Sustainable Competitive Advantage Driven by Big Data Analytics and Innovation
Abstract
:1. Introduction
2. Research Model and Hypothesis
2.1. Theoretical Model
2.2. Research Hypothesis 1: DA as a Prerequisite for BDAC
2.3. Research Hypothesis 2: BDAC as an Enabler of IC
2.4. Research Hypotheses 3 and 4: The Role of BDAC and IC in Enhancing SCA
2.5. Sustainable Competitive Advantage (SCA)
3. Research Methodology
3.1. Survey Design
3.2. Data Collection and Analysis Method
4. Results
4.1. The Measurement Model: Reliability and Validity Analysis
4.2. Structural Model
5. Discussion
6. Limitations and Future Research Directions
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Kuo, Y.; Kusiak, A. From data to big data in production research: The past and future trends. Int. J. Prod. Res. 2018, 57, 4828–4853. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Wah, B.W.; Cheng, X.; Wang, Y. Significance and Challenges of Big Data Research. Big Data Res. 2015, 2, 59–64. [Google Scholar] [CrossRef]
- Manavalan, E.; Jayakrishna, K. A review of Internet of Things (IoT) embedded sustainable supply chain for industry 4.0 requirements. Comput. Ind. Eng. 2019, 127, 925–953. [Google Scholar] [CrossRef]
- Roy, S.; Edan, Y. Investigating Joint-Action in Short-Cycle Repetitive Handover Tasks: The Role of Giver Versus Receiver and its Implications for Human-Robot Collaborative System Design. Int. J. Soc. Robot. 2018, 1–16. [Google Scholar] [CrossRef]
- Michalos, G.; Makris, S.; Tsarouchi, P.; Guasch, T.; Kontovrakis, D.; Chryssolouris, G. Design Considerations for Safe Human-robot Collaborative Workplaces. Procedia CIRP 2015, 37, 248–253. [Google Scholar] [CrossRef]
- Someshwar, R.; Edan, Y. Givers & receivers perceive handover tasks differently: Implications for human-robot collaborative system design. arXiv 2017, arXiv:1708.06207. [Google Scholar]
- Tsarouchi, P.; Matthaiakis, A.-S.; Makris, S.; Chryssolouris, G. On a human-robot collaboration in an assembly cell. Int. J. Comput. Integr. Manuf. 2016, 30, 580–589. [Google Scholar] [CrossRef] [Green Version]
- Someshwar, R.; Meyer, J.; Edan, Y. Models and Methods for H-R Synchronization. IFAC Proc. Vol. 2012, 45, 829–834. [Google Scholar] [CrossRef]
- Tsarouchi, P.; Michalos, G.; Makris, S.; Athanasatos, T.; Dimoulas, K.; Chryssolouris, G. On a human–robot workplace design and task allocation system. Int. J. Comput. Integr. Manuf. 2017, 30, 1272–1279. [Google Scholar] [CrossRef]
- Someshwar, R.; Meyer, J.; Edan, Y. A Timing Control Model for H-R Synchronization. IFAC Proc. Vol. 2012, 45, 698–703. [Google Scholar] [CrossRef]
- Michalos, G.; Makris, S.; Spiliotopoulos, J.; Misios, I.; Tsarouchi, P.; Chryssolouris, G. ROBO-PARTNER: Seamless Human-Robot Cooperation for Intelligent, Flexible and Safe Operations in the Assembly Factories of the Future. Procedia CIRP 2014, 23, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Tsarouchi, P.; Makris, S.; Michalos, G.; Stefos, M.; Fourtakas, K.; Kaltsoukalas, K.; Kontrovrakis, D.; Chryssolouris, G. Robotized Assembly Process Using Dual Arm Robot. Procedia CIRP 2014, 23, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Maroufkhani, P.; Wagner, R.; Ismail, W.K.W.; Baroto, M.B.; Nourani, M. Big Data Analytics and Firm Performance: A Systematic Review. Information 2019, 10, 226. [Google Scholar] [CrossRef] [Green Version]
