A Comparison of Power Quality Disturbance Detection and Classification Methods Using CNN, LSTM and CNN-LSTM
Abstract
:1. Introduction
2. Power Quality Disturbance Simulations and Dataset Acquisition
3. Machine Learning Algorithms
3.1. Long Short Term Memory
3.1.1. Forget State
3.1.2. Input State
3.1.3. Output State
3.2. Convolutional Neural Networks (CNN)
3.2.1. Convolutional Layer
3.2.2. Pooling Layer
4. Methodology
4.1. Short Time Fourier Transform (STFT)
4.2. Data Augmentation
4.3. Implementation of the Simulink Schematic for the Generation of the Simulated Dataset
4.4. Deep Learning Architectures
4.4.1. Long-Short Term Memory
4.4.2. Convolutional Neural Networks
4.4.3. Convolutional Neural Networks—Long-Short Term Memory
5. Experimental Setup
6. Testing Results
6.1. Testing of the Detection Techniques Using Simulated Signals
6.2. Testing of the Detection Techniques Using Experimental Datasets
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix A.1. Simulink Schematic
Appendix A.2. PQD and STFT
References
- Singh, B.; Al-Haddad, K.; Chandra, A. A review of active filters for power quality improvement. IEEE Trans. Ind. Electron. 1999, 46, 960–971. [Google Scholar] [CrossRef] [Green Version]
- Chung, Y.; Kwon, G.H.; Park, T.; Kim, H.; Moon, J.I. Voltage sag, swell and flicker generator with series injected inverter. In Proceedings of the IEEE Power Engineering Society General Meeting, San Francisco, CA, USA, 16 June 2005; Volume 2, pp. 1308–1313. [Google Scholar]
- Hafiz, F.; Swain, A.; Naik, C.; Abecrombie, S.; Eaton, A. Identification of power quality events selection of optimum base wavelet and machine learning algorithm. IET Sci. Meas. Technol. 2019, 13, 260–271. [Google Scholar] [CrossRef]
- Mohan, N.; Soman, K.P.; Vinayakumar, R. Deep power: Deep learning architectures for power quality disturbances classification. In Proceedings of the International Conference on Technological Advancements in Power and Energy (TAP Energy), Kollam, India, 21–23 December 2017; pp. 1–6. [Google Scholar]
- Alshahrani, S.; Abbod, M.; Alamri, B.; Taylor, G. Evaluation and classification of power quality disturbances based on discrete Wavelet Transform and artificial neural networks. In Proceedings of the 50th International Universities Power Engineering Conference (UPEC), Stoke on Trent, UK, 1–4 September 2015; pp. 1–5. [Google Scholar]
- Bhavani, R.; Prabha, N.R. A hybrid classifier for power quality (PQ) problems using wavelets packet transform (WPT) and artificial neural networks (ANN). In Proceedings of the IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), Srivilliputhur, India, 23–25 March 2017; pp. 1–7. [Google Scholar]
- Kwan, K.H.; So, P.L.; Chu, Y.C. An Output Regulation-Based Unified Power Quality Conditioner With Kalman Filters. IEEE Trans. Ind. Electron. 2012, 59, 4248–4262. [Google Scholar] [CrossRef]
- Soo-Hwan, C.; Jeong-Uk, K.; Il-Yop, C.; Jong-Hoon, H. Determination of Power-Quality Disturbances Using Teager Energy Operator and Kalman Filter Algorithms. Int. J. Fuzzy Log. Intell. Syst. 2012, 12, 42–46. [Google Scholar]
- Kumawat, P.N.; Verma, D.K.; Zaveri, N. Comparison between Wavelet Packet Transform and M-band Wavelet Packet Transform for Identification of Power Quality Disturbances. Power Res. 2018, 14, 37–45. [Google Scholar] [CrossRef]
- Liquan, Z.; Meijiao, G.; Lin, W. Classification of multiple power quality disturbances based on the improved SVM. In Proceedings of the International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, 22–24 March 2017; pp. 2625–2628. [Google Scholar]
- Milchevski, A.; Taskovski, D. Classification of power quality disturbances using wavelet transform and SVM decision tree. In Proceedings of the 11th International Conference on Electrical Power Quality and Utilisation, Lisbon, Portugal, 17–19 October 2011; pp. 1–5. [Google Scholar]
- Eristi, H.; Yıldırım, Ö.; Eristi, B.; Demir, Y. Optimal feature selection for classification of the power quality events using wavelet transform and least squares support vector machines. Int. J. Electr. Power Energy Syst. 2019, 49, 95–103. [Google Scholar] [CrossRef]
- Cubuk, E.D.; Zoph, B.; Mane, D.; Vasudevan, V.; Le, Q.V. AutoAugment: Learning Augmentation Strategies From Data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019. [Google Scholar]
- Fawaz, H.I.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P. Data augmentation using synthetic data for time series classification with deep residual networks. arXiv 2018, arXiv:1808.02455. [Google Scholar]
- Xue, H.; Chen, A.; Zhang, D.; Zhang, C. A Novel Deep Convolution Neural Network and Spectrogram Based Microgrid Power Quality Disturbances Classification Method. In Proceedings of the 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans, LA, USA, 15–19 March 2020; pp. 2303–2307. [Google Scholar]
