Brain-to-Brain Neural Synchrony During Social Interactions: A Systematic Review on Hyperscanning Studies
Abstract
:Featured Application
Abstract
1. Introduction
1.1. Research Motivation
1.2. Review Objectives
2. Review Method
2.1. Inclusion and Prescreening Criteria
2.2. Eligibility Criteria
3. Results and Discussion
3.1. MEG/EEG-Based Hyperscanning Research
3.1.1. Cognition
3.1.2. Decision-Making Task
3.1.3. Motor Synchronization
3.1.4. Education
Application | Experiment Paradigm | Reference | |
---|---|---|---|
Cognition (28, 47%) | Setting | Lab (25) | [10,18,19,25,27,34,57,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,88,89,91] |
Natural (3) | [23,87,90] | ||
Orientation | Face-to-Face (11) | [10,27,34,78,79,82,84,85,86,89,90] | |
Side-by-Side (17) | [18,19,23,25,57,72,73,74,75,76,77,80,81,83,87,88,91] | ||
Group Size | n = 2 (23) | [10,18,19,25,27,34,57,72,73,74,76,77,78,79,80,81,82,83,84,85,86,89,90] | |
n > 2 (5) | [23,75,87,88,91] | ||
Decision- Making (16, 27%) | Setting | Lab (12) | [16,29,36,42,92,93,94,95,96,97,98,99] |
Natural (4) | [3,6,100,101] | ||
Orientation | Face-to-Face (9) | [3,36,42,93,94,96,99,100,101] | |
Side-by-Side (9) | [3,6,16,29,92,95,97,98,100] | ||
Group Size | n = 2 (13) | [3,6,16,29,36,42,93,95,96,97,98,99,101] | |
n > 2 (5) | [3,92,94,100,101] | ||
Motor Synchronization (14, 23%) | Setting | Lab (13) | [41,102,103,104,105,106,107,108,109,110,111,112,113] |
Natural (1) | [58] | ||
Orientation | Face-to-Face (6) | [41,68,105,108,112,113] | |
Side-by-Side (8) | [102,103,104,106,107,109,110,111] | ||
Group Size | n = 2 (14) | [41,68,102,103,104,105,106,107,108,109,110,111,112,113] | |
Education (2, 3%) | Setting | Natural (2) | [31,35] |
Orientation | Face-to-Face (2) | [31,35] | |
Group Size | n > 2 (2) | [31,35] |
3.2. NIRS/fNIRS-Based Hyperscanning Research
3.2.1. Cognition
3.2.2. Decision-Making Task
3.2.3. Motor Synchronization
3.2.4. Education
Application | Experiment Paradigm | Reference | |
---|---|---|---|
Cognition (17, 39%) | Setting | Lab (15) | [26,114,116,117,118,119,121,122,123,124,125,126,127,137] |
Natural (2) | [37,120] | ||
Orientation | Face-to-Face (9) | [26,117,119,120,123,124,126,127,149] | |
Side-by-Side (8) | [37,114,115,116,117,121,122,125] | ||
Group Size | n = 2 (14) | [26,114,116,117,118,121,122,123,124,125,126,137] | |
n > 2 (3) | [119,120,127] | ||
Decision- Making (13, 30%) | Setting | Lab (11) | [30,33,128,129,130,131,132,133,134,135,136,138] |
Natural (2) | [9,130] | ||
Orientation | Face-to-Face (8) | [30,33,130,131,132,133,135,136] | |
Side-by-Side (5) | [9,128,129,136,138] | ||
Group Size | n = 2 (11) | [9,30,33,128,129,130,131,132,133,135,138] | |
n > 2 (2) | [134,136] | ||
Motor Synchronization (12, 27%) | Setting | Lab (12) | [32,40,51,139,140,141,142,143,144,145,146,147] |
Orientation | Face-to-Face (4) | [40,140,145,147] | |
Side-by-Side (6) | [51,139,141,142,143,146] | ||
Back-to-Back (2) | [32,144] | ||
Group Size | n = 2 (11) | [32,40,51,140,141,142,143,144,145,146,147] | |
n > 2 (1) | [139] | ||
Education (2, 4%) | Setting | Lab (2) | [148,149] |
Orientation | Face-to-Face (2) | [148,149] | |
Group Size | n = 2 (1) | [149] | |
n > 2 (1) | [148] |
3.3. MRI/fMRI-Based Hyperscanning Research
3.3.1. Cognition
3.3.2. Decision-Making Task
3.3.3. Motor Synchronization
Application | Experiment Paradigm | Reference | |
---|---|---|---|
Cognition (15, 71%) | Setting | Lab (12) | [28,38,39,150,152,153,154,155,156,157,158,159] |
Natural (3) | [151,160,161] | ||
Orientation | Face-to-Face (3) | [154,156,157] | |
Side-by-Side (12) | [28,38,39,150,151,152,153,155,158,159,160,161] | ||
Group Size | n = 2 (12) | [28,38,39,150,151,152,153,155,158,159,160,161] | |
n > 2 (3) | [150,160,161] | ||
Decision- Making (4, 19%) | Setting | Lab (4) | [8,17,162,163] |
Orientation | Side-by-Side (4) | [8,17,162,163] | |
Group Size | n = 2 (4) | [8,17,162,163] | |
Motor Synchronization (2, 10%) | Setting | Lab (2) | [164,165] |
Orientation | Face-to-Face (1) | [164] | |
Side-by-Side (1) | [165] | ||
Group Size | n = 2 (2) | [164,165] |
4. Conclusions
- Various neuroimaging methods (e.g., hyper-tACS) are still required to assess the synchronization between multiple brains.
- The inter-brain synchrony study that compares social interactions between normal individuals and groups with social cognitive impairment would be able to explore research findings on the corresponding brain regions to social cognitive impairment.
- Future studies should pay more attention to more factors that may influence the anatomical and functional similarity of the two brains as well as the inter-brain synchrony.
