Partial Order Rank Features in Colour Space
Abstract
:1. Introduction
2. Background
2.1. Rank Features
2.2. Order Relations
- 1.
- (reflexivity).
- 2.
- if and then (antisymmetry).
- 3.
- if and then (transitivity).
- 4.
- either or (totality).
2.3. Ordering High-Dimensional Data
- Marginal ordering (M-ordering).
- Reduced (aggregate) ordering (R-ordering).
- Conditional (sequential) ordering (C-ordering).
- Partial ordering (R-ordering).
2.4. Rank-Based Approaches to Colour Processing
2.5. Partial Orders
2.5.1. Product Order
2.5.2. Loewner Order
3. Materials and Methods
3.1. Rank Features on Partial Orders
3.2. Experiments
3.3. Datasets
3.3.1. Epistroma
3.3.2. KTH-TIPS
3.3.3. KTH-TIPS2b
3.3.4. Kylberg–Sintorn
3.3.5. MondialMarmi
3.3.6. OUTEX-13 and OUTEX-14
3.3.7. Pap Smear
3.3.8. Plant Leaves
3.3.9. RawFooT
3.4. Classification and Accuracy Estimation
4. Results and Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Ledoux, A.; Losson, O.; Macaire, L. Color local binary patterns: Compact descriptors for texture classification. J. Electron. Imaging 2016, 25, 061404. [Google Scholar] [CrossRef]
- Hanbury, A.; Serra, J. Mathematical morphology in the CIELAB space. Image Anal. Stereol. 2002, 21, 201–206. [Google Scholar] [CrossRef]
- Aptoula, E.; Lefèvre, S. A comparative study on multivariate mathematical morphology. Pattern Recognit. 2007, 40, 2914–2929. [Google Scholar] [CrossRef] [Green Version]
- Angulo, J. Morphological colour operators in totally ordered lattices based on distances: Application to image filtering, enhancement and analysis. Comput. Vis. Image Underst. 2007, 107, 56–73. [Google Scholar] [CrossRef]
- Burgeth, B.; Kleefeld, A. Morphology for color images via Loewner order for matrix fields. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2013; Volume 7883 LNCS, pp. 243–254. [Google Scholar]
- van De Gronde, J.; Roerdink, J. Group-invariant colour morphology based on frames. IEEE Trans. Image Process. 2014, 23, 1276–1288. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, R.; Bailey, D.; Naylor, M.; Ng, A.; McNeill, S. Properties, implementations and applications of rank filters. Image Vis. Comput. 1985, 3, 3–14. [Google Scholar] [CrossRef]
- Zabih, R.; Woodfill, J. Non-parametric Local Transforms for Computing Visual Correspondence. In European Conference on Computer Vision; Springer: Stockholm, Sweden, 1994; pp. 151–158. [Google Scholar]
- Fernández, A.; Álvarez, M.X.; Bianconi, F. Texture description through histograms of equivalent patterns. J. Math. Imaging Vis. 2013, 45, 76–102. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Fieguth, P.; Wang, X.; Pietikäinen, M.; Hu, D. Evaluation of LBP and deep texture descriptors with a new robustness benchmark. In Proceedings of the 14th European Conference on Computer Vision (ECCV 2016), Amsterdam, The Netherlands, 11–14 October 2016; Springer: Amsterdam, The Netherlands, 2016; Volume 9907, pp. 69–86. [Google Scholar]
- Brahnam, S.; Jain, L.; Nanni, L.; Lumini, A. (Eds.) Local Binary Patterns: New Variants and Applications; Studies in Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2014; Volume 506. [Google Scholar]
- Smeraldi, F. Ranklets: Orientation selective non-parametric features applied to face detection. In Proceedings of the 16th International Conference on Pattern Recognition (ICPR’02), Quebec City, QC, Canada, 11–15 August 2002; Volume 3, pp. 379–382. [Google Scholar]
- Azzopardi, G.; Smeraldi, F. Variance Ranklets: Orientation-selective rank features for contrast modulations. In Proceedings of the British Machine Vision Conference, BMVC 2009, London, UK, 7–10 September 2009. [Google Scholar]
- Liu, L.; Chen, J.; Fieguth, P.; Zhao, G.; Chellappa, R.; Pietikäinen, M. From BoW to CNN: Two decades of texture representation for texture classification. Int. J. Comput. Vis. 2019, 127, 74–109. [Google Scholar] [CrossRef] [Green Version]
