-modified peanut husk. Water. Air. Soil Pollut. 2013, 224. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Banerjee, P.; Mallick, K.; Ghosh, S.; Majumdar, S.; Mukhopadhyay, A.; Bandyopadhyay, S. Potential of biosorbent developed from fruit peel of Trewia nudiflora for removal of hexavalent chromium from synthetic and industrial effluent: Analyzing phytotoxicity in germinating Vigna seeds. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng. 2013, 48, 706–719. [Google Scholar] [CrossRef]
- Rapti, S.; Sarma, D.; Diamantis, S.A.; Skliri, E.; Armatas, G.S.; Tsipis, A.C.; Hassan, Y.S.; Alkordi, M.; Malliakas, C.D.; Kanatzidis, M.G.; et al. All in one porous material: Exceptional sorption and selective sensing of hexavalent chromium by using a Zr4+ MOF. J. Mater. Chem. A 2017, 5, 14707–14719. [Google Scholar] [CrossRef]
- Serrano-Gómez, J.; Olguín, M.T. Separation of Cr(VI) from aqueous solutions by adsorption on the microfungus Ustilago maydis. Int. J. Environ. Sci. Technol. 2015, 12, 2559–2566. [Google Scholar] [CrossRef] [Green Version]
- Shokati Poursani, A.; Nilchi, A.; Hassani, A.H.; Shariat, M.; Nouri, J. A novel method for synthesis of nano-γ-Al2O3: Study of adsorption behavior of chromium, nickel, cadmium and lead ions. Int. J. Environ. Sci. Technol. 2015, 12, 2003–2014. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Du, N.; Li, H.; Song, S.; Hou, W. Sorbent effect on the sorption of Cr(VI) on a Mg6AlFe-layered double hydroxide and its calcined product in aqueous solutions. Colloid Polym. Sci. 2015, 293, 1961–1969. [Google Scholar] [CrossRef]
- Baby, R.; Saifullah, B.; Hussein, M.Z. Palm Kernel Shell as an effective adsorbent for the treatment of heavy metal contaminated water. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.; Tian, X.; Wang, Z.; Guan, Z.; Li, X.; Qiao, H.; Ke, H.; Luo, L.; Wei, Q. Multifunctional adsorbent based on metal-organic framework modified bacterial cellulose/chitosan composite aerogel for high efficient removal of heavy metal ion and organic pollutant. Chem. Eng. J. 2020, 383. [Google Scholar] [CrossRef]
- Abukhadra, M.R.; Bakry, B.M.; Adlii, A.; Yakout, S.M.; El-Zaidy, M.A. Facile conversion of kaolinite into clay nanotubes (KNTs) of enhanced adsorption properties for toxic heavy metals (Zn2+, Cd2+, Pb2+, and Cr6+) from water. J. Hazard. Mater. 2019, 374, 296–308. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Cui, J.; Xu, X.; Sun, B.; Zhang, L.; Dong, W.; Chen, C.; Sun, D. Bacterial cellulose/attapulgite magnetic composites as an efficient adsorbent for heavy metal ions and dye treatment. Carbohydr. Polym. 2020, 229. [Google Scholar] [CrossRef]