- Côrte-Real, N.; Ruivo, P.; Oliveira, T. Leveraging internet of things and big data analytics initiatives in European and American firms: Is data quality a way to extract business value? Inf. Manag. 2020, 57, 103141. [Google Scholar] [CrossRef]
- Lamba, H.S.; Dubey, S.K. Analysis of requirements for Big Data Adoption to maximize IT Business Value. In Proceedings of the 2015 4th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions), Noida, India, 2–4 September 2015; pp. 1–6. [Google Scholar]
- Müller, O.; Junglas, I.; Brocke, J.V.; Debortoli, S. Utilizing big data analytics for information systems research: Challenges, promises and guidelines. Eur. J. Inf. Syst. 2016, 25, 289–302. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.J.-F.; Wamba, S.F.; Akter, S.; Dubey, R.; Childe, S.J. Modelling quality dynamics, business value and firm performance in a big data analytics environment. Int. J. Prod. Res. 2016, 55, 5011–5026. [Google Scholar] [CrossRef] [Green Version]
- Upadhyay, P.; Kumar, A. The intermediating role of organizational culture and internal analytical knowledge between the capability of big data analytics and a firm’s performance. Int. J. Inf. Manag. 2020, 52, 102100. [Google Scholar] [CrossRef]
- Anwar, M.; Khan, S.Z.; Shah, S.Z.A. Big Data Capabilities and Firm’s Performance: A Mediating Role of Competitive Advantage. J. Inf. Knowl. Manag. 2018, 17, 1850045. [Google Scholar] [CrossRef]
- Al-Sai, Z.A.; Abdullah, R.; Husin, M.H. Big Data Impacts and Challenges: A Review. In Proceedings of the 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT), Amman, Jordan, 9–11 April 2019; pp. 150–155. [Google Scholar] [CrossRef]
- Mikalef, P.; Pappas, I.O.; Krogstie, J.; Giannakos, M. Big data analytics capabilities: A systematic literature review and research agenda. Inf. Syst. E Bus. Manag. 2017, 16, 547–578. [Google Scholar] [CrossRef]
- Sharma, R.; Mithas, S.; Kankanhalli, A. Transforming decision-making processes: A research agenda for understanding the impact of business analytics on organisations. Eur. J. Inf. Syst. 2014, 23, 433–441. [Google Scholar] [CrossRef] [Green Version]
- Grover, V.; Chiang, R.H.L.; Liang, T.P.; Zhang, D. Creating Strategic Business Value from Big Data Analytics: A Research Framework. J. Manag. Inf. Syst. 2018, 35, 388–423. [Google Scholar] [CrossRef]
- Wamba, S.F.; Gunasekaran, A.; Akter, S.; Ren, S.J.-F.; Dubey, R.; Childe, S.J. Big data analytics and firm performance: Effects of dynamic capabilities. J. Bus. Res. 2017, 70, 356–365. [Google Scholar] [CrossRef] [Green Version]
- Raut, R.D.; Mangla, S.K.; Narwane, V.S.; Gardas, B.B.; Priyadarshinee, P.; Narkhede, B.E. Linking big data analytics and operational sustainability practices for sustainable business management. J. Clean. Prod. 2019, 224, 10–24. [Google Scholar] [CrossRef]
- Aldossary, S.; Allen, W. Data Security, Privacy, Availability and Integrity in Cloud Computing: Issues and Current Solutions. Int. J. Adv. Comput. Sci. Appl. 2016, 7, 485–498. [Google Scholar] [CrossRef]
- Wang, X.; Yang, L.T.; Liu, H.; Deen, M.J. A Big Data-as-a-Service Framework: State-of-the-Art and Perspectives. IEEE Trans. Big Data 2017, 4, 325–340. [Google Scholar] [CrossRef]
