Zeolite-Rich Composite Materials for Environmental Remediation: Arsenic Removal from Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Characterization
2.1.1. Mineralogical Characterization
2.1.2. Ion-Exchange Characterization
2.1.3. Functionalization of Natural Zeolite-Rich Tuffs
2.2. Ion Exchange Runs
2.2.1. Kinetics
2.2.2. Isotherms
2.3. Dynamic Runs
2.4. Modeling
2.4.1. Kinetics Modeling
2.4.2. Equilibrium Modeling
2.4.3. Dynamic Runs Modeling
3. Results and Discussion
3.1. Sample Characterization
- The AEC value of both HDTMA-Br modified samples is about equal to the ECEC values: this indicates that a double layered micelle is formed on the zeolite surface;
- On the contrary, the AEC value of both HDTMA-Cl modified samples is lower than the ECEC values: in this case, a patchy bilayer is formed on the zeolite surface.
3.2. Ion Exchange Runs
3.2.1. Preliminary Runs
3.2.2. Kinetics of the Anion Exchange
3.2.3. Thermodynamics of Anion Exchange
- Samples obtained with the use of HDTMA-Br perform better than those obtained with HDTMA-Cl: concerning the phillipsite-rich tuff, maximum exchange is of 5.2 mg g−1 for PHI-Br and 1.2 mg g−1 for PHI-Cl, while for clinoptilolite-rich tuff, maximum exchange is 7.9 mg g−1 for CLT-Br and 4.6 mg g−1 for CLT-Cl. This is once again justified by what was previously verified about the micelle formation on the zeolitic surface: if the counterion that balances the positive charge of the nitrogenous head of HDTMA+ is Br−, the micellar structure that is obtained on the zeolite surface is complete and compact (the bilayer has an anion exchange capacity, AEC, equal to its ECEC). If Cl− is the counterion, the micellar structure that is generated is like a patchy bilayer (partial micelle structure), which has obviously less exchangeable anions with respect to the previous case.
- Clinoptilolite modified samples perform better than phillipsite modified samples. This can be due to the different density of HDTMA in the micelle, that in turn depends on the Al on the surface of the zeolite: the higher (4.90) Si/Al ratio of clinoptilolite will produce a micelle sparser than that produced on the phillipsite surface (Si/Al ratio = 2.38). This allows a higher amount of complex anions such as HAsO42− and H2AsO4− to enter the micellar structure, as the micelle can better rearrange itself to accommodate them.
- The As anion can only partially exploit the surface anionic exchange capacity of both SMNZs investigated. This is a direct consequence of what was stated earlier: the uptake of a complex anion forces a rearrangement of the micellar structure, which probably displaces some exchange sites and makes them unavailable for further exchange.
3.3. Dynamic Runs
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xu, Y.H.; Nakajima, T.; Ohki, A. Adsorption and removal of arsenic(V) from drinking water by aluminum-loaded Shirasu-zeolite. J. Hazard. Mater. 2002, 92, 275–287. [Google Scholar] [CrossRef]
- Shevade, S.; Ford, R.G. Use of synthetic zeolites for arsenate removal from pollutant water. Water Res. 2004, 38, 3197–3204. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Jenisova, Z.; Feszterova, M.; Baros, S.; Liska, J.; Hudecova, D.; Rhodes, C.J.; Valko, M. Arsenic: Toxicity, oxidative stress and human disease. J. Appl. Toxicol. 2011, 31, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Smedley, P.L.; Kinniburgh, D.G. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef] [Green Version]