- Aziz, S.; Khan, M.U.; Usman, A.; Mobeen, A. Pattern Analysis for Classification of Power Quality Disturbances. In Proceedings of the 2020 International Conference on Emerging Trends in Smart Technologies (ICETST), Karachi, Pakistan, 26–27 March 2020; pp. 1–5. [Google Scholar]
- Benysek, G. Improvement in the Quality of Delivery of Electrical Energy Using Power Electronics Systems; Power Systems; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Grasso, F.; Paolucci, L.; Bacci, T.; Talluri, G.; Cenghialta, F.; D’Antuono, E.; Giorgis, S.D. Simulation Model and Experimental Setup for Power Quality Disturbances Methodologies Testing and Validation. In Proceedings of the 2019 IEEE 5th International Forum on Research and Technology for Society and Industry (RTSI), Florence, Italy, 9–12 September 2019; pp. 359–363. [Google Scholar]
- Borges, F.A.S.; Fernandes, R.A.S.; Silva, I.N.; Silva, C.B.S. Feature Extraction and Power Quality Disturbances Classification Using Smart Meters Signals. IEEE Trans. Ind. Inform. 2016, 12, 824–833. [Google Scholar] [CrossRef]
- Shen, Y.; Abubakar, M.; Liu, H.; Hussain, F. Power Quality Disturbance Monitoring and Classification Based on Improved PCA and Convolution Neural Network for Wind-Grid Distribution Systems. Energies 2019, 12, 1280. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Chen, H. A novel deep learning method for the classification of power quality disturbances using deep convolutional neural network. Appl. Energy 2019, 235, 1126–1140. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, J.; Xiao, L.; Chen, K.; Wu, J. Classification of Power Quality Disturbances via Deep Learning. IETE Tech. Rev. 2017, 34, 408–415. [Google Scholar] [CrossRef]
- Ahajjam, M.A.; Licea, D.B.; Ghogho, M.; Kobbane, A. Electric Power Quality Disturbances Classification based on Temporal-Spectral Images and Deep Convolutional Neural Networks. In Proceedings of the 2020 International Wireless Communications and Mobile Computing (IWCMC), Limassol, Cyprus, 15–19 June 2020; pp. 1701–1706. [Google Scholar]
- Pascanu, R.; Gulcehre, C.; Cho, K.; Bengio, Y. How to Construct Deep Recurrent Neural Networks. arXiv 2013, arXiv:1312.6026. [Google Scholar]
- Hochreiter, S.; Schmidhuber, A.J. Long Short- Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; The MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Han, D.; Liu, Q.; Fan, W. A new image classification method using CNN transfer learning and web data augmentation. Expert Syst. Appl. 2018, 95, 43–56. [Google Scholar] [CrossRef]
- Huang, J.; Chen, B.; Yao, B.; He, W. ECG Arrhythmia Classification Using STFT-Based Spectrogram and Convolutional Neural Network. IEEE Access 2019, 7, 92871–92880. [Google Scholar] [CrossRef]
- Yao, S.; Piao, A.; Jiang, W.; Zhao, Y.; Shao, H.; Liu, S.; Liu, D.; Li, J.; Wang, T.; Hu, S.; et al. STFNets: Learning Sensing Signals from the Time-Frequency Perspective with Short-Time Fourier Neural Networks. In Proceedings of the The World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019. [Google Scholar]
- Tan, R.H.; Ramachandaramurthy, V.K. A Comprehensive Modeling and Simulation of Power Quality Disturbances Using MATLAB/SIMULINK. In Power Quality Issues in Distributed Generation; Luszcz, J., Ed.; IntechOpen: Rijeka, Croatia, 2015; Chapter 3. [Google Scholar]
- Fayek, H.M.; Lech, M.; Cavedon, L. Evaluating deep learning architectures for Speech Emotion Recognition. Neural Netw. 2017, 92, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Buckland, M.; Gey, F. The relationship between Recall and Precision. J. Am. Soc. Inf. Sci. 1994, 45, 12–19. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia, C.I.; Grasso, F.; Luchetta, A.; Piccirilli, M.C.; Paolucci, L.; Talluri, G. A Comparison of Power Quality Disturbance Detection and Classification Methods Using CNN, LSTM and CNN-LSTM. Appl. Sci. 2020, 10, 6755. https://doi.org/10.3390/app10196755
Garcia CI, Grasso F, Luchetta A, Piccirilli MC, Paolucci L, Talluri G. A Comparison of Power Quality Disturbance Detection and Classification Methods Using CNN, LSTM and CNN-LSTM. Applied Sciences. 2020; 10(19):6755. https://doi.org/10.3390/app10196755
Chicago/Turabian StyleGarcia, Carlos Iturrino, Francesco Grasso, Antonio Luchetta, Maria Cristina Piccirilli, Libero Paolucci, and Giacomo Talluri. 2020. "A Comparison of Power Quality Disturbance Detection and Classification Methods Using CNN, LSTM and CNN-LSTM" Applied Sciences 10, no. 19: 6755. https://doi.org/10.3390/app10196755
APA StyleGarcia, C. I., Grasso, F., Luchetta, A., Piccirilli, M. C., Paolucci, L., & Talluri, G. (2020). A Comparison of Power Quality Disturbance Detection and Classification Methods Using CNN, LSTM and CNN-LSTM. Applied Sciences, 10(19), 6755. https://doi.org/10.3390/app10196755