- Atkins, P.; de Paula, J.; Keeler, J. Atkins’ Physical Chemistry; OUP Oxford: Oxford, UK, 2017; ISBN 978-0198769866. [Google Scholar]
- Fenti, A.; Iovino, P.; Salvestrini, S. Some remarks on “A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption”. J. Mol. Liq. 2019, 276, 529–530. [Google Scholar] [CrossRef]
- Khan, A.A.; Singh, R.P. Adsorption thermodynamics of carbofuran on Sn (IV) arsenosilicate in H+, Na+ and Ca2+ forms. Colloids Surf. 1987, 24, 33–42. [Google Scholar] [CrossRef]
- Chianese, S.; Fenti, A.; Iovino, P.; Musmarra, D.; Salvestrini, S. Sorption of organic pollutants by humic acids: A review. Molecules 2020, 25, 918. [Google Scholar] [CrossRef] [Green Version]
- Salvestrini, S.; Leone, V.; Iovino, P.; Canzano, S.; Capasso, S. Considerations about the correct evaluation of sorption thermodynamic parameters from equilibrium isotherms. J. Chem. Thermodyn. 2014, 68, 310–316. [Google Scholar] [CrossRef]
- Salvestrini, S.; Fenti, A.; Chianese, S.; Iovino, P.; Musmarra, D. Diclofenac sorption from synthetic water: Kinetic and thermodynamic analysis. J. Environ. Chem. Eng. 2020, 8, 104105. [Google Scholar] [CrossRef]
- Canzano, S.; Iovino, P.; Salvestrini, S.; Capasso, S. Comment on “Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: Equilibrium, thermodynamic, kinetics, mechanism and process design”. Water Res. 2012, 46, 4314–4315. [Google Scholar] [CrossRef]
- Lagergren, S.K. About the theory of so-called adsorption of soluble substances, Kungliga Svenska Vetenskapsakademiens. Handl. Band 1898, 24, 1. [Google Scholar]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Canzano, S.; Iovino, P.; Leone, V.; Salvestrini, S.; Capasso, S. Use and misuse of sorption kinetic data: A common mistake that should be avoided. Adsorpt. Sci. Technol. 2012, 30, 217–225. [Google Scholar] [CrossRef]
- Weber, W. Kinetics of Adsorption on Carbon from Solution. J. Sanit. Eng. Div. 1963, 89, 31–60. [Google Scholar]
- Low, M.J.D. Kinetics of chemisorption of gases on solids. Chem. Rev. 1960, 60, 267–312. [Google Scholar] [CrossRef]
- Lente, G. Deterministic Kinetics in Chemistry and Systems Biology: The Dynamics of Complex Reaction Networks; Springer Briefs in Molecular Science; Springer International Publishing: Cham, Switzerland, 2015; ISBN 3319154826. [Google Scholar]
- Chien, S.H.; Clayton, W.R. Application of Elovich Equation to the Kinetics of Phosphate Release and Sorption in Soils. Soil Sci. Soc. Am. J. 1980, 44, 265–268. [Google Scholar] [CrossRef]
Sorbent Type | qm (mmol g−1) | KL (L mmol−1) | qm KL (L g−1) | KF (mmol1−N LN g−1) | N | T (°C) | ∆H° (kJ mol−1) | ∆S° (J K−1 mol−1)° | ∆G° (kJ mol−1) | pH | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