- Cadersaib, B.Z.; Ben Sta, H.; Rahimbux, B.A.G. Making an Interoperability Approach between ERP and Big Data Context. In Proceedings of the 2018 Sixth International Conference on Enterprise Systems (ES), Limassol, Cyprus, 1–2 October 2018; pp. 146–153. [Google Scholar] [CrossRef]
- Mourtzis, D.; Vlachou, E.; Milas, N. Industrial Big Data as a Result of IoT Adoption in Manufacturing. Procedia CIRP 2016, 55, 290–295. [Google Scholar] [CrossRef] [Green Version]
- Babu, M.S.P.; Sastry, S.H. Big data and predictive analytics in ERP systems for automating decision making process. In Proceedings of the 2014 IEEE 5th International Conference on Software Engineering and Service Science, Beijing, China, 27–29 June 2014; pp. 259–262. [Google Scholar]
- Syafrudin, M.; Alfian, G.; Fitriyani, N.L.; Rhee, J.T. Performance Analysis of IoT-Based Sensor, Big Data Processing, and Machine Learning Model for Real-Time Monitoring System in Automotive Manufacturing. Sensors 2018, 18, 2946. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Yang, P.; Ren, J.; Chen, D.; Yu, L.; Shen, X. Synergy of Big Data and 5G Wireless Networks: Opportunities, Approaches, and Challenges. IEEE Wirel. Commun. 2018, 25, 12–18. [Google Scholar] [CrossRef]
- Furqan, M.; Zhang, C.; Yan, W.; Shahid, A.; Wasim, M.; Huang, Y. A Collaborative Hotspot Caching Design for 5G Cellular Network. IEEE Access 2018, 6, 38161–38170. [Google Scholar] [CrossRef]
- Hu, F.; Liu, W.; Tsai, S.-B.; Gao, J.; Bin, N.; Chen, Q. An Empirical Study on Visualizing the Intellectual Structure and Hotspots of Big Data Research from a Sustainable Perspective. Sustainability 2018, 10, 667. [Google Scholar] [CrossRef] [Green Version]
- Shamim, S.; Zeng, J.; Shariq, S.M.; Khan, Z. Role of big data decision-making capability and quality among Chinese firms: A dynamic capabilities view. Inf. Manag. 2019, 56, 103135. [Google Scholar] [CrossRef]
- Kamble, S.S.; Gunasekaran, A.; Gawankar, S.A. Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications. Int. J. Prod. Econ. 2020, 219, 179–194. [Google Scholar] [CrossRef]
- Erevelles, S.; Fukawa, N.; Swayne, L. Big Data consumer analytics and the transformation of marketing. J. Bus. Res. 2016, 69, 897–904. [Google Scholar] [CrossRef]
- Singh, S.K.; El-Kassar, A.-N. Role of big data analytics in developing sustainable capabilities. J. Clean. Prod. 2019, 213, 1264–1273. [Google Scholar] [CrossRef]
- Dubey, R.; Gunasekaran, A.; Childe, S.J.; Papadopoulos, T.; Luo, Z.; Wamba, S.F.; Roubaud, D. Can big data and predictive analytics improve social and environmental sustainability? Technol. Forecast. Soc. Chang. 2019, 144, 534–545. [Google Scholar] [CrossRef]
- Amui, L.B.L.; Jabbour, C.J.C.; Jabbour, A.B.L.D.S.; Kannan, D. Sustainability as a dynamic organizational capability: A systematic review and a future agenda toward a sustainable transition. J. Clean. Prod. 2017, 142, 308–322. [Google Scholar] [CrossRef]
- Hao, S.; Zhang, H.; Song, M. Big Data, Big Data Analytics Capability, and Sustainable Innovation Performance. Sustainability 2019, 11, 7145. [Google Scholar] [CrossRef] [Green Version]
