The Effect of Synthesis Procedure on Hydrogen Peroxidase-Like Catalytic Activity of Iron Oxide Magnetic Particles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of MWCNT Dispersion
2.1.1. Synthesis of Naked Iron Oxide Magnetic Nanoparticles (UN-MNPs)
2.1.2. Synthesis of Chitosan Modified Iron Oxide Magnetic Nanoparticles (MNPs-CH)
2.1.3. Synthesis of MNPs Modified with TEOS (MNPs-TEOS)
2.2. Preparation of the Working Electrode
2.3. Characterization of MNPs
2.4. Cyclic Voltammetry
2.5. Chronoamperometry and Optimization
2.6. Repeatability
2.7. Selectivity
2.8. Real Sample Analysis
3. Results and Discussion
3.1. Characterization of MNPs
3.2. Electrochemical Behavior of the Modified Electrode
3.3. Optimization of the Conditions
3.4. Analytical Study
3.4.1. Linear Range Detection
3.4.2. Repeatability
3.4.3. Selectivity
3.4.4. Real Sample Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Labib, M.; Sargent, E.H.; Kelley, S.O. Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules. Chem. Rev. 2016, 116, 9001–9090. [Google Scholar] [CrossRef] [PubMed]
- Stone, J.R.; Yang, S. Hydrogen Peroxide: A Signaling Messenger. Antioxid. Redox Signal. 2006, 8, 243–270. [Google Scholar] [CrossRef] [PubMed]
- Tsiafoulis, C.G.; Trikalitis, P.N.; Prodromidis, M.I.; Prodromidis, M.I. Synthesis, characterization and performance of vanadium hexacyanoferrate as electrocatalyst of H2O2. Electrochem. Commun. 2005, 7, 1398–1404. [Google Scholar] [CrossRef]
- Manjare, S.T.; Kim, Y.; Churchill, D.G. Selenium- and Tellurium-Containing Fluorescent Molecular Probes for the Detection of Biologically Important Analytes. Acc. Chem. Res. 2014, 47, 2985–2998. [Google Scholar] [CrossRef] [PubMed]
- Geiszt, M.; Leto, T.L. The Nox Family of NAD(P)H Oxidases: Host Defense and Beyond. J. Biol. Chem. 2004, 279, 51715–51718. [Google Scholar] [CrossRef] [Green Version]
- Giorgio, M.; Trinei, M.; Migliaccio, E.; Pelicci, P.G. Hydrogen peroxide: A metabolic by-product or a common mediator of ageing signals? Nat. Rev. Mol. Cell Biol. 2007, 8, 722–728. [Google Scholar] [CrossRef]
- Hsu, C.-L.; Chang, K.-S.; Kuo, J.-C. Determination of hydrogen peroxide residues in aseptically packaged beverages using an amperometric sensor based on a palladium electrode. Food Control 2008, 19, 223–230. [Google Scholar] [CrossRef]
- U.S. Food & Drug Administration, CFR-Code of Federal Regulations Title 21. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCFR/CFRSearch.cfm?fr=184.1366 (accessed on 1 April 2019).
- Watt, B.E.; Proudfoot, A.T.; Vale, J.A. Hydrogen Peroxide Poisoning. Toxicol. Rev. 2004, 23, 51–57. [Google Scholar] [CrossRef]
- Lee, Y.-D.; Lim, C.-K.; Singh, A.; Koh, J.; Kim, J.; Kwon, I.C.; Kim, S. Dye/Peroxalate Aggregated Nanoparticles with Enhanced and Tunable Chemiluminescence for Biomedical Imaging of Hydrogen Peroxide. ACS Nano 2012, 6, 6759–6766. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, H.; Rui, Q.; Tian, Y. Detection of Extracellular H2O2Released from Human Liver Cancer Cells Based on TiO2 Nanoneedles with Enhanced Electron Transfer of Cytochromec. Anal. Chem. 2009, 81, 3035–3041. [Google Scholar] [CrossRef]
- Shu, X.; Chen, Y.; Yuan, H.; Gao, S.; Xiao, D. H2O2 Sensor Based on the Room-Temperature Phosphorescence of Nano TiO2/SiO2 Composite. Anal. Chem. 2007, 79, 3695–3702. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Zhou, J.; Lu, W.; Liu, Q.; Li, J. Carbon nanofiber-based composites for the construction of mediator-free biosensors. Biosens. Bioelectron. 2008, 23, 1236–1243. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, C.; Kawamoto, N.; Takamura, K. Oxo[5, 10, 15, 20-tetra(4-pyridyl)porphyrinato]titanium(IV): An ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide. Analyst 1992, 117, 1781. [Google Scholar] [CrossRef]
- Zhang, L.-S.; Wong, G.T. Optimal conditions and sample storage for the determination of H2O2 in marine waters by the scopoletin-horseradish peroxidase fluorometric method. Talanta 1999, 48, 1031–1038. [Google Scholar] [CrossRef]
- Hanaoka, S.; Lin, J.-M.; Yamada, M. Chemiluminescent flow sensor for H2O2 based on the decomposition of H2O2 catalyzed by cobalt(II)-ethanolamine complex immobilized on resin. Anal. Chim. Acta 2001, 426, 57–64. [Google Scholar] [CrossRef]
- Songa, E.A.; Okonkwo, J.O. Recent approaches to improving selectivity and sensitivity of enzyme-based biosensors for organophosphorus pesticides: A review. Talanta 2016, 155, 289–304. [Google Scholar] [CrossRef]