Magnetic ion exchange resin | 1.781 | 181 | 322.4 | / | / | 25 | / | / | / | 4 | [38] |
Zero-valent iron-carboxymethyl cellulose | 2.163 | 16.59 | 35.88 | 1.856 | 0.230 | 25 | / | / | / | 5.6 | [41] |
Siderite | / | / | / | 1.408 | 0.130 | 20 | / | / | / | 5 | [39] |
Zirconium oxide-alginate beads | 0.200 | 1.633 | 0.327 | 0.109 | 0.466 | 25 | 21.224 | 163 | −27.430 | 5 | [58] |
Mg–Al hydrotalcite | 1.383 | 22.26 | 30.79 | 1.723 | 0.40 | Room | / | / | / | 6 | [35] |
Anion exchanger chitosan/poly(vinyl amine) | 6.114 | 0.974 | 5.955 | 2.673 | 0.345 | 25 | 61.11 | 219 | −4.18 | 5.5 | [63] |
Cross linked-chitosan-polyaniline | 3.446 | 5.928 | 20.43 | 2.943 | 0.227 | 30 | 13.46 | 10 | −9.18 | 4.2 | [64] |
Mg-Zn-Al hydrotalcite derived oxides | 0.961 * | / | / | / | / | 30 | / | / | / | 6 | [65] |
Fe (II)-modified natural zeolite | 5.769 × 10−3 * | / | / | / | / | Room | / | / | / | 5.5 | [66] |
Anion-exchange resins | 3.005 | 81.19 | 244.0 | 3.084 | 0.151 | 27 | 0.016 | 39.88 | −4.498 | 5 | [20] |
MnO2 | 0.016 * | / | / | / | / | 20 | −22.52 | −50.40 | −8.08 | 6.9 | [24] |
Schwert- mannite | 1.890 | 3.04 | 5.746 | 0.97 | 0.313 | 25 | / | / | / | 6 | [40] |
Iron/carbon Fe/C composites | 0.981 | 5.782 | 5.672 | 0.998 | 0.483 | Room | / | / | / | 5 | [27] |
Cereal by-product carbon | 2.300 * | / | / | / | / | 20 | 0.7142 | −94.8 | 28.479 | 6 | [4] |
Calcinated Al/Fe oxide–oxyhydroxide | 0.074 | 123.4 | 9.132 | 0.0837 | 0.104 | Room | / | / | / | 6.7 | [67] |
Polyethylenimine grafted sludge | 7.721 | 4.16 | 32.12 | 2.241 | 0.48 | 25 | / | / | / | 5.5 | [60] |
Nannochloris oculata | 0.725 | 0.530 | 0.384 | 0.215 | 0.67 | / | / | / | / | 2 | [50] |
Amine-functionalized corn stalk | 4.370 | 10.92 | 47.72 | 3.474 | 0.128 | 45 | 96.79 | 30 | −7.16 | 3 | [68] |
Dolomite | 0.192 | 14.14 | 2.715 | 0.203 | 0.304 | 20 | −13.21 | −22.47 | −6.617 | 2 | [51] |
Acinetobacter junii VITSUKMW2 | 0.436 | 115.5 | 50.36 | 0.0506 | 0.389 | 27 | −3.764 | 0.018 | −1.989 | 2 | [48] |
Polypyrrole graphene oxide | 12.030 | 104 | 1251 | 11.68 | 0.029 | 25 | 78.417 | 282.67 | −7.287 | 2 | [62] |
Al/Fe oxide–oxyhydroxide | 0.070 | 54.6 | 3.82 | 0.103 | 0.26 | / | / | / | / | 5.4 | [8] |
Sargassum bevanom | 0.763 | 1158.8 | 884.2 | 0.484 | 0.342 | 20 | 28.656 | 115 | −5.256 | 3 | [19] |
Iron oxide-activated carbon | 0.155 | 8.84 | 1.370 | 0.119 | 0.37 | 25 | 49.906 | 168.3 | −0.293.3 | 2 | [49] |
Ash gourd (Benincasa hispida) waste | 0.360 * | / | / | 0.472 | 0.25 | 28 | / | / | / | 1 | [69] |
Chitosan–xylan–TiO2 | 1.867 | 1.217 | 2.272 | 0.904 | 0.50 | 45 | 4.44 | 35.98 | −7.00 | 7 | [32] |