- Rubel, F., Jr. Design Manual: Removal of Arsenic from Drinking Water by Adsorptive Media; United States Environmental Protection Agency: Washington, DC, USA, 2003. [Google Scholar]
- Ferguson, J.F.; Gavis, J. A review of the arsenic cycle in natural waters. Water Res. 1972, 6, 1259–1274. [Google Scholar] [CrossRef]
- Ungureanu, G.; Santos, S.; Boaventura, R.; Botelho, C. Arsenic and antimony in water and wastewater: Overview of removal techniques with special reference to latest advances in adsorption. J. Environ. Manag. 2015, 151, 326–342. [Google Scholar] [CrossRef]
- Gulens, J.; Champ, D.R.; Jackson, R.E. Influence of redox environments on the mobility of arsenic in ground water. In Proceedings of the ACS Symposium Series, Chalk River, ON, CA, 25–26 April 1979. [Google Scholar]
- Li, Z. Use of surfactant-modified zeolite as fertilizer carriers to control nitrate release. Microporous Mesoporous Mater. 2003, 61, 181–188. [Google Scholar] [CrossRef]
- Ihsanullah, I.; Abbas, A.; Al-Amer, A.M.; Laoui, T.; Al-Marri, M.J.; Nasser, M.S.; Khraisheh, M.; Atieh, M.A. Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications. Sep. Purif. Technol. 2016, 157, 141–161. [Google Scholar] [CrossRef]
- Daus, B.; Wennrich, R.; Weiss, H. Sorption materials for arsenic removal from water: A comparative study. Water Res. 2004, 38, 2948–2954. [Google Scholar] [CrossRef]
- Maeda, S.; Ohki, A.; Saikoji, S.; Naka, K. Iron(lll) Hydroxide-Loaded Coral Limestone as an Adsorbent for Arsenic(lll) and Arsenic(V). Sep. Sci. Technol. 1992, 27, 681–689. [Google Scholar] [CrossRef]
- Ohki, A.; Nakayachigo, K.; Naka, K.; Maeda, S. Adsorption of inorganic and organic arsenic compounds by aluminium-loaded coral limestone. Appl. Organomet. Chem. 1996, 10, 747–752. [Google Scholar] [CrossRef]
- Xu, X.; Lin, L.; Papelis, C.; Xu, P. Sorption of arsenic from desalination concentrate onto drinking water treatment solids: Operating conditions and kinetics. Water 2018, 10, 96. [Google Scholar] [CrossRef] [Green Version]
- Kuhlmeier, P.D. Sorption and desorption of arsenic from sandy soils: Column studies. Soil Sediment Contam. 1997, 6, 21–36. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Hogland, W.; Marques, M.; Sillanpää, M. An overview of the modification methods of activated carbon for its water treatment applications. Chem. Eng. J. 2013, 219, 499–511. [Google Scholar] [CrossRef]
- Chen, W.; Parette, R.; Zou, J.; Cannon, F.S.; Dempsey, B.A. Arsenic removal by iron-modified activated carbon. Water Res. 2007, 41, 1851–1858. [Google Scholar] [CrossRef]
- Gallios, G.P.; Tolkou, A.K.; Katsoyiannis, I.A.; Stefusova, K.; Vaclavikova, M.; Deliyanni, E.A. Adsorption of arsenate by nano scaled activated carbon modified by iron and manganese oxides. Sustainability 2017, 9, 1684. [Google Scholar] [CrossRef] [Green Version]
- Camacho, L.M.; Ponnusamy, S.; Campos, I.; Davis, T.A.; Deng, S. Evaluation of Novel Modified Activated Alumina as Adsorbent for Arsenic Removal. In Handbook of Arsenic Toxicology; Academic Press: Waltham, MA, USA, 2015; ISBN 9780124199552. [Google Scholar]
- Karmacharya, M.S.; Gupta, V.K.; Tyagi, I.; Agarwal, S.; Jha, V.K. Removal of As(III) and As(V) using rubber tire derived activated carbon modified with alumina composite. J. Mol. Liq. 2016, 216, 836–844. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Y.; Bender, J.; Xu, S. Removal of Arsenate and Chromate by Lanthanum-modified Granular Ceramic Material: The Critical Role of Coating Temperature. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Pérez, J.; Toledo, L.; Campos, C.H.; Rivas, B.L.; Yañez, J.; Urbano, B.F. Organic-inorganic interpenetrated hybrids based on cationic polymer and hydrous zirconium oxide for arsenate and arsenite removal. Chem. Eng. J. 2016, 287, 744–754. [Google Scholar] [CrossRef]