- Bello-Cerezo, R.; Bianconi, F.; Di Maria, F.; Napoletano, P.; Smeraldi, F. Comparative Evaluation of Hand-Crafted Image Descriptors vs. Off-the-Shelf CNN-Based Features for Colour Texture Classification under Ideal and Realistic Conditions. Appl. Sci. 2019, 9, 738. [Google Scholar] [CrossRef] [Green Version]
- Barnett, V. The ordering of multivariate data. J. R. Stat. Soc. Ser. A (Gen.) 1976, 139, 318–355. [Google Scholar] [CrossRef]
- Yang, S. Distribution Theory of the Concomitants of Order Statistics. Ann. Stat. 1977, 5, 996–1002. [Google Scholar] [CrossRef]
- Mäenpää, T.; Pietikäinen, M. Texture analysis with local binary patterns. In Handbook of Pattern Recognition and Computer Vision, 3rd ed.; Chen, C., Wang, P., Eds.; World Scientific: Singapore, 2005; pp. 197–216. [Google Scholar]
- Bianconi, F.; Fernández, A.; González, E.; Armesto, J. Robust color texture features based on ranklets and discrete Fourier transform. J. Electron. Imaging 2009, 18, 043012. [Google Scholar]
- Lee, S.; Choi, J.; Ro, Y.; Plataniotis, K. Local color vector binary patterns from multichannel face images for face recognition. IEEE Trans. Image Process. 2012, 21, 2347–2353. [Google Scholar] [CrossRef] [PubMed]
- Cusano, C.; Napoletano, P.; Schettini, R. Local angular patterns for color texture classification. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2015; Volume 9281, pp. 111–118. [Google Scholar]
- Barra, V. Expanding the local binary pattern to multispectral images using total orderings. Commun. Comput. Inf. Sci. 2011, 229 CCIS, 67–80. [Google Scholar]
- Bello-Cerezo, R.; Fieguth, P.; Bianconi, F. LBP-Motivated Colour Texture Classification. In Proceedings of the 2nd International Workshop on Compact and Efficient Feature Representation and Learning in Computer Vision (in Conjunction with ECCV 2018), Munich, Germany, 9 September 2018; Volume 11132, pp. 517–533. [Google Scholar]
- Burgeth, B.; Welk, M.; Feddern, C.; Weickert, J. Mathematical morphology on tensor data using the Loewner ordering. In Visualization and Processing of Tensor Fields; Mathematics and Visualization; Springer: Berlin/Heidelberg, Germany, 2006; pp. 357–368. [Google Scholar]
- Palus, H. Representations of colour images in different colour spaces. In The Colour Image Processing Handbook; Sangwine, S.J., Horne, R.E.N., Eds.; Springer: Berlin/Heidelberg, Germany, 1998; pp. 67–90. [Google Scholar]
- He, D.C.; Wang, L. Texture Unit, Texture Spectrum, And Texture Analysis. IEEE Trans. Geosci. Remote. Sens. 1990, 28, 509–512. [Google Scholar]
- González, E.; Bianconi, F.; Fernández, A. An investigation on the use of local multi-resolution patterns for image classification. Inf. Sci. 2016, 361–362, 1–13. [Google Scholar] [CrossRef]
- Zelenyuk, Y.; Zelenyuk, Y. Counting symmetric bracelets. Bull. Aust. Math. Soc. 2014, 89, 431–436. [Google Scholar] [CrossRef] [Green Version]
- Linder, N.; Konsti, J.; Turkki, R.; Rahtu, E.; Lundin, M.; Nordling, S.; Haglund, C.; Ahonen, T.; Pietikäinen, M.; Lundin, J. Identification of tumor epithelium and stroma in tissue microarrays using texture analysis. Diagn. Pathol. 2012, 7, 22. [Google Scholar] [CrossRef] [Green Version]
- Hayman, E.; Caputo, B.; Fritz, M.; Eklundh, J.O. On the Significance of Real-World Conditions for Material Classification. In Proceedings of the 8th European Conference on Computer Vision (ECCV 2004), Prague, Czech Republic, 11–14 May 2004; Springer: Prague, Czech Republic, 2004; Volume 3024, pp. 253–266. [Google Scholar]
- The KTH-TIPS and KTH-TIPS2 Image Databases. 2004. Available online: http://www.nada.kth.se/cvap/databases/kth-tips/ (accessed on 21 September 2016).