- Sutapa, S.; Mulyana, M.; Wasitowati, W. The Role of Market Orientation, Creativity and Innovation in Creating Competitive Advantages and Creative Industry Performance. J. Din. Manaj. 2017, 8, 152–166. [Google Scholar] [CrossRef] [Green Version]
- Ghasemaghaei, M.; Calic, G. Assessing the impact of big data on firm innovation performance: Big data is not always better data. J. Bus. Res. 2020, 108, 147–162. [Google Scholar] [CrossRef]
- Côrte-Real, N.; Oliveira, T.; Ruivo, P. Assessing business value of Big Data Analytics in European firms. J. Bus. Res. 2017, 70, 379–390. [Google Scholar] [CrossRef]
- Ardito, L.; Scuotto, V.; Del Giudice, M.; Petruzzelli, A.M.; Messeni, A. A bibliometric analysis of research on Big Data analytics for business and management. Manag. Decis. 2019, 57, 1993–2009. [Google Scholar] [CrossRef]
- El-Kassar, A.-N.; Singh, S.K. Green innovation and organizational performance: The influence of big data and the moderating role of management commitment and HR practices. Technol. Forecast. Soc. Chang. 2019, 144, 483–498. [Google Scholar] [CrossRef]
- Linden, G.; Teece, D.J. Remarks on Pisano: Toward a prescriptive theory of dynamic capabilities. Ind. Corp. Chang. 2018, 27, 1175–1179. [Google Scholar] [CrossRef]
- Lu, P.; Zhang, L.; Liu, X.; Yao, J.; Zhu, Z. Highly efficient data migration and backup for big data applications in elastic optical inter-data-center networks. IEEE Netw. 2015, 29, 36–42. [Google Scholar] [CrossRef]
- Guo, W.; Qin, S.; Lu, J.; Gao, F.; Jin, Z.; Wen, Q. Improved Proofs Of Retrievability And Replication For Data Availability In Cloud Storage. Comput. J. 2020, 63, 1216–1230. [Google Scholar] [CrossRef]
- Kim, G.; Shin, B.; Kwon, O. Investigating the Value of Sociomaterialism in Conceptualizing IT Capability of a Firm. J. Manag. Inf. Syst. 2012, 29, 327–362. [Google Scholar] [CrossRef]
- Rosli, M.M.; Sidek, S. The Impact of Innovation on the Performance of Small and Medium Manufacturing Enterprises: Evidence from Malaysia. J. Innov. Manag. Small Mediu. Enterp. 2013, 2013, 1–16. [Google Scholar] [CrossRef]
- Udriyah, U.; Tham, J.; Azam, S.M.F. The effects of market orientation and innovation on competitive advantage and business perfor-mance of textile SMEs. Manag. Sci. Lett. 2019, 9, 1419–1428. [Google Scholar] [CrossRef]
- Gunasekaran, A.; Papadopoulos, T.; Dubey, R.; Wamba, S.F.; Childe, S.J.; Hazen, B.; Akter, S. Big data and predictive analytics for supply chain and organizational performance. J. Bus. Res. 2017, 70, 308–317. [Google Scholar] [CrossRef]
- Saeidi, S.P.; Sofian, S.; Saeidi, P.; Saeidi, S.P.; Saaeidi, S.A. How does corporate social responsibility contribute to firm financial performance? The mediating role of competitive advantage, reputation, and customer satisfaction. J. Bus. Res. 2015, 68, 341–350. [Google Scholar] [CrossRef]
- Cantele, S.; Zardini, A. Is sustainability a competitive advantage for small businesses? An empirical analysis of possible mediators in the sustainability–financial performance relationship. J. Clean. Prod. 2018, 182, 166–176. [Google Scholar] [CrossRef]
- Ambrosini, V.; Bowman, C. What are dynamic capabilities and are they a useful construct in strategic management? Int. J. Manag. Rev. 2009, 11, 29–49. [Google Scholar] [CrossRef] [Green Version]