- Taleb, K.; Markovski, J.; Milosavljević, M.; Marinović-Cincović, M.; Rusmirović, J.; Ristić, M.; Marinković, A. Efficient arsenic removal by cross-linked macroporous polymer impregnated with hydrous iron oxide: Material performance. Chem. Eng. J. 2015, 279, 66–78. [Google Scholar] [CrossRef]
- Wang, S.; Gao, B.; Li, Y.; Creamer, A.E.; He, F. Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent iron nanocomposite: Batch and continuous flow tests. J. Hazard. Mater. 2017, 322, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Bakshi, S.; Banik, C.; Rathke, S.J.; Laird, D.A. Arsenic sorption on zero-valent iron-biochar complexes. Water Res. 2018, 137, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Pattanayak, J.; Mondal, K.; Mathew, S.; Lalvani, S.B. A Parametric evaluation of the removal of As(V) and As(III) by carbon-based adsorbents. Carbon N.Y. 2000, 38, 589–596. [Google Scholar] [CrossRef]
- Manju, G.N.; Raji, C.; Anirudhan, T.S. Evaluation of coconut husk carbon for the removal of arsenic from water. Water Res. 1998, 32, 3062–3070. [Google Scholar] [CrossRef]
- Colella, C. Natural zeolites in environmentally friendly processes and applications. Stud. Surf. Sci. Catal. 1999, 125, 641–655. [Google Scholar]
- De Gennaro, B.; Aprea, P.; Colella, C.; Buondonno, A. Comparative ion-exchange characterization of zeolitic and clayey materials for pedotechnical applications-Part 1: Interaction with noxious cations. J. Porous Mater. 2007, 14, 349–356. [Google Scholar] [CrossRef]
- Colella, A.; de Gennaro, B.; Salvestrini, S.; Colella, C. Surface interaction of humic acids with natural and synthetic phillipsite. J. Porous Mater. 2015, 22, 501–509. [Google Scholar] [CrossRef]
- Li, Z.; Bowman, R.S. Counterion effects on the sorption of cationic surfactant and chromate on natural clinoptilolite. Environ. Sci. Technol. 1997, 31, 2407–2412. [Google Scholar] [CrossRef]
- De Gennaro, B.; Catalanotti, L.; Bowman, R.S.; Mercurio, M. Anion exchange selectivity of surfactant modified clinoptilolite-rich tuff for environmental remediation. J. Colloid Interface Sci. 2014, 430, 178–183. [Google Scholar] [CrossRef]
- Li, Z. Chromate transport through surfactant-modified zeolite columns. Gr. Water Monit. Remediat. 2006, 23, 117–124. [Google Scholar] [CrossRef]
- Li, Z.; Alessi, D.; Allen, L. Influence of Quaternary Ammonium on Sorption of Selected Metal Cations onto Clinoptilolite Zeolite. J. Environ. Qual. 2002, 31, 1106–1114. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Bowman, R.S. Regeneration of surfactant-modified zeolite after saturation with chromate and perchloroethylene. Water Res. 2001, 35, 322–326. [Google Scholar] [CrossRef]
- Li, Z.; Anghel, I.; Bowman, R.S. Oxyanion sorption by surfactant-modified zeolite. J. Dispers. Sci. Technol. 1998, 19, 843–857. [Google Scholar] [CrossRef]
- Smiljanić, D.; de Gennaro, B.; Izzo, F.; Langella, A.; Daković, A.; Germinario, C.; Rottinghaus, G.E.; Spasojević, M.; Mercurio, M. Removal of emerging contaminants from water by zeolite-rich composites: A first approach aiming at diclofenac and ketoprofen. Microporous Mesoporous Mater. 2020, 298, 110057. [Google Scholar] [CrossRef]