- Simple and easily interpretable experiment paradigms are still required and need to be extended to a wide range of fields (e.g., natural settings) if this is to be a useful design of social interactive experiments to conduct hyperscanning studies.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hasson, U.; Frith, C.D. Mirroring and beyond: Coupled dynamics as a generalized framework for modelling social interactions. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redcay, E.; Dodell-feder, D.; Pearrow, M.J.; Mavros, P.L.; Gabrieli, J.D.E.; Saxe, R. Live face-to-face interaction during fMRI: A new tool for social cognitive neuroscience. Neuroimage 2010, 50, 1639–1647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Astolfi, L.; Toppi, J.; Cincotti, F.; Mattia, D.; Salinari, S.; Fallani, F.D.V.; Wilke, C.; Yuan, H.; He, B.; Babiloni, F. Methods for the EEG Hyperscanning. Simultaneous Recordings from Multiple Subjects during Social Interaction. In Proceedings of the 2011 8th International Symposium on Noninvasive Functional Source Imaging of the Brain and Heart and the 2011 8th International Conference on Bioelectromagnetism, Banff, AB, Canada, 13–16 May 2011; pp. 8–11. [Google Scholar] [CrossRef]
- Scholkmann, F.; Holper, L.; Wolf, U.; Wolf, M. A new methodical approach in neuroscience: Assessing inter-personal brain coupling using functional near-infrared imaging (fNIRI) hyperscanning. Front. Hum. Neurosci. 2013, 7, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brothers, L.; Ring, B.; Kling, A. Response of neurons in the macaque amygdala to complex social stimuli. Behav. Brain Res. 1990, 41, 199–213. [Google Scholar] [CrossRef]
- Toppi, J.; Borghini, G.; Petti, M.; He, E.J.; De Giusti, V.; He, B.; Astolfi, L.; Babiloni, F.; Giusti, V.D. Investigating cooperative behavior in ecological settings: An EEG hyperscanning study. PLoS ONE 2016, 11, e0154236. [Google Scholar] [CrossRef] [Green Version]
- Duane, T.D.; Behrendt, T. Extrasensory electroencephalographic induction between identical twins. Science 1965, 150, 367. [Google Scholar] [CrossRef] [Green Version]
- Montague, P.R.; Berns, G.S.; Cohen, J.D.; McClure, S.M.; Pagnoni, G.; Dhamala, M.; Wiest, M.C.; Karpov, I.; King, R.D.; Apple, N.; et al. Hyperscanning: Simultaneous fMRI during Linked Social Interactions. Neuroimage 2002, 1164, 1159–1164. [Google Scholar] [CrossRef]
- Cui, X.; Bryant, D.M.; Reiss, A.L. NIRS-based hyperscanning reveals increased interpersonal coherence in superior frontal cortex during cooperation. Neuroimage 2012, 59, 2430–2437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirata, M.; Ikeda, T.; Kikuchi, M.; Kimura, T.; Hiraishi, H.; Yoshimura, Y.; Asada, M. Hyperscanning MEG for understanding mother—child cerebral interactions. Front. Hum. Neurosci. 2014, 8, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hari, R.; Henriksson, L.; Malinen, S.; Parkkonen, L. Centrality of Social Interaction in Human Brain Function. Neuron 2015, 88, 181–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babiloni, F.; Astolfi, L. Social neuroscience and hyperscanning techniques: Past, present and future. Neurosci. Biobehav. Rev. 2014, 44, 76–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hari, R.; Kujala, M.V. Brain basis of human social interaction: From concepts to brain imaging. Physiol. Rev. 2009, 89, 453–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatel-goldman, J.; Congedo, M.; Phlypo, R. Joint BSS as a Natural Analysis Framework for EEG-hyperscanning. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013. [Google Scholar] [CrossRef]
- Jensen, K.M.; Borrie, S.A.; Gillam, R.B. Conversational Alignment: A Study of Neural Coherence and Speech Entrainment; All Graduate Plan B and Other Reports; Utah State University: Logan, UT, USA, 2016. [Google Scholar]
- Astolfi, L.; Toppi, J.; Borghini, G.; Vecchiato, G.; Isabella, R.; Fallani, F.D.V.; Cincotti, F.; Salinari, S.; Mattia, D.; He, B.; et al. Study of the Functional Hyperconnectivity between Couples of Pilots during Flight Simulation: An EEG Hyperscanning Study. In Proceedings of the 33rd Annual International Conference of the IEEE EMBS, Boston, MA, USA, 30 August–3 September 2011; pp. 2338–2341. [Google Scholar] [CrossRef]
- King-Casas, B.; Tomlin, D.; Anen, C.; Camerer, C.F.; Quartz, S.R.; Montague, P.R. Getting to know you: Reputation and trust in a two-person economic exchange. Science 2005, 308, 78–83. [Google Scholar] [CrossRef] [Green Version]
- Ahn, S.; Cho, H.; Kwon, M.; Kim, K.; Kwon, H.; Kim, B.S.; Chang, W.S.; Chang, J.W.; Jun, S.C. Interbrain Phase Synchronization During Turn-Taking Verbal Interaction—A Hyperscanning Study Using Simultaneous EEG/MEG. Hum. Brain Mapp. 2018, 188, 171–188. [Google Scholar] [CrossRef] [Green Version]
- Cha, K.M.; Lee, H.C. A novel qEEG measure of teamwork for human error analysis: An EEG hyperscanning study. Nucl. Eng. Technol. 2019, 51, 683–691. [Google Scholar] [CrossRef]
- Hasson, U.; Nir, Y.; Levy, I.; Fuhrmann, G.; Malach, R. Intersubject Synchronization of Cortical Activity During Natural Vision. Science 2004, 303, 1634–1640. [Google Scholar]
- Hari, R.; Himberg, T.; Nummenmaa, L.; Hämäläinen, M.; Parkkonen, L. Synchrony of brains and bodies during implicit interpersonal interaction. Trends Cogn. Sci. 2013, 17, 105–106. [Google Scholar] [CrossRef]
- Konvalinka, I.; Bauer, M.; Stahlhut, C.; Hansen, L.K.; Roepstorff, A.; Frith, C.D. Frontal alpha oscillations distinguish leaders from followers: Multivariate decoding of mutually interacting brains. Neuroimage 2014, 94, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Babiloni, C.; Buffo, P.; Vecchio, F.; Marzano, N.; Del Percio, C.; Spada, D.; Rossi, S.; Bruni, I.; Rossini, P.M.; Perani, D. Brains "in concert": Frontal oscillatory alpha rhythms and empathy in professional musicians. Neuroimage 2012, 60, 105–116. [Google Scholar] [CrossRef]