- Libes, D.; Shin, S.; Woo, J. Considerations and recommendations for data availability for data analytics for manufacturing. In Proceedings of the 2015 IEEE International Conference on Big Data (Big Data), Santa Clara, CA, USA, 29 October–1 November 2015; pp. 68–75. [Google Scholar]
- Liu, J.; Shen, H. A Low-Cost Multi-failure Resilient Replication Scheme for High Data Availability in Cloud Storage. In Proceedings of the 2016 IEEE 23rd International Conference on High Performance Computing (HiPC), Hyderabad, India, 19–22 December 2016; pp. 242–251. [Google Scholar]
- Dombrowski, U.; Wullbrandt, J.; Krenkel, P. Industrie 4.0 in production ramp-up management. Procedia Manuf. 2018, 17, 1015–1022. [Google Scholar] [CrossRef]
- Niebel, T.; Rasel, F.; Viete, S. BIG data—BIG gains? Understanding the link between big data analytics and innovation. Econ. Innov. New Technol. 2019, 28, 296–316. [Google Scholar] [CrossRef] [Green Version]
- Mikalef, P.; Boura, M.; Lekakos, G.; Krogstie, J. Big Data Analytics Capabilities and Innovation: The Mediating Role of Dynamic Capabilities and Moderating Effect of the Environment. Br. J. Manag. 2019, 30, 272–298. [Google Scholar] [CrossRef]
- Jeble, S.; Kumari, S.; Patil, Y. Role of Big Data in Decision Making. Oper. Supply Chain Manag. Int. J. 2018, 11, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Story, V.M.; O’Malley, L.; Hart, S. Roles, role performance, and radical innovation competences. Ind. Mark. Manag. 2011, 40, 952–966. [Google Scholar] [CrossRef]
- Chen, D.Q.; Preston, D.S.; Swink, M. How the Use of Big Data Analytics Affects Value Creation in Supply Chain Management How the Use of Big Data Analytics Affects Value Creation in Supply Chain Management. J. Manag. Inf. Syst. 2015, 32, 4–39. [Google Scholar] [CrossRef]
- Mikalef, P.; Boura, M.; Lekakos, G.; Krogstie, J. Complementarities between Information Governance and Big Data Analytics Capabilities on Innovation. In Proceedings of the European Conference on Information Systems (ECIS), Portsmouth, UK, 23–28 June 2018; p. 149. [Google Scholar]
- Breznik, L.; Hisrich, R.D. Dynamic capabilities vs. innovation capability: Are they related? J. Small Bus. Enterp. Dev. 2014, 21, 368–384. [Google Scholar] [CrossRef]
- Fiorini, P.D.C.; Seles, B.M.R.P.; Jabbour, C.J.C.; Mariano, E.B.; de Sousa Jabbour, A.B.L. Management theory and big data literature: From a review to a research agenda. Int. J. Inf. Manag. 2018, 43, 112–129. [Google Scholar] [CrossRef]
- Sulistyo, H. Siyamtinah Innovation capability of SMEs through entrepreneurship, marketing capability, relational capital and empowerment. Asia Pac. Manag. Rev. 2016, 21, 196–203. [Google Scholar] [CrossRef]
- Han, C.; Gao, S. A Chain Multiple Mediation Model Linking Strategic, Management, and Technological Innovations to Firm Competitiveness. Rev. Bus. Manag. 2019, 21, 879–905. [Google Scholar] [CrossRef] [Green Version]
- Sulistyo, H.; Ayuni, S. Competitive advantages of SMEs: The roles of innovation capability, entrepreneurial orientation, and social capital. Contaduría Admin. 2019, 65, 156. [Google Scholar] [CrossRef] [Green Version]