- De Gennaro, B.; Fenti, A.; Salvestrini, S. Adsorption of amoxicillin onto organo-modified zeolitic tuff. Adv. Sci. Lett. 2017, 23, 5944–5947. [Google Scholar] [CrossRef]
- Chutia, P.; Kato, S.; Kojima, T.; Satokawa, S. Adsorption of As(V) on surfactant-modified natural zeolites. J. Hazard. Mater. 2009, 162, 204–211. [Google Scholar] [CrossRef]
- Li, Z.; Beachner, R.; McManama, Z.; Hanlie, H. Sorption of arsenic by surfactant-modified zeolite and kaolinite. Microporous Mesoporous Mater. 2007, 105, 291–297. [Google Scholar] [CrossRef]
- Mendoza-Barrón, J.; Jacobo-Azuara, A.; Leyva-Ramos, R.; Berber-Mendoza, M.S.; Guerrero-Coronado, R.M.; Fuentes-Rubio, L.; Martínez-Rosales, J.M. Adsorption of arsenic (V) from a water solution onto a surfactant-modified zeolite. Adsorption 2011, 17, 489–496. [Google Scholar] [CrossRef]
- Cappelletti, P.; Colella, A.; Langella, A.; Mercurio, M.; Catalanotti, L.; Monetti, V.; de Gennaro, B. Use of surface modified natural zeolite (SMNZ) in pharmaceutical preparations Part 1. Mineralogical and technological characterization of some industrial zeolite-rich rocks. Microporous Mesoporous Mater. 2017, 250, 232–244. [Google Scholar] [CrossRef]
- Caputo, D.; de Gennaro, B.; Aprea, P.; Ferone, C.; Pansini, M.; Colella, C. Data processing of cation exchange equilibria in zeolites: A modified approach. Stud. Surf. Sci. Catal. 2005, 155, 129–140. [Google Scholar]
- Hinz, C. Description of sorption data with isotherm equations. Geoderma 2001, 99, 225–243. [Google Scholar] [CrossRef]
- Chen, C. Evaluation of Equilibrium Sorption Isotherm Equations. Open Chem. Eng. J. 2013, 7, 24–44. [Google Scholar] [CrossRef]
- Lin, J.; Wang, L. Comparison between linear and non-linear forms of pseudo-first-order and pseudo-second-order adsorption kinetic models for the removal of methylene blue by activated carbon. Front. Environ. Sci. Eng. China 2009, 3, 320–324. [Google Scholar] [CrossRef]
- Bowman, R.S. Applications of surfactant-modified zeolites to environmental remediation. Microporous Mesoporous Mater. 2003, 61, 43–56. [Google Scholar] [CrossRef]
- De Gennaro, B.; Catalanotti, L.; Cappelletti, P.; Langella, A.; Mercurio, M.; Serri, C.; Biondi, M.; Mayol, L. Surface modified natural zeolite as a carrier for sustained diclofenac release: A preliminary feasibility study. Colloids Surf. B Biointerfaces 2015, 130, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.S. Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics 2004, 59, 171–177. [Google Scholar]
- Ho, Y.S. Review of second-order models for adsorption systems. J. Hazard. Mater. 2006, 136, 681–689. [Google Scholar] [CrossRef] [Green Version]
- Sips, R. Combined form of Langmuir and Freundlich equations. J. Chem. Phys 1948, 16, 490–495. [Google Scholar] [CrossRef]
- Toth, J. State Equations of Solid-Gas Interface Layers. Acta Chim. Acad. Sci. Hung. 1971, 69, 311–328. [Google Scholar]
- Limousin, G.; Gaudet, J.P.; Charlet, L.; Szenknect, S.; Barthès, V.; Krimissa, M. Sorption isotherms: A review on physical bases, modeling and measurement. Appl. Geochem. 2007, 22, 249–275. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Michaels, A.S. Simplified Method of Interpreting Kinetic Data in Fixed-Bed Ion Exchange. Ind. Eng. Chem. 1952, 44, 1922–1930. [Google Scholar] [CrossRef]
- Sharififard, H.; Pepe, F.; Aprea, P.; de Gennaro, B. Chemical modification of activated carbon surface with iron functional groups for efficient separation of vanadium: Batch and column study. Res. Chem. Intermed. 2017, 43, 6553–6570. [Google Scholar] [CrossRef]