- D’Ausilio, A.; Novembre, G.; Fadiga, L.; Keller, P.E. What can music tell us about social interaction? Trends Cogn. Sci. 2015, 19, 111–114. [Google Scholar] [CrossRef]
- Lindenberger, U.; Li, S.c.; Gruber, W. Brains swinging in concert: Cortical phase synchronization while playing guitar. BMC Neurosci. 2009, 12, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, J.; Dai, B.; Peng, D.; Zhu, C.; Liu, L.; Lu, C. Neural Synchronization during Face-to-Face Communication. J. Neurosci. 2012, 32, 16064–16069. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, M.; Yamada, Y.; Ushiku, Y.; Miyauchi, E.; Yamaguchi, Y. Inter-brain synchronization during coordination of speech rhythm in human-to-human social interaction. Sci. Rep. 2013, 3, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilek, E.; Ruf, M.; Schäfer, A.; Akdeniz, C.; Calhoun, V.D.; Schmahl, C.; Demanuele, C.; Tost, H.; Kirsch, P.; Meyer-Lindenberg, A. Information flow between interacting human brains: Identification, validation, and relationship to social expertise. Proc. Natl. Acad. Sci. USA 2015, 112, 5207–5212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vico Fallani, F.; Nicosia, V.; Sinatra, R.; Astolfi, L.; Cincotti, F.; Mattia, D.; Wilke, C.; Doud, A.; Latora, V.; He, B.; et al. Defecting or Not Defecting: How to “Read” Human Behavior during Cooperative Games by EEG Measurements. PLoS ONE 2010, 5, e14187. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Mai, X.; Wang, S.; Zhu, C.; Krueger, F.; Liu, C.; Mai, X.; Wang, S.; Zhu, C.; Krueger, F.; et al. Interpersonal brain synchronization in the right temporo-parietal junction during face-to-face economic exchange. Soc. Cogn. Affect. Neurosci. Adv. Access 2015, 151, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Bevilacqua, D.; Davidesco, I.; Wan, L.; Chaloner, K.; Rowland, J.; Ding, M.; Poeppel, D.; Dikker, S. Brain-to-Brain Synchrony and Learning Outcomes Vary by Student–Teacher Dynamics: Evidence from a Real-world Classroom Electroencephalography Study. J. Cogintive Neurosci. 2018, 26, 1–11. [Google Scholar] [CrossRef]
- Zhao, Y.; Dai, R.N.; Xiao, X.; Zhang, Z.; Duan, L.; Li, Z.; Zhu, C.Z. Independent component analysis-based source-level hyperlink analysis for two-person neuroscience studies. J. Biomed. Opt. 2017, 22. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Liu, T.; Pelowski, M.; Yu, D. Gender difference in spontaneous deception: A hyperscanning study using functional near-infrared spectroscopy. Sci. Rep. 2017, 7, 7508. [Google Scholar] [CrossRef] [Green Version]
- Kinreich, S.; Djalovski, A.; Kraus, L.; Louzoun, Y.; Feldman, R. Brain-to-Brain Synchrony during Naturalistic Social Interactions. Sci. Rep. 2017, 1–12. [Google Scholar] [CrossRef]
- Dikker, S.; Wan, L.; Davidesco, I.; Bavel, J.J.V.; Ding, M.; Poeppel, D.; Dikker, S.; Wan, L.; Davidesco, I.; Kaggen, L.; et al. Brain-to-Brain Synchrony Tracks Real-World Report Brain-to-Brain Synchrony Tracks Real-World Dynamic Group Interactions in the Classroom. Curr. Biol. 2017, 27, 1375–1380. [Google Scholar] [CrossRef] [PubMed]
- Jahng, J.; Kralik, J.D.; Hwang, D.u.; Jeong, J. Neural dynamics of two players when using nonverbal cues to gauge intentions to cooperate during the Prisoner ’ s Dilemma Game. Neuroimage 2017, 157, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Vanzella, P.; Balardin, J.B.; Furucho, R.A.; Morais, G.A.Z.; Janzen, T.B.; Sammler, D.; Sato, J.R. fNIRS responses in professional violinists while playing duets: Evidence for distinct leader and follower roles at the brain level. Front. Psychol. 2019, 10, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spiegelhalder, K.; Ohlendorf, S.; Regen, W.; Feige, B.; van Elst, T.L.; Weiller, C.; Hennig, J.; Berger, M.; Tüscher, O. Interindividual synchronization of brain activity during live verbal communication. Behav. Brain Res. 2014, 258, 75–79. [Google Scholar] [CrossRef]
- Schippers, M.B.; Roebroeck, A.; Renken, R.; Nanetti, L.; Keysers, C. Mapping the information flow from one brain to another during gestural communication. Proc. Natl. Acad. Sci. USA 2010, 107, 9388–9393. [Google Scholar] [CrossRef] [Green Version]
- Holper, L.; Scholkmann, F.; Wolf, M. Between-brain connectivity during imitation measured by fNIRS. Neuroimage 2012, 63, 212–222. [Google Scholar] [CrossRef]
- Tognoli, E.; Lagarde, J.; DeGuzman, G.C.; Kelso, J.A. The phi complex as a neuromarker of human social coordination. Proc. Natl. Acad. Sci. USA 2007, 104, 8190–8195. [Google Scholar] [CrossRef] [Green Version]
- Yun, K.; Chung, D.; Jeong, J. Emotional interactions in human decision making using EEG hyperscanning. In Proceedings of the International Conference of Cognitive Science, Seoul, Korea, 27–29 July 2008; p. 4. [Google Scholar]
- Eagly, A.H.; Wood, W. Using Research Syntheses to Plan Future Research; Russell Sage Foundation: New York, NY, USA, 1994. [Google Scholar]
- Mahood, Q.; Van Eerd, D.; Irvin, E. Searching for grey literature for systematic reviews: Challenges and benefits. Res. Synth. Methods 2014, 5, 221–234. [Google Scholar] [CrossRef]
- Jahan, N.; Naveed, S.; Zeshan, M.; Tahir, M.A. How to conduct a systematic review: A narrative literature review. Cureus 2016, 8. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Pelowski, M. Clarifying the interaction types in two-person neuroscience. Front. Hum. Neurosci. 2014, 8, 1–4. [Google Scholar] [CrossRef]
- Liu, T.; Pelowski, M. A new research trend in social neuroscience: Towards an interactive-brain neuroscience. Psych J. 2014, 3, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Rettig, S. Quantum Discourse with Hyperscanning and its Potential Implications Quantum Discourse with Hyperscanning and its Potential. J. Soc. Distress Homeless 2008, 0789. [Google Scholar] [CrossRef]