- Schilke, O. On the contingent value of dynamic capabilities for competitive advantage: The nonlinear moderating effect of environmental dynamism. Strat. Manag. J. 2013, 35, 179–203. [Google Scholar] [CrossRef]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); SAGE: Thousand Oaks, CA, USA, 2014; Volume 46. [Google Scholar]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a Silver Bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Codita, R. Testing the Contingency Model of Marketing-Mix Standardization and Its Performance Outcomes. In Contingency Factors of Marketing-Mix Standardization; Gabler Verlag-Springer Fachmedien Wiesbaden GmbH: Wiesbaden, Germany, 2011; pp. 136–206. [Google Scholar]
- Rutkowski, L.; von Davier, M.; Rutkowski, D. Estimating reliability. In Handbook of International Large-Scale Assessment; Leslie Rutkowski, D.R., von Davier, M., Eds.; Chapman and Hall/CRC: New York, NY, USA, 2013; p. 647. [Google Scholar] [CrossRef]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M.; Hair, J.F. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Morizot, J. Construct Validity of Adolescents’ Self-Reported Big Five Personality Traits: Importance of Conceptual Breadth and Initial Validation of a Short Measure. Assessment 2014, 21, 580–606. [Google Scholar] [CrossRef] [PubMed]
- Ab Hamid, M.R.; Sami, W.; Sidek, M.H.M. Discriminant Validity Assessment: Use of Fornell & Larcker criterion versus HTMT Criterion. J. Phys. Conf. Ser. 2017, 890, 12163. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2014, 43, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Cepeda-Carrion, G.; Cegarra-Navarro, J.G.; Cillo, V. Tips to use partial least squares structural equation modelling (PLS-SEM) in knowledge management. J. Knowl. Manag. 2019, 23, 67–89. [Google Scholar] [CrossRef]
- Hulland, J. Use of Partial Least Squares (PLS) in Strategic Management Research: A Review of Four Recent Studies. Strateg. Manag. J. 1999, 20, 195–204. [Google Scholar] [CrossRef]
- Lorna, U.; Heričko, M.; Ting, I.-H. An empirical studyof the effect of SCM practice on corporate performance. In Knowledge Management in Organizations; Lorna Uden, I.-H.T., Heričko, M., Eds.; Springer Cham: Yokohama, Japan, 2015; Volume 224, p. 128. [Google Scholar]
- Lozada, N.E.; Arias-Pérez, J.; Perdomo-Charry, G. Big data analytics capability and co-innovation: An empirical study. Heliyon 2019, 5, e02541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aziz, N.N.A.; Samad, S. Innovation and Competitive Advantage: Moderating Effects of Firm Age in Foods Manufacturing SMEs in Malaysia. Procedia Econ. Financ. 2016, 35, 256–266. [Google Scholar] [CrossRef] [Green Version]
- ZareRavasan, A.; Ashrafi, A. An empirical investigation on big data analytics (BDA) and innovation performance. In Proceedings of the 3rd International Conference on Business and Information Management—ICBIM ’19, Paris, France, 12–14 September 2019; pp. 97–101. [Google Scholar] [CrossRef]
Construct | Item no. | Indicator | Referents |
---|---|---|---|
DA | DA1 | IT systems, i.e., Enterprise resource planning (ERP) software, are integrated with big data analytics. | [29,31] |
DA2 | All devices and sensing machines, e.g., sensors, mobiles, RFID, etc., are connected to the IoT to generate big data. | [48,49] | |
DA3 | Backup system for big data is effective. | [28,30] | |