Teff straw | 1.656 | 86.30 | 142.9 | 2.166 | 0.277 | 45 | 34.25 | 150.07 | −13.468 | 2 | [70] |
Sawdust | 0.870 | 47.32 | 41.17 | 12.24 | 0.813 | 40 | 34.67 | 124.1 | −4.2140 | 3 | [52] |
Codium tomentosum | 0.105 | 11.44 | 1.201 | 0.228 | 0.622 | 20 | / | / | / | 2 | [54] |
Vinylpyridine divinylbenzene | 4.130 | 2.777 | 11.47 | / | / | 25 | / | / | / | 2 | [71] |
β-Cyclodextrin-polyurethane | 0.045 | 52 | 2.34 | 9.739 | 0.25 | 25 | / | / | / | 3 | [72] |
Husk of Lathyrus sativus | 0.940 | 4.493 | 4.223 | 0.214 | 0.073 | 30 | / | / | / | 2 | [31] |
Organoclay | 0.045 | 38.06 | 1.713 | 0.698 | 0.885 | 25 | / | / | / | 2 | [56] |
Resin Tulsion A-27 | 1.620 | 0.370 | 0.599 | 2.64 | 0.144 | 50 | −9.9 | 10.2 | −13.2 | 5.5 | [30] |
Nanosilica-immobilized fungi | 10.120 | 0.0267 | 0.270 | 0.804 | 0.442 | 25 | / | / | / | 2 | [36] |
Solid biodiesel waste residue | 2.530 | 0.936 | 2.368 | 1.119 | 0.431 | 30 | −9.34 | −23.27 | −2.040 | 2 | [73] |
Fe-modified peanut husk | 0.637 | 0.52 | 0.331 | 0.199 | 0.557 | 30 | −9087 | −32.488 | 753.94 | 2 | [74] |
Pediastrum boryanum | 0.585 | 11.08 | 6.482 | 0.456 | 0.254 | 25 | 44.5 | 251 | −17.4 | 2 | [26] |
Trewia nudiflora | 5.656 | 11.08 | 62.67 | 4.917 | 0.273 | 30 | 20.11 | 110 | −13.22 | 2 | [75] |
Metal organic resin-2 | 3.725 | 3.64 | 13.56 | / | / | / | / | / | / | 3 | [76] |
Polytetraallylpropane diaminium | 5.253 | 21.48 | 112.8 | 0.357 | 0.297 | 20 | −7.042 | 52.401 | −22.395 | 6 | [53] |
Polyelectrolytic hydrogels | 0.790 | 2.132 | 1.684 | 0.612 | 0.322 | 30 | / | / | / | 6 | [1] |
Amine-magnetite nanoparticles | 4.079 | 16.33 | 66.61 | 0.149 | 0.488 | 25 | 137.1 | 26.91 | −3.28 | 3 | [2] |
L-Cysteine magnetite | 0.663 | 215.3 | 142.7 | 2.512 | 0.293 | 45 | 73.31 | 280 | −14.7 | 2 | [10] |
Ustilago maydis | 2.530 | 0.300 | 0.759 | 2.4 × 10−2 | 0.52 | 20 | −9745 | −38.685 | 856.54 | 2 | [77] |
Amine silica magnetite | 3.561 | / | / | / | / | Room | / | / | / | 2 | [57] |
Nano- γ -Al2O3 | 0.267 | 101.4 | 27.07 | 0.318 | 0.161 | 25 | / | / | / | 3 | [78] |
Pteris vittata L. | 3.206 | 1.56 | 5.001 | 1.179 | 0.27 | 30 | 21.0 | 200 | −26.5 | 2 | [59] |
Chitosan magnetite | 3.846 | 1.3 | 5.000 | 1.743 | 0.854 | 30 | 25.72 | 182 | −29.4 | 3 | [7] |
Aspergillus niger | 0.097 | 1142.3 | 110.8 | 2.14 × 10−3 | 0.666 | 28 | / | / | / | 2.5 | [37] |
Mg6AlFe-double hydroxide | 3.385 | 0.0952 | 0.322 | 0.489 | 0.495 | 25 | / | / | / | 5 | [79] |
Alum-water treatment sludge | 0.220 | 1.12 | 0.246 | 0.011 | 0.44 | 25 | / | / | / | 3 | [18] |
Palm kernel shell | 0.955 | 113.7 | 108.6 | 0.0958 | 0.62 | Room | / | / | / | 6 | [80] |
Bacterial cellulose/ chitosan | 2.925 * | / | / | / | / | 25 | / | / | / | 6 | [81] |