- Koike, T.; Tanabe, H.C.; Sadato, N. Hyperscanning neuroimaging technique to reveal the “two-in-one” system in social interactions. Neurosci. Res. 2015, 90, 25–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acquadro, M.A.S.; Congedo, M.; Riddeer, D.D. Music Performance As an Experimental Approach to Hyperscanning Studies. Front. Hum. Neurosci. 2016, 10, 1–13. [Google Scholar] [CrossRef]
- Balconi, M.; Vanutelli, M.E. Brains in Competition: Improved Cognitive Performance and Inter-Brain Coupling by Hyperscanning Paradigm with Functional Near-Infrared Spectroscopy. Front. Behav. Neurosci. 2017, 11, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crivelli, D.; Balconi, M. Near-Infrared Spectroscopy Applied to Complex Systems and Human Hyperscanning Networking. Appl. Sci. 2017, 7, 922. [Google Scholar] [CrossRef]
- Liu, D.; Liu, S.; Liu, X.; Zhang, C.; Li, A.; Jin, C.; Chen, Y.; Wang, H.; Zhang, X. Interactive Brain Activity: Review and Progress on EEG-Based Hyperscanning in Social Interactions. Front. Psychol. 2018, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Czeszumski, A.; Eustergerling, S.; Lang, A.; Menrath, D.; Gerstenberger, M.; Schuberth, S.; Schreiber, F.; Rendon, Z.Z.; König, P. Hyperscanning: A Valid Method to Study Neural Inter-brain Underpinnings of Social Interaction. Front. Hum. Neurosci. 2020, 14, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Konvalinka, I.; Roepstorff, A. The two-brain approach: How can mutually interacting brains teach us something about social interaction? Front. Hum. Neurosci. 2012, 6, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.y.; Luan, P.; Zhang, J.; Xiang, Y.t.; Niu, H.; Yuan, Z. Concurrent mapping of brain activation from multiple subjects during social interaction by hyperscanning: A mini-review. Quant. Imaging Med. Surg. 2018, 8, 819–837. [Google Scholar] [CrossRef]
- Sebanz, N.; Knoblich, G.; Prinz, W.; Wascher, E. Twin peaks: An ERP study of action planning and control in coacting individuals. J. Cogn. Neurosci. 2006, 18, 859–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filho, E.; Bertollo, M.; Tamburro, G.; Schinaia, L.; Chatel-goldman, J.; Di Fronso, S.; Robazza, C.; Comani, S. Hyperbrain features of team mental models within a juggling paradigm: A proof of concept. PeerJ 2016, 4, 1–38. [Google Scholar] [CrossRef] [PubMed]
- Dumas, G.; Kelso, J.A.S.; Nadel, J. Tackling the social cognition paradox through multi-scale approaches. Front. Psychol. 2014, 5, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Parada, F.J.; Rossi, A. Commentary: Brain-to-Brain Synchrony Tracks Real-World Dynamic Group Interactions in the Classroom and Cognitive Neuroscience: Synchronizing Brains in the Classroom. Front. Hum. Neurosci. 2017, 11, 10–12. [Google Scholar] [CrossRef] [Green Version]
- Sänger, J.; Lindenberger, U.; Müller, V. Interactive brains, social minds. Commun. Integr. Biol. 2011, 4, 655–663. [Google Scholar] [CrossRef]
- Schoot, L.; Hagoort, P.; Segaert, K. What can we learn from a two-brain approach to verbal interaction? Neurosci. Biobehav. Rev. 2016, 68, 454–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanutelli, M.E.; Nandrino, J.l.; Balconi, M. The boundaries of cooperation: Sharing and coupling from ethology to neuroscience. Neuropsychol. Trends 2016, 83–104. [Google Scholar] [CrossRef]
- Dumas, G.; Lachat, F.; Martinerie, J.; Nadel, J.; George, N. From social behaviour to brain synchronization: Review and perspectives in hyperscanning. IRBM 2011, 32, 48–53. [Google Scholar] [CrossRef]
- Cornejo, C.; Cuadros, Z.; Morales, R.; Paredes, J. Interpersonal Coordination: Methods, Achievements, and Challenges. Front. Psychol. 2017, 8, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Yan, M.; Cerritos, C.; Khan, F. Neural mechanisms underlying interpersonal coordination: A review of hyperscanning research. Soc. Personal. Psychol. Compass 2018, 12. [Google Scholar] [CrossRef]
- Tognoli, E.; Kelso, J.A.S. The coordination dynamics of social neuromarkers. Front. Hum. Neurosci. 2015, 9, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Filho, E.; Bertollo, M.; Robazza, C.; Comani, S. The juggling paradigm: A novel social neuroscience approach to identify neuropsychophysiological markers of team mental models. Front. Psychol. 2015, 6, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009, 62, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Choi, I.; Rhiu, I.; Lee, Y.; Yun, M.H.; Nam, C.S. A systematic review of hybrid brain-computer interfaces: Taxonomy and usability perspectives. PLoS ONE 2017, 12, e0176674. [Google Scholar] [CrossRef] [Green Version]
- Powers, M.B.; Vörding, M.B.Z.V.S.; Emmelkamp, P.M.G. Acceptance and commitment therapy: A meta-analytic review. Psychother. Psychosom. 2009, 78, 73–80. [Google Scholar] [CrossRef]
- Astolfi, L.; Toppi, J.; Vogel, P.; Mattia, D.; Babiloni, F.; Ciaramidaro, A.; Siniatchkin, M. Investigating the neural basis of cooperative joint action. An EEG hyperscanning study. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 4896–4899. [Google Scholar] [CrossRef]
- Toppi, J.; Ciaramidaro, A.; Vogel, P.; Mattia, D.; Babiloni, F.B.; Astolfi, L.S. Graph Theory in Brain-to-Brain Connectivity: A Simulation Study and an Application to an EEG hyperscanning experiment. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 2211–2214. [Google Scholar] [CrossRef]
- Balconi, M.; Vanutelli, M.E. Functional EEG connectivity during competition. BMC Neurosci. 2018, 1–11. [Google Scholar] [CrossRef]