- Putzbach, W.; Ronkainen, N.J. Immobilization Techniques in the Fabrication of Nanomaterial-Based Electrochemical Biosensors: A Review. Sensors 2013, 13, 4811. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, J.; Zhang, C.; Wei, J.; Zhou, X. Determination of Hydrogen Peroxide in Rainwater by Using a Polyaniline Film and Platinum Particles Co-Modified Carbon Fiber Microelectrode. Electroanalysis 1998, 10, 776–778. [Google Scholar] [CrossRef]
- Michael, D.J.; Wightman, R.M. Electrochemical monitoring of biogenic amine neurotransmission in real time. J. Pharm. Biomed. Anal. 1999, 19, 33–46. [Google Scholar] [CrossRef]
- Boyne, M.S.; Silver, D.M.; Kaplan, J.; Saudek, C.D. Timing of changes in interstitial and venous blood glucose measured with a continuous subcutaneous glucose sensor. Diabetes 2003, 52, 2790–2794. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Wei, H.; Zhang, Z.; Wang, E.; Dong, S. Nanozyme: An emerging alternative to natural enzyme for biosensing and immunoassay. TrAC Trends Anal. Chem. 2018, 105, 218–224. [Google Scholar] [CrossRef]
- Tang, Z.; Wu, H.; Zhang, Y.; Li, Z.; Lin, Y. Enzyme-Mimic Activity of Ferric Nano-Core Residing in Ferritin and Its Biosensing Applications. Anal. Chem. 2011, 83, 8611–8616. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Wang, E. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Huang, Y.; Cole, A.J.; Yang, V.C. The artificial peroxidase activity of magnetic iron oxide nanoparticles and its application to glucose detection. Biomaterials 2009, 30, 4716–4722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, L.; Ding, Y.; Jiang, Y.; Liu, Q. Montmorillonite-loaded ceria nanocomposites with superior peroxidase-like activity for rapid colorimetric detection of H2O2. Sens. Actuators B Chem. 2017, 239, 848–856. [Google Scholar] [CrossRef]
- Gregorio-Jauregui, K.M.; Pineda, M.G.; Rivera-Salinas, J.E.; Hurtado, G.; Saade, H.; Martinez, J.L.; Ilyina, A.; López, R.G. One-Step Method for Preparation of Magnetic Nanoparticles Coated with Chitosan. J. Nanomater. 2012, 2012, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.-S.; Church, J.S.; Woodhead, A.L.; Moussa, F. Preparation and characterization of silica coated iron oxide magnetic nano-particles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2010, 76, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Mollarasouli, F.; Kurbanoglu, S.; Asadpour-Zeynali, K.; Ozkan, S.A. Non-enzymatic monitoring of hydrogen peroxide using novel nanosensor based on CoFe2O4@CdSeQD magnetic nanocomposite and rifampicin mediator. Anal. Bioanal. Chem. 2020, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ye, D.; Li, H.; Liang, G.; Luo, J.; Zhang, X.; Zhang, S.; Chen, H.; Kong, J. A three-dimensional hybrid of MnO2/graphene/carbon nanotubes based sensor for determination of hydrogen-peroxide in milk. Electrochim. Acta 2013, 109, 195–200. [Google Scholar] [CrossRef]
Linear ranges | 99.90–792.86 µmol L−1 |
Slope | 0.068 µA µM−1 |
Intercept | 2.055µA |
Sensitivity | 0.068 µA µM−1 |
Limit of detection LOD | 27.020 µmol L−1 |
Limit of Quantification LOQ | 89.26 µmol L−1 |
Relative standard deviation RSD% | 6.14 |
Spiked (µmol L−1) | Slope | Intercept | Found (µmol L−1) | Recovery |
---|---|---|---|---|
100 | 0.0733 | 7.5301 | 102.73 ± 1.92 (n = 3) | 102.92% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukherjee, A.; Ashrafi, A.M.; Svec, P.; Richtera, L.; Přibyl, J.; Brtnický, M.; Kynicky, J.; Adam, V. The Effect of Synthesis Procedure on Hydrogen Peroxidase-Like Catalytic Activity of Iron Oxide Magnetic Particles. Appl. Sci. 2020, 10, 6756. https://doi.org/10.3390/app10196756
Mukherjee A, Ashrafi AM, Svec P, Richtera L, Přibyl J, Brtnický M, Kynicky J, Adam V. The Effect of Synthesis Procedure on Hydrogen Peroxidase-Like Catalytic Activity of Iron Oxide Magnetic Particles. Applied Sciences. 2020; 10(19):6756. https://doi.org/10.3390/app10196756
Chicago/Turabian StyleMukherjee, Atripan, Amir M. Ashrafi, Pavel Svec, Lukáš Richtera, Jan Přibyl, Martin Brtnický, Jindrich Kynicky, and Vojtěch Adam. 2020. "The Effect of Synthesis Procedure on Hydrogen Peroxidase-Like Catalytic Activity of Iron Oxide Magnetic Particles" Applied Sciences 10, no. 19: 6756. https://doi.org/10.3390/app10196756
APA StyleMukherjee, A., Ashrafi, A. M., Svec, P., Richtera, L., Přibyl, J., Brtnický, M., Kynicky, J., & Adam, V. (2020). The Effect of Synthesis Procedure on Hydrogen Peroxidase-Like Catalytic Activity of Iron Oxide Magnetic Particles. Applied Sciences, 10(19), 6756. https://doi.org/10.3390/app10196756