Kaolinite nanotubes | 4.579 | 0.143 | 0.655 | 0.0536 | 0.89 | 30 | / | / | / | 2 | [82] |
Bacterial cellulose/attapulgite | 1.750 | 2.205 | 3.859 | 0.526 | 0.45 | 25 | / | / | / | 6 | [83] |
Char derived from South African coal | 0.006 | 7.323 | 0.044 | 0.0096 | 0.665 | / | / | / | 2 | [43] | |
Granular activated carbon | 0.138 | 15.334 | 2.116 | 0.2433 | 0.611 | / | / | / | 7.5 | [43] |
PFO Model | PSO Model | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sorbent Type | C0 (mmol L−1) | Sorbent Dosage (g L−1) | qe (mmol g−1) | kPFO (h−1) | v0(PFO) (mmol g−1 h−1) | qe (mmol g−1) | kPSO (g mmol−1 h−1) | v0(PSO) (mmol g−1 h−1) | T (°C) | pH | Ref. |
Magnetic ion exchange resin | 1.00 | 1 | 0.77 | 9.6 | 7.392 | 0.81 | 29.4 | 19.29 | 25 | 4 | [38] |
Zero-valent iron-carboxymethyl cellulose | 1.92 | 0.75 | 1.648 | 0.78 | 1.285 | 1.629 | 0.822 | 2.181 | 25 | 5.6 | [41] |
Zirconium oxide-alginate beads | 0.365 | 2.5 | 0.0409 | 0.0624 | 2.552 × 10−3 | 0.0388 | 3.156 | 4.751 × 10−3 | 25 | 5 | [58] |
Mg–Al hydrotalcite | 3.85 | 2 | 1.471 | 9.9 | 14.56 | 1.468 | 9.36 | 20.17 | Room | 6 | [35] |
Anion exchanger chitosan/poly(vinyl amine) | 1.92 | 1.25 | 1.482 | 1.112 | 1.648 | 1.595 | 1.091 | 2.775 | 25 | 5.5 | [63] |
Cross linked-chitosan-polyaniline | 7.69 | 2 | / | 10.44 | 3.293 | 12.43 | 134.8 | 30 | 4.2 | [64] | |
Mg-Zn-Al hydrotalcite derived oxides | 0.192 | 5 | 0.886 | 2.1 | 1.861 | 1.147 | 1.751 | 2.304 | 30 | 6 | [65] |
Fe (II)-modified natural zeolite | 2.88 | 200 | / | / | / | 0.0157 | 700 | 0.0173 | Room | 5.5 | [66] |
Anion-exchange resins | 1.92 | 1.67 | 0.0577 | 3.624 | 0.209 | / | / | / | 27 | 5 | [20] |
MnO2 | 0.04 | 2 | 8.07 × 10−3 | 3.72 | 0.0300 | 0.0102 | 5678.4 | 0.591 | 20 | 6.9 | [24] |
Iron/carbon Fe/C composites | 1.92 | 1 | 0.628 | 0.0074 | 4.647 × 10−3 | 0.836 | 0.0392 | 0.0328 | Room | 5 | [27] |
Cereal by-product carbon | 2.54 | 2 | 8.358 × 10−3 | 0.120 | 1.00 × 10−3 | 0.149 | 13.55 × 105 | 30.08 × 104 | 20 | 6 | [4] |
Amine-functionalized corn stalk | 3.85 | 1 | 2142.4 | 0.462 | 989.8 | 3.698 | 134.16 | 1834.7 | 45 | 3 | [68] |
Dolomite | 0.961 | 1 | 0.194 | 0.0452 | 8.769 × 10−3 | 0.249 | 0.179 | 0.011 | 20 | 2 | [51] |
Acinetobacter junii VITSUKMW2 | 1.92 | 2 | 0.202 | 1.08 | 0.218 | 0.492 | 12.48 | 3.021 | 27 | 2 | [48] |
Polypyrrole graphene oxide | 1.92 | 0.5 | 5.215 | 2.136 | 11.14 | 3.846 | 6.24 | 92.30 | 25 | 2 | [62] |
Sargassum bevanom | 1.92 | 7 | / | / | / | 0.274 | 16.91 | 1.269 | 20 | 3 | [19] |
Iron oxide-activated carbon | 0.961 | 5 | 5.96 × 10−3 | 6.36 | 0.0380 | 0.0460 | 6895.2 | 14.59 | 25 | 2 | [49] |
Chitosan-xylan–TiO2 | 1.92 | 5 | 1.760 | 0.593 | 1.044 | 1.273 | 0.551 | 0.893 | 45 | 7 | [32] |