- Burgess, A.P. On the interpretation of synchronization in EEG hyperscanning studies: A cautionary note. Front. Hum. Neurosci. 2013, 7, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Tugin, S.M.; Gorin, A.A.; Kanunikov, I.E.; Shestakova, A.N. Hyperscanning of social attunement: An frn study. Psychol. J. High. Sch. Econ. 2015, 12, 48–63. [Google Scholar]
- Szymanski, C.; Pesquita, A.; Brennan, A.A.; Perdikis, D.; Enns, T.; Brick, T.R.; Müller, V.; Lindenberger, U. Teams on the same wavelength perform better: Inter-brain phase synchronization constitutes a neural substrate for social facilitation. Neuroimage 2017, 152, 425–436. [Google Scholar] [CrossRef] [Green Version]
- Lachat, F.; Hugueville, L.; Lemaréchal, J.D.; Conty, L.; George, N.; Lemarechal, J.D.; Conty, L.; George, N. Oscillatory brain correlates of live joint attention: A dual-EEG study. Front. Hum. Neurosci. 2012, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, C.; Ikeda, T.; Yoshimura, Y.; Hiraishi, H.; Takahashi, T.; Furutani, N.; Hayashi, N.; Minabe, Y.; Hirata, M.; Asada, M.; et al. Mu rhythm suppression reflects mother-child face-to-face interactions: A pilot study with simultaneous MEG recording. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez, A.; Carreiras, M.; Duñabeitia, J.A. Brain-to-brain entrainment: EEG interbrain synchronization while speaking and listening. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez, A.; Dumas, G.; Karadag, M.; Duñabeitia, J.A. Differential brain-to-brain entrainment while speaking and listening in native and foreign languages. Cortex 2019, 111, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Venturella, I.; Gatti, L.; Vanutelli, M.E.; Balconi, M. When brains dialogue by synchronized or unsynchronized languages. Hyperscanning applications to neuromanagement. Neuropsychol. Trends 2017, 21, 35–52. [Google Scholar]
- Ciaramidaro, A.; Toppi, J.; Casper, C.; Freitag, C.M.; Siniatchkin, M.; Astolfi, L. Multiple-Brain Connectivity during Third Party Punishment: An EEG Hyperscanning Study. Sci. Rep. 2018, 8, 1–13. [Google Scholar] [CrossRef]
- Zhang, D.; Lin, Y.; Jing, Y.; Feng, C.; Gu, R. The Dynamics of Belief Updating in Human Cooperation: Findings from inter-brain ERP hyperscanning. Neuroimage 2019, 198, 1–12. [Google Scholar] [CrossRef]
- Sänger, J.; Müller, V.; Lindenberger, U. Intra- and interbrain synchronization and network properties when playing guitar in duets. Front. Hum. Neurosci. 2012, 6, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Sänger, J.; Müller, V.; Lindenberger, U. Directionality in hyperbrain networks discriminates between leaders and followers in guitar duets. Front. Hum. Neurosci. 2013, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Babiloni, C.; Vecchio, F.; Infarinato, F.; Buffo, P.; Marzano, N.; Spada, D.; Rossi, S.; Bruni, I.; Rossini, P.M.; Perani, D. Simultaneous recording of electroencephalographic data in musicians playing in ensemble. Cortex 2011, 47, 1082–1090. [Google Scholar] [CrossRef]
- Greco, A.; Spada, D.; Rossi, S.; Perani, D.; Valenza, G.; Scilingo, E.P. EEG Hyperconnectivity Study on Saxophone Quartet Playing in Ensemble. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 1015–1018. [Google Scholar]
- Goldstein, P.; Weissman-fogel, I.; Dumas, G.; Shamay-tsoory, S.G. Brain-to-brain coupling during handholding is associated with pain reduction. Proc. Natl. Acad. Sci. USA 2018, 115. [Google Scholar] [CrossRef] [Green Version]
- Fenwick, P.; Di Bernardi Luft, C.; Ioannides, A.; Bhattacharya, J. Neural correlates of transmitted light experience during meditation: A pilot hyperscanning study. NeuroQuantology 2019, 17, 31–41. [Google Scholar] [CrossRef]
- Müller, V.; Säanger, J.; Lindenberger, U. Hyperbrain network properties of guitarists playing in quartet. Ann. N. Y. Acad. Sci. 2018, 1423, 198–210. [Google Scholar] [CrossRef] [Green Version]
- Babiloni, F.; Cincotti, F.; Mattia, D.; Mattiocco, M.; Vico Fallani, F.D.; Tocci, A.; Bianchi, L.; Marciani, M.G.; Astolfi, L. Hypermethods for EEG hyperscanning. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 3666–3669. [Google Scholar] [CrossRef]
- Babiloni, F.; Astolfi, L.; Cincotti, F.; Mattia, D.; Tocci, A.; Tarantino, A.; Marciani, M.G.; Salinari, S.; Gao, S.; Fallani, F.D.V.; et al. Cortical Activity and Connectivity of Human Brain during the Prisoner ’ s Dilemma: An EEG Hyperscanning Study. In Proceedings of the 29th Annual International Conference of the IEEE EMBS, Lyon, France, 22–26 August 2007; pp. 4953–4956. [Google Scholar]
- Babiloni, F.; Cincotti, F.; Mattia, D.; Fallani, F.D.V.; Tocci, A.; Bianchi, L.; Salinari, S.; Marciani, M.G.; Colosimo, A.; Astolfi, L. High Resolution EEG Hyperscanning During a Card Game. In Proceedings of the 29th Annual International Conference of the IEEE EMBS, Lyon, France, 22–26 August 2007; pp. 4957–4960. [Google Scholar]
- Astolfi, L.; Cincotti, F.; Mattia, D.; De Vico Fallani, F.; Salinari, S.; Marciani, M.; Wilke, C.; Doud, A.; Yuan, H.; He, B.; et al. Estimation of the Cortical Activity from Simultaneous Multi-subject Recordings during the Prisoner’s Dilemma. In Proceedings of the 31st Annual International Conference of the IEEE EMBS, Minneapolis, MN, USA, 3–6 September 2009; pp. 1937–1939. [Google Scholar] [CrossRef]
- Astolfi, L.; Toppi, J.; Borghini, G.; Vecchiato, G.; He, E.J.; Roy, A.; Cincotti, F.; Salinari, S.; Mattia, D.; He, B.; et al. Cortical Activity and Functional Hyperconnectivity by Simultaneous EEG Recordings from Interacting Couples of Professional Pilots. In Proceedings of the 34th Annual International Conference of the IEEE EMBS, San Diego, CA, USA, 28 August–1 September 2012; pp. 4752–4755. [Google Scholar] [CrossRef]