- Leyva-Ramos, R.; Jacobo-Azuara, A.; Diaz-Flores, P.E.; Guerrero-Coronado, R.M.; Mendoza-Barron, J.; Berber-Mendoza, M.S. Adsorption of chromium(VI) from an aqueous solution on a surfactant-modified zeolite. Colloids Surf. A Phys. Eng. Asp. 2008, 330, 35–41. [Google Scholar] [CrossRef]
CLI (%) | PHI (%) | |
---|---|---|
SiO2 | 69.71 | 52.15 |
Al2O3 | 11.74 | 18.56 |
Fe2O3 | 1.21 | 0.20 |
MgO | 0.31 | 0.20 |
CaO | 2.30 | 2.35 |
Na2O | 0.76 | 3.30 |
K2O | 4.41 | 7.54 |
H2O | 12.80 | 15.73 |
Sample | AEC [mg g−1] | As Uptake [mg g−1] | %AEC |
---|---|---|---|
PHI-Br | 8.62 | 4.21 | 48.86 |
PHI-Cl | 4.35 | 1.21 | 27.62 |
CLI-Br | 10.64 | 8.14 | 76.51 |
CLI-Cl | 5.32 | 4.52 | 84.97 |
Sample | Mathematical Model | Parameters | |||
---|---|---|---|---|---|
K1 (min−1) | K2 (g mg−1 min−1) | Sm (mg g−1) | R2 | ||
CLI-Br | Pseudo-first order | 0.143 | 7.7 | 0.995 | |
Pseudo-second order | 0.025 | 8.2 | 0.995 | ||
CLI-Cl | Pseudo-first order | 0.309 | 4.2 | 0.956 | |
Pseudo-second order | 0.116 | 4.4 | 0.991 | ||
PHI-Br | Pseudo-first order | 0.068 | 4.1 | 0.984 | |
Pseudo-second order | 0.018 | 4.6 | 0.981 | ||
PHI-Cl | Pseudo-first order | 0.192 | 1.2 | 0.967 | |
Pseudo-second order | 0.248 | 1.3 | 0.999 |
Samples | Mathematical Model | Parameters | |||
---|---|---|---|---|---|
K1 (L mg−1) | n | Sm (mg g−1) | R2 | ||
PHI-Br | Langmuir | 0.048 | 5.34 | 0.983 | |
Sips | 0.033 | 0.79 | 5.99 | 0.990 | |
Toth | 0.095 | 0.57 | 6.48 | 0.991 | |
PHI-Cl | Langmuir | 0.055 | 1.29 | 0.983 | |
Sips | 0.060 | 1.19 | 1.25 | 0.985 | |
Toth | 0.042 | 1.41 | 1.23 | 0.986 | |
CLI -Br | Langmuir | 0.172 | 7.86 | 0.962 | |
Sips | 0.161 | 0.79 | 8.19 | 0.972 | |
Toth | 0.275 | 0.74 | 8.22 | 0.996 | |
CLI-Cl | Langmuir | 0.058 | 4.87 | 0.982 | |
Sips | 0.058 | 1.02 | 4.84 | 0.982 | |
Toth | 0.053 | 1.09 | 4.79 | 0.983 |
Sample | MTZ, mm | M-AEC, mg g−1 | WEC, mg g−1 | AEC, mg g−1 | S | E |
---|---|---|---|---|---|---|
CLI-Br | 209.12 | 1.12 | 0.73 | 10.64 | 0.11 | 0.07 |
CLI-Cl | 234.28 | 0.95 | 0.53 | 5.32 | 0.18 | 0.10 |
PHI-Br | 161.7 | 0.79 | 0.53 | 8.62 | 0.09 | 0.06 |
PHI-Cl | 141.04 | 1.03 | 0.66 | 4.35 | 0.24 | 0.15 |
Sample | k, L/min/mg | q, mg/g | R2 |
---|---|---|---|
CLI-Br | 2.52E-04 | 1.12 | 0.94 |
CLI-Cl | 2.83E-04 | 0.94 | 0.99 |
PHI-Br | 3.78E-04 | 0.79 | 0.95 |
PHI-Cl | 5.53E-04 | 0.86 | 0.92 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Gennaro, B.; Aprea, P.; Liguori, B.; Galzerano, B.; Peluso, A.; Caputo, D. Zeolite-Rich Composite Materials for Environmental Remediation: Arsenic Removal from Water. Appl. Sci. 2020, 10, 6939. https://doi.org/10.3390/app10196939
de Gennaro B, Aprea P, Liguori B, Galzerano B, Peluso A, Caputo D. Zeolite-Rich Composite Materials for Environmental Remediation: Arsenic Removal from Water. Applied Sciences. 2020; 10(19):6939. https://doi.org/10.3390/app10196939
Chicago/Turabian Stylede Gennaro, Bruno, Paolo Aprea, Barbara Liguori, Barbara Galzerano, Antonio Peluso, and Domenico Caputo. 2020. "Zeolite-Rich Composite Materials for Environmental Remediation: Arsenic Removal from Water" Applied Sciences 10, no. 19: 6939. https://doi.org/10.3390/app10196939
APA Stylede Gennaro, B., Aprea, P., Liguori, B., Galzerano, B., Peluso, A., & Caputo, D. (2020). Zeolite-Rich Composite Materials for Environmental Remediation: Arsenic Removal from Water. Applied Sciences, 10(19), 6939. https://doi.org/10.3390/app10196939