- Caputo, B.; Hayman, E.; Mallikarjuna, P. Class-specific material categorisation. In Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05), Beijing, China, 17–20 October 2005; Volume II, pp. 1597–1604. [Google Scholar]
- Kylberg, G. Automatic Virus Identification Using TEM. Image Segmentation and Texture Analysis. Ph.D. Thesis, Faculty of Science and Technology, University of Uppsala, Uppsala, Sweden, 2014. [Google Scholar]
- Kylberg Sintorn Rotation Dataset. 2013. Available online: http://www.cb.uu.se/gustaf/KylbergSintornRotation/ (accessed on 6 January 2016).
- Bello-Cerezo, R.; Bianconi, F.; Fernández, A.; González, E.; Di Maria, F. Experimental comparison of color spaces for material classification. J. Electron. Imaging 2016, 25, 061406. [Google Scholar] [CrossRef]
- Ojala, T.; Pietikäinen, M.; Mäenpää, T.; Viertola, J.; Kyllönen, J.; Huovinen, S. Outex—New Framework for Empirical Evaluation of Texture Analysis Algorithms. In Proceedings of the 16th International Conference on Pattern Recognition (ICPR’02), Quebec, QC, Canada, 11–15 August 2002; Volume 1, pp. 701–706. [Google Scholar]
- Jantzen, J.; Noras, J.; Dounias, G.; Bjerregaard, B. Pap-smear Benchmark Data For Pattern Classification. In Nature Inspired Smart Information Systems (NiSIS 2005); NiSIS: Albufeira, Portugal, 2005. [Google Scholar]
- Casanova, D.; de Mesquita Sá Junior, J.J.; Bruno, O.M. Plant leaf identification using Gabor wavelets. Int. J. Imaging Syst. Technol. 2009, 19, 236–243. [Google Scholar] [CrossRef]
- Cusano, C.; Napoletano, P.; Schettini, R. Evaluating color texture descriptors under large variations of controlled lighting conditions. J. Opt. Soc. Am. A 2016, 33, 17–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- RawFooT DB: Raw Food Texture Database. 2015. Available online: http:projects.ivl.disco.unimib.it/rawfoot/ (accessed on 22 September 2016).
- Kandaswamy, U.; Schuckers, S.A.; Adjeroh, D. Comparison of Texture Analysis Schemes Under Nonideal Conditions. IEEE Trans. Image Process. 2011, 20, 2260–2275. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhao, L.; Long, Y.; Kuang, G.; Fieguth, P.W. Extended local binary patterns for texture classification. Image Vis. Comput. 2012, 30, 86–99. [Google Scholar] [CrossRef]
- Fernández, A.; Lima, D.; Bianconi, F.; Smeraldi, F. Compact Color Texture Descriptor Based on Rank Transform and Product Ordering in the RGB Color Space. In Proceedings of the IEEE International Conference on Computer Vision Workshops, ICCVW 2017, Venice, Italy, 22–29 October 2017; Institute of Electrical and Electronics Engineers Inc.: Venice, Italy, 2017; pp. 1032–1040. [Google Scholar]
- Drimbarean, A.; Whelan, P.F. Experiments in colour texture analysis. Pattern Recognit. Lett. 2001, 22, 1161–1167. [Google Scholar] [CrossRef] [Green Version]
- Mäenpää, T.; Pietikäinen, M. Classification with color and texture: Jointly or separately? Pattern Recognit. 2004, 37, 1629–1640. [Google Scholar] [CrossRef] [Green Version]