- Sinha, N.; Maszczyk, T.; Zhang, W.; Tan, J.; Dauwels, J.; Zhang, W.; Tan, J.; Dauwels, J. EEG hyperscanning study of inter-brain synchrony during cooperative and competitive interaction. In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 9–12 October 2016; pp. 4813–4818. [Google Scholar] [CrossRef]
- Sciaraffa, N.; Borghini, G.; Aric, P.; Flumeri, G.D.; Colosimo, A.; Bezerianos, A.; Id, N.V.T.; Babiloni, F. Brain Interaction during Cooperation: Evaluating Local Properties of Multiple-Brain Network. Brain Sci. 2017, 7, 90. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Pan, Y.; Shi, X.; Cai, Q.; Li, X.; Cheng, X. Inter-brain synchrony and cooperation context in interactive decision making. Biol. Psychol. 2018, 133, 54–62. [Google Scholar] [CrossRef]
- Astolfi, L.; Cincotti, F.; Mattia, D.; De Vico Fallani, F.; Salinari, S.; Vecchiato, G.; Toppi, J.; Wilke, C.; Doud, A.; Yuan, H.; et al. Simultaneous estimation of cortical activity during social interactions by using EEG hyperscannings. In Proceedings of the IEEE Engineering in Medicine and Biology Society (EMBC), Buenos Aires, Argentina, 31 August–4 September 2010; pp. 2814–2817. [Google Scholar] [CrossRef]
- Astolfi, L.; Toppi, J.; De Vico Fallani, F.; Vecchiato, G.; Salinari, S.; Mattia, D.; Cincotti, F.; Babiloni, F. Neuroelectrical Hyperscanning Measures Simultaneous Brain Activity in Humans. Brain Topogr. 2010, 23, 243–256. [Google Scholar] [CrossRef] [PubMed]
- Dumas, G.; Nadel, J.; Soussignan, R.; Martinerie, J.; Garnero, L. Inter-brain synchronization during social interaction. PLoS ONE 2010, 5, e12166. [Google Scholar] [CrossRef] [Green Version]
- Dumas, G.; Chavez, M.; Nadel, J.; Martinerie, J. Anatomical Connectivity Influences both Intra- and Inter- Brain Synchronizations. PLoS ONE 2012, 7, e36414. [Google Scholar] [CrossRef] [Green Version]
- Dumas, G.; Martinerie, J.; Soussignan, R.; Nadel, J. Does the brain know who is at the origin of what in an imitative interaction? Front. Hum. Neurosci. 2012, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Yun, K.; Watanabe, K.; Shimojo, S. Interpersonal body and neural synchronization as a marker of implicit social interaction. Sci. Rep. 2012, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Delaherche, E.; Dumas, G.; Nadel, J.; Chetouani, M. Automatic measure of imitation during social interaction: A behavioral and hyperscanning-EEG benchmark. Pattern Recognit. Lett. 2015, 66, 118–126. [Google Scholar] [CrossRef]
- Zhdanov, A.; Nurminen, J.; Baess, P.; Hirvenkari, L.; Jousmaki, V.; Makela, J.P.; Mandel, A.; Meronen, L.; Hari, R.; Parkkonen, L. An Internet-Based Real-Time Audiovisual Link for Dual MEG Recordings. PLoS ONE 2015, 10, e0128485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, G.; Bourguignon, M.; Parkkonen, L.; Hari, R. Neural signatures of hand kinematics in leaders vs. followers: A dual-MEG study. Neuroimage 2016, 125, 731–738. [Google Scholar] [CrossRef]
- Mu, Y.; Han, S.; Gelfand, M.J. The role of gamma interbrain synchrony in social coordination when humans face territorial threats. Soc. Cogn. Affect. Neurosci. 2017, 1614–1623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balconi, M.; Gatti, L.; Elide, M. EEG functional connectivity and brain-to-brain coupling in failing cognitive strategies. Conscious. Cogn. 2018, 60, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Balconi, M.; Vanutelli, M.E. EEG hyperscanning and behavioral synchronization during a joint action. Neuropsychol. Trends 2018, 24, 23–48. [Google Scholar] [CrossRef] [Green Version]
- Naeem, M.; Prasad, G.; Watson, D.R.; Kelso, J.A.S. Electrophysiological signatures of intentional social coordination in the 10–12 Hz range. Neuroimage 2012, 59, 1795–1803. [Google Scholar] [CrossRef]
- Naeem, M.; Prasad, G.; Watson, D.R.; Kelso, J.A.S. Functional dissociation of brain rhythms in social coordination. Clin. Neurophysiol. 2012, 123, 1789–1797. [Google Scholar] [CrossRef]
- Liu, T.; Saito, G.; Lin, C.; Saito, H. Inter-brain network underlying turn-based cooperation and competition: A hyperscanning study using near-infrared spectroscopy. Sci. Rep. 2017, 1–12. [Google Scholar] [CrossRef]
- Dommer, L.; Jäger, N.; Scholkmann, F.; Wolf, M.; Holper, L. Between-brain coherence during joint n-back task performance: A two-person functional near-infrared spectroscopy study. Behav. Brain Res. 2012, 234, 212–222. [Google Scholar] [CrossRef]
- Pan, Y.; Cheng, X.; Zhang, Z.; Li, X.; Hu, Y. Cooperation in Lovers: An fNIRS-Based Hyperscanning Study. Hum. Brain Mapp. 2017, 841, 831–841. [Google Scholar] [CrossRef]
- Reindl, V.; Gerloff, C.; Scharke, W.; Konrad, K. Brain-to-brain synchrony in parent-child dyads and the relationship with emotion regulation revealed by fNIRS-based hyperscanning. Neuroimage 2018, 178, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Branigan, H.P.; Zheng, L.; Long, Y.; Bai, X.; Li, K.; Zhao, H.; Zhou, S.; Pickering, M.J.; Lu, C. Shared neural representations of syntax during online dyadic communication. Neuroimage 2019, 198, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Chen, C.; Dai, B.; Shi, G.; Ding, G.; Liu, L.; Lu, C. Leader emergence through interpersonal neural synchronization. Proc. Natl. Acad. Sci. USA 2015, 112, 4274–4279. [Google Scholar] [CrossRef] [Green Version]
- Nozawa, T.; Sasaki, Y.; Sakaki, K.; Yokoyama, R.; Kawashima, R. Interpersonal frontopolar neural synchronization in group communication: An exploration toward fNIRS hyperscanning of natural interactions. Neuroimage 2016, 133, 484–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koide, T.; Shimada, S. Cheering Enhances Inter-Brain Synchronization Between Sensorimotor Areas of Player and Observer. Jpn Psychol. Assoc. 2018, 60, 265–275. [Google Scholar] [CrossRef]