Teff straw | 1.92 | 10 | 0.137 | 1.68 | 0.230 | 0.175 | 15.6 | 0.478 | 45 | 2 | [70] |
Codium tomentosum | 10 | / | / | / | / | / | / | 20 | 2 | [54] | |
β-Cyclodextrin-polyurethane | 0.0192 | 0.2 | / | / | / | 4.638 × 10−3 | 884 | 0.0190 | 25 | 3 | [72] |
Resin Tulsion A-27 | 1.1 | 0.833 | 1.1 | 1.724 | 1.90 | / | / | / | 50 | 5.5 | [30] |
Solid biodiesel waste residue | 9.61 | 6 | 0.531 | 1.02 | 0.542 | 2.404 | 4.642 | 26.83 | 30 | 2 | [73] |
Pediastrum boryanum | 7.69 | 4 | 0.329 | 2.73 | 0.898 | 0.581 | 748.8 | 252.8 | 25 | 2 | [26] |
Trewia nudiflora | 2.15 | 0.75 | 0.433 | 1.68 | 0.727 | 2.709 | 13.01 | 95.48 | 30 | 2 | [75] |
Alum-water treatment sludge | 0.001 | 10 | 0.027 | 0.564 | 0.0152 | 0.079 | 58.02 | 0.362 | 25 | 3 | [18] |
Polytetra-allylpropane diaminium | 1.92 | 0.7 | 2.612 | 18.80 | 49.10 | 0.0521 | 16.55 | 0.0449 | 20 | 6 | [53] |
Amine-magnetite nanoparticles | 0.096 | 1 | 0.123 | 3.6 | 0.443 | 0.543 | 6.24 | 1.840 | 25 | 3 | [2] |
Ustilago maydis | 0.48 | 10 | / | / | 0.0375 | 42.74 | 0.0601 | 20 | 5.5 | [77] | |
Amine silica magnetite | 2.88 | 1.07 | 0.631 | 19.92 | 12.57 | 2.497 | 205.3 | 1280 | Room | 2 | [57] |
Nano-γ-Al2O3 | 0.38 | 3 | 0.011 | 1.2 | 0.0132 | 0.156 | 93.6 | 2.278 | 25 | 3 | [78] |
Pteris vittata L. | 1.92 | 1 | / | / | / | 1.479 | 3.12 | 6.825 | 30 | 2 | [59] |
Aspergillus niger | 0.96 | 10 | 8.32 × 10−3 | 0.054 | 4.493 × 10−4 | 8.30 × 10−3 | 17,238 | 1.187 | 28 | 2.5 | [37] |
Palm kernel shell | 0.096 | 20 | / | / | / | / | 1.2 × 10-5 | / | Room | 6 | [80] |
Bacterial cellulose/chitosan | / | / | / | / | / | / | 25 | 6 | [81] | ||
Kaolinite nanotubes | 1.92 | 0.333 | / | / | / | 1.074 | 4.802 | 5.534 | 30 | 2 | [82] |
Bacterial cellulose/attapulgite | 0.96 | 0.2 | 1.473 | 56.7 | 83.52 | 1.635 | 3.25 × 106 | 8.688 × 106 | 25 | 6 | [83] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fenti, A.; Chianese, S.; Iovino, P.; Musmarra, D.; Salvestrini, S. Cr(VI) Sorption from Aqueous Solution: A Review. Appl. Sci. 2020, 10, 6477. https://doi.org/10.3390/app10186477
Fenti A, Chianese S, Iovino P, Musmarra D, Salvestrini S. Cr(VI) Sorption from Aqueous Solution: A Review. Applied Sciences. 2020; 10(18):6477. https://doi.org/10.3390/app10186477
Chicago/Turabian StyleFenti, Angelo, Simeone Chianese, Pasquale Iovino, Dino Musmarra, and Stefano Salvestrini. 2020. "Cr(VI) Sorption from Aqueous Solution: A Review" Applied Sciences 10, no. 18: 6477. https://doi.org/10.3390/app10186477
APA StyleFenti, A., Chianese, S., Iovino, P., Musmarra, D., & Salvestrini, S. (2020). Cr(VI) Sorption from Aqueous Solution: A Review. Applied Sciences, 10(18), 6477. https://doi.org/10.3390/app10186477