BDAC | BDAC4 | Continuously examine innovative opportunities for the strategic use of business analytics. | [24,18,50] |
BDAC5 | Enforce adequate plans for the utilization of business analytics. | [24,18,50] | |
BDAC6 | Perform business analytics planning process in systematic ways. | [24,18,50] | |
BDAC7 | Frequently adjust business analytics plans to better adapt to changing conditions. | [24,18,50] | |
IC | IC8 | Apply new technologies to the firm’s processes. | [51,52] |
IC9 | Continuously introduce new products. | [51,52] | |
IC10 | Use the latest technologies in products. | [51,52] | |
IC11 | Adopt innovativeness in marketing and promotion. | [51,52] | |
SCA | SCA12 | Average ROS (return on sales) is higher than other competitors. | [14,24,53,54] |
SCA13 | Procedures, that help ensure the health and safety of employees, are better than other competitors. | [44,55] | |
SAC14 | Reward system for employees is better than other competitors. | [53,55] | |
SCA15 | Superiority in reducing and recycling waste compared to other competitors. | [53,55] |
Construct | R2 | CA | CR | AVE |
---|---|---|---|---|
DA | 0.639 | 0.804 | 0.580 | |
BDAC | 0.168 | 0.743 | 0.837 | 0.564 |
IC | 0.241 | 0.711 | 0.818 | 0.531 |
SCA | 0.440 | 0.743 | 0.839 | 0.567 |
1 | 2 | 3 | 4 | ||
---|---|---|---|---|---|
1 | BDAC | 0.75 | |||
2 | DA | 0.41 | 0.76 | ||
3 | IC | 0.49 | 0.33 | 0.73 | |
4 | SCA | 0.4 | 0.23 | 0.66 | 0.75 |
BDAC | DA | IC | SCA | |
---|---|---|---|---|
BDAC | ||||
DA | 0.56554 | |||
IC | 0.62260 | 0.48970 | ||
SCA | 0.53015 | 0.32422 | 0.87068 |
Construct | Item No. | Outer Loading | t-Test |
---|---|---|---|
DA | DA1 | 0.664 | 6.020 |
DA2 | 0.75 | 7.788 | |
DA3 | 0.858 | 15.355 | |
BDAC | BDAC4 | 0.819 | 18.964 |
BDAC5 | 0.693 | 9.337 | |
BDAC6 | 0.748 | 12.089 | |
BDAC7 | 0.738 | 13.466 | |
IC | IC8 | 0.689 | 10.676 |
IC9 | 0.784 | 15.565 | |
IC10 | 0.668 | 7.844 | |
IC11 | 0.766 | 12.502 | |
SCA | SCA12 | 0.626 | 6.315 |
SCA13 | 0.781 | 16.941 | |
SAC14 | 0.807 | 18.601 | |
SCA15 | 0.786 | 18.089 |
B-Value | STDEV | t-Value | T Statistics | p-Value | |
---|---|---|---|---|---|
H1 | 0.41 | 0.078 | 5.256 | 5.238 | 0 |
H2 | 0.491 | 0.081 | 6.062 | 6.06 | 0 |
H3 | 0.106 | 0.09 | 1.178 | 1.183 | 0.237 |
H4 | 0.605 | 0.068 | 8.897 | 8.922 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramadan, M.; Shuqqo, H.; Qtaishat, L.; Asmar, H.; Salah, B. Sustainable Competitive Advantage Driven by Big Data Analytics and Innovation. Appl. Sci. 2020, 10, 6784. https://doi.org/10.3390/app10196784
Ramadan M, Shuqqo H, Qtaishat L, Asmar H, Salah B. Sustainable Competitive Advantage Driven by Big Data Analytics and Innovation. Applied Sciences. 2020; 10(19):6784. https://doi.org/10.3390/app10196784
Chicago/Turabian StyleRamadan, Muawia, Hana Shuqqo, Layalee Qtaishat, Hebaa Asmar, and Bashir Salah. 2020. "Sustainable Competitive Advantage Driven by Big Data Analytics and Innovation" Applied Sciences 10, no. 19: 6784. https://doi.org/10.3390/app10196784
APA StyleRamadan, M., Shuqqo, H., Qtaishat, L., Asmar, H., & Salah, B. (2020). Sustainable Competitive Advantage Driven by Big Data Analytics and Innovation. Applied Sciences, 10(19), 6784. https://doi.org/10.3390/app10196784