- Balconi, M.; Fronda, G.; Vanutelli, M.E. Donate or receive? Social hyperscanning application with fNIRS. Curr. Psychol. 2019, 38, 991–1002. [Google Scholar] [CrossRef]
- Hirsch, J.; Zhang, X.; Noah, J.A.; Ono, Y. Frontal temporal and parietal systems synchronize within and across brains during live eye-to-eye contact. Neuroimage 2017, 157, 314–330. [Google Scholar] [CrossRef] [PubMed]
- Osaka, N.; Minamoto, T.; Yaoi, K.; Azuma, M.; Shimada, Y.M.; Osaka, M. How Two Brains Make One Synchronized Mind in the Inferior Frontal Cortex: fNIRS-Based Hyperscanning During Cooperative Singing. Front. Psychol. 2015, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Ding, K.; Jia, H.; Yu, D. Brain-to-brain synchronization of the expectation of cooperation behavior: A fNIRS hyperscanning study. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 546–549. [Google Scholar]
- Zhang, Y.; Meng, T.; Hou, Y.; Pan, Y.; Hu, Y. Interpersonal brain synchronization associated with working alliance during psychological counseling. Psychiatry Res. Neuroimaging 2018, 282, 103–109. [Google Scholar] [CrossRef]
- Fishburn, F.A.; Murty, V.P.; Hlutkowsky, C.O.; Caroline, E.; Bemis, L.M.; Murphy, M.E.; Huppert, T.J.; Perlman, S.B. Putting our heads together: Interpersonal neural synchronization as a biological mechanism for shared intentionality. Soc. Cogn. Affect. Neurosci. 2018, 841–849. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.; Li, X.; Hu, Y. Synchronous Brain Activity during Cooperative Exchange Depends on Gender of Partner: A fNIRS-based Hyperscanning Study. Hum. Brain Mapp. 2015, 2048, 2039–2048. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Saito, H.; Oi, M. Role of the right inferior frontal gyrus in turn-based cooperation and competition: A near-infrared spectroscopy study. Brain Cogn. 2015, 99, 17–23. [Google Scholar] [CrossRef]
- Liu, N.; Mok, C.; Witt, E.E.; Pradhan, A.H.; Chen, J.E.; Reiss, A.L. NIRS-Based Hyperscanning Reveals Inter-brain Neural Synchronization during Cooperative Jenga Game with Face-to-Face Communication. Front. Hum. Neurosci. 2016, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Baker, J.M.; Liu, N.; Cui, X.; Vrticka, P.; Saggar, M.; Hosseini, S.M.H.; Reiss, A.L. Sex differences in neural and behavioral signatures of cooperation revealed by fNIRS hyperscanning. Sci. Rep. 2016, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, T.; Pelowski, M.; Jia, H.; Yu, D. Social risky decision-making reveals gender differences in the TPJ: A hyperscanning study using functional near-infrared spectroscopy. Brain Cogn. 2017, 119, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Lu, K.; Hao, N. Cooperation makes two less-creative individuals turn into a highly-creative pair. Neuroimage 2018, 172, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.; Qiao, X.; Hao, N. Praising or keeping silent on partner’s ideas: Leading brainstorming in particular ways. Neuropsychologia 2019, 124, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, T.; Shan, Z.; Liu, J.; Yuan, D.; Li, X. Dynamic interpersonal neural synchronization underlying pain-induced cooperation in females. Hum. Brain Mapp. 2019, 40, 3222–3232. [Google Scholar] [CrossRef] [Green Version]
- Lu, K.; Hao, N. When do we fall in neural synchrony with others? Soc. Cogn. Affect. Neurosci. 2019, 14, 253–261. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Novembre, G.; Song, B.; Li, X.; Hu, Y. Interpersonal synchronization of inferior frontal cortices tracks social interactive learning of a song. Neuroimage 2018, 183, 280–290. [Google Scholar] [CrossRef]
- Liu, T.; Saito, H.; Oi, M. Obstruction increases activation in the right inferior frontal gyrus. Soc. Neurosci. 2015, 0919. [Google Scholar] [CrossRef]
- Duan, L.; Dai, R.n.; Xiao, X.; Sun, P.p.; Li, Z.; Zhu, C.Z. Cluster imaging of multi-brain networks (CIMBN): A general framework for hyperscanning and modeling a group of interacting brains. Front. Neurosci. 2015, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Funane, T.; Kiguchi, M.; Atsumori, H.; Sato, H.; Kubota, K.; Koizumi, H. Synchronous activity of two people‘s prefrontal cortices during a cooperative task measured by simultaneous near-infrared spectroscopy. J. Biomed. Opt. 2011, 16. [Google Scholar] [CrossRef] [Green Version]
- Balconi, M.; Vanutelli, M.E. Interbrains cooperation: Hyperscanning and self-perception in joint actions. J. Clin. Exp. Neuropsychol. 2017, 39, 607–620. [Google Scholar] [CrossRef] [PubMed]
- Balconi, M.; Pezard, L.; Nandrino, J.l.; Vanutelli, M.E. Two is better than one: The effects of strategic cooperation on intra- and inter-brain connectivity by fNIRS. PLoS ONE 2017, 12, e0187652. [Google Scholar] [CrossRef] [Green Version]
- Balconi, M.; Vanutelli, M.E.; Gatti, L. Functional brain connectivity when cooperation fails. Brain Cogn. 2018, 123, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Dai, R.; Liu, R.; Liu, T.; Zhang, Z.; Xiao, X.; Sun, P.; Yu, X.; Wang, D.; Zhu, C. Holistic cognitive and neural processes: A fNIRS-hyperscanning study on interpersonal sensorimotor synchronization. Soc. Cogn. Affect. Neurosci. 2018, 13, 1141–1154. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Hu, Y.; Li, X.; Pan, Y.; Cheng, X. Brain-to-brain synchronization across two persons predicts mutual prosociality. Soc. Cogn. Affect. Neurosci. 2017, 1835–1844. [Google Scholar] [CrossRef]
- Balconi, M.; Gatti, L.; Vanutelli, M.E. When cooperation goes wrong: Brain and behavioural correlates of ineffective joint strategies in dyads. Int. J. Neurosci. 2018, 128, 155–166. [Google Scholar] [CrossRef]
- Miller, J.G.; Vrtička, P.; Cui, X.; Shrestha, S.; Hosseini, S.M.; Baker, J.M.; Reiss, A.L. Inter-brain synchrony in mother-child dyads during cooperation: An fNIRS hyperscanning study. Neuropsychologia 2019, 124, 117–124. [Google Scholar] [CrossRef]
- Brockington, G.; Balardin, J.B.; Augusto, G.; Morais, Z. From the Laboratory to the Classroom: The Potential of Functional Near-Infrared Spectroscopy in Educational Neuroscience. Front. Psychol. 2018, 9, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, R.; Geng, B.; Zhang, T.; Yuan, D.; Otani, S.; Li, X. Interplay between prior knowledge and communication mode on teaching effectiveness: Interpersonal neural synchronization as a neural marker. Neuroimage 2019, 193, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.M.; Molnar-Szakacs, I.; Iacoboni, M. Beyond superior temporal cortex: Intersubject correlations in narrative speech comprehension. Cereb. Cortex 2008, 18, 230–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephens, G.J.; Silbert, L.J.; Hasson, U. Speaker-listener neural coupling underlies successful communication. Proc. Natl. Acad. Sci. USA 2010, 107, 14425–14430. [Google Scholar] [CrossRef] [Green Version]
- Anders, S.; Heinzle, J.; Weiskopf, N.; Ethofer, T.; Haynes, J.D. Flow of affective information between communicating brains. Neuroimage 2011, 54, 439–446. [Google Scholar] [CrossRef] [Green Version]
- Chaminade, T.; Marchant, J.L.; Kilner, J.; Frith, C.D. An fMRI study of joint action—Varying levels of cooperation correlates with activity in control networks. Front. Hum. Neurosci. 2012, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Goelman, G.; Dan, R.; Stößel, G.; Tost, H.; Meyer-Lindenberg, A.; Bilek, E. Bidirectional signal exchanges and their mechanisms during joint attention interaction—A hyperscanning fMRI study. Neuroimage 2019, 198, 242–254. [Google Scholar] [CrossRef]
- Saito, D.N.; Tanabe, H.C.; Izuma, K.; Hayashi, M.J.; Morito, Y.; Komeda, H.; Uchiyama, H.; Kosaka, H.; Okazawa, H.; Fujibayashi, Y.; et al. Stay tuned: Inter-individual neural synchronization during mutual gaze and joint attention. Front. Integr. Neurosci. 2010, 4, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Tanabe, H.C.; Kosaka, H.; Saito, D.N.; Koike, T.; Hayashi, M.J.; Izuma, K.; Komeda, H.; Ishitobi, M.; Omori, M.; Munesue, T.; et al. Hard to “tune in”: Neural mechanisms of live face-to-face interaction with high-functioning autistic spectrum disorder. Front. Hum. Neurosci. 2012, 6, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Koike, T.; Sumiya, M.; Nakagawa, E.; Okazaki, S.; Sadato, N. What makes eye contact special? Neural substrates of on-line mutual eye-gaze: A hyperscanning fMRI study. eNeuro 2019, 6. [Google Scholar] [CrossRef]
- Cacioppo, S.; Zhou, H.; Monteleone, G.; Majka, E.A.; Quinn, K.A.; Ball, A.B.; Norman, G.J.; Semin, G.R.; Cacioppo, J.T. You Are In Sync With Me: Neural Correlates Of Interpersonal Synchrony With A Partner. Neuroscience 2014, 277, 842–858. [Google Scholar] [CrossRef] [PubMed]
- Špiláková, B.; Shaw, D.J.; Czekóová, K.; Brázdil, M. Dissecting social interaction: Dual-fMRI reveals patterns of interpersonal brain-behavior relationships that dissociate among dimensions of social exchange. Soc. Cogn. Affect. Neurosci. 2019, 14, 225–235. [Google Scholar] [CrossRef] [Green Version]
- Jääskeläinen, I.P.; Koskentalo, K.; Balk, M.H.; Autti, T.; Kauramäki, J.; Pomren, C.; Sams, M. Inter-Subject Synchronization of Prefrontal Cortex Hemodynamic Activity during Natural Viewing. Open Neuroimag. J. 2008, 2, 14–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kauppi, J.P.P.; Jääskeläinen, I.P.; Sams, M.; Tohka, J. Inter-subject correlation of brain hemodynamic responses during watching a movie: Localization in space and frequency. Front. Neuroinform. 2010, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Shaw, D.J.; Czekóová, K.; Staněk, R.; Mareček, R.; Urbánek, T.; Špalek, J.; Kopečková, L.; Řezáč, J.; Brázdil, M. A dual-fMRI investigation of the iterated Ultimatum Game reveals that reciprocal behaviour is associated with neural alignment. Sci. Rep. 2018, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomlin, D.; Kayali, M.A.; King-Casas, B.; Anen, C.; Camerer, C.F.; Quartz, S.R.; Read Montague, P. Agent-specific responses in the cingulate cortex during economic exchanges. Science 2006, 312, 1047–1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koike, T.; Tanabe, H.C.; Okazaki, S.; Nakagawa, E.; Sasaki, A.T.; Shimada, K.; Sugawara, S.K.; Takahashi, H.K.; Yoshihara, K.; Bosch-Bayard, J.; et al. Neural substrates of shared attention as social memory: A hyperscanning functional magnetic resonance imaging study. Neuroimage 2016, 125, 401–412. [Google Scholar] [CrossRef] [Green Version]
- Abe, M.O.; Koike, T.; Okazaki, S.; Sugawara, S.K.; Takahashi, K.; Watanabe, K.; Sadato, N. Neural correlates of online cooperation during joint force production. Neuroimage 2019, 191, 150–161. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nam, C.S.; Choo, S.; Huang, J.; Park, J. Brain-to-Brain Neural Synchrony During Social Interactions: A Systematic Review on Hyperscanning Studies. Appl. Sci. 2020, 10, 6669. https://doi.org/10.3390/app10196669
Nam CS, Choo S, Huang J, Park J. Brain-to-Brain Neural Synchrony During Social Interactions: A Systematic Review on Hyperscanning Studies. Applied Sciences. 2020; 10(19):6669. https://doi.org/10.3390/app10196669
Chicago/Turabian StyleNam, Chang S., Sanghyun Choo, Jiali Huang, and Jiyoung Park. 2020. "Brain-to-Brain Neural Synchrony During Social Interactions: A Systematic Review on Hyperscanning Studies" Applied Sciences 10, no. 19: 6669. https://doi.org/10.3390/app10196669
APA StyleNam, C. S., Choo, S., Huang, J., & Park, J. (2020). Brain-to-Brain Neural Synchrony During Social Interactions: A Systematic Review on Hyperscanning Studies. Applied Sciences, 10(19), 6669. https://doi.org/10.3390/app10196669