- Bianconi, F.; Harvey, R.; Southam, P.; Fernández, A. Theoretical and experimental comparison of different approaches for color texture classification. J. Electron. Imaging 2011, 20, 043006. [Google Scholar] [CrossRef]
- Abdollahyan, M.; Cascianelli, S.; Bellocchio, E.; Costante, G.; Ciarfuglia, T.A.; Bianconi, F.; Smeraldi, F.; Fravolini, M.L. Visual Localization in the Presence of Appearance Changes Using the Partial Order Kernel. In Proceedings of the 2018 26th European Signal Processing Conference (EUSIPCO), Roma, Italy, 3–7 September 2018; pp. 697–701. [Google Scholar]
ID | Name | No. of Classes | No. of Samples per Class | Variations in Imaging Conditions | Sample Images |
---|---|---|---|---|---|
1 | Epistroma | 2 | 825/551 | Unspecified | |
2 | KTH-TIPS | 10 | 81 | ||
3 | KTH-TIPS2b | 11 | 432 | ||
4 | Kylberg-Sintorn | 25 | 6 | None | |
5 | MondialMarmi | 25 | 16 | None | |
6 | Outex-13 | 68 | 20 | None | |
7 | Outex-14 | 68 | 60 | ||
8 | Pap smear | 2 | 204 | Unspecified | |
9 | PlantLeaves | 20 | 60 | None | |
10 | RawFooT | 68 | 184 |
Descriptor | Inv. | Dataset | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||
LBP | 91.3–91.7 | 93.2–93.8 | 92.6–92.8 | 93.4–94.6 | 79.5–79.9 | 82.5–82.7 | 97.4–97.7 | 81.5–82.2 | 72.9–73.5 | 94.3–94.5 | |
LBP | 91.5–91.9 | 93.3–93.9 | 92.5–92.7 | 93.4–94.6 | 79.7–80.1 | 82.4–82.7 | 97.3–97.6 | 81.1–81.9 | 73.0–73.6 | 94.3–94.5 | |
TS | 91.3–91.8 | 92.4–93.0 | 94.3–94.5 | 95.2–96.2 | 79.5–79.9 | 82.5–82.7 | 97.7–98.1 | 83.5–84.3 | 74.5–75.1 | 96.1–96.2 | |
TS | 91.8–92.2 | 92.3–92.9 | 94.2–94.3 | 95.3–96.3 | 79.3–79.8 | 82.4–82.6 | 97.8–98.2 | 84.0–84.9 | 74.8–75.4 | 96.1–96.2 | |
TS | 91.6–92.0 | 92.7–93.3 | 93.7–93.9 | 92.8–94.2 | 79.2–79.6 | 79.5–79.7 | 97.1–97.5 | 83.1–83.8 | 73.9–74.4 | 95.8–96.0 | |
TS | 91.9–92.2 | 92.8–93.4 | 93.5–93.7 | 92.8–94.2 | 78.8–79.3 | 79.5–79.7 | 97.0–97.4 | 83.7–84.5 | 74.3–74.8 | 95.9–96.0 | |
TS | 91.3–91.6 | 92.9–93.4 | 93.0–93.2 | 94.4–95.6 | 78.6–79.0 | 80.0–80.2 | 96.8–97.3 | 80.6–81.4 | 73.2–73.8 | 95.1–95.2 | |
TS | 91.5–91.8 | 92.9–93.5 | 92.8–93.0 | 94.6–95.8 | 78.4–78.9 | 80.0–80.3 | 96.8–97.3 | 80.9–81.7 | 73.0–73.6 | 95.1–95.3 | |
POTS | 86.9–87.3 | 89.3–89.8 | 94.7–94.9 | 93.3–94.4 | 82.2–82.6 | 82.0–82.2 | 97.6–98.0 | 77.6–78.6 | 69.3–69.9 | 94.5–94.6 | |
POTS | 87.0–87.3 | 89.4–89.9 | 94.9–95.1 | 93.3–94.4 | 82.4–82.8 | 82.3–82.5 | 97.7–98.1 | 78.3–79.3 | 69.3–69.9 | 94.5–94.6 | |
POTS | 90.3–90.6 | 89.9–90.5 | 95.1–95.3 | 95.3–96.5 | 80.1–80.5 | 78.9–79.2 | 97.5–97.9 | 73.7–74.7 | 64.1–64.7 | 93.1–93.3 | |
POTS | 90.2–90.6 | 89.7–90.3 | 95.2–95.3 | 94.9–96.0 | 80.4–80.9 | 79.0–79.2 | 97.5–97.9 | 74.6–75.6 | 64.4–65.0 | 93.2–93.4 | |
POTS | 91.4–91.8 | 93.6–94.1 | 95.3–95.5 | 90.7–92.5 | 73.8–74.3 | 73.4–73.7 | 96.1–96.7 | 82.9–83.7 | 67.7–68.3 | 95.3–95.5 | |
POTS | 92.0–92.4 | 93.5–94.0 | 95.2–95.4 | 90.7–92.5 | 74.3–74.7 | 74.0–74.3 | 96.2–96.7 | 83.9–84.7 | 68.1–68.6 | 95.4–95.5 | |
POTS | 90.4–90.8 | 94.1–94.6 | 94.9–95.1 | 87.9–90.0 | 72.6–73.0 | 74.5–74.7 | 96.0–96.6 | 82.6–83.4 | 75.2–75.8 | 96.4–96.5 | |
POTS | 91.3–91.7 | 94.0–94.5 | 94.8–95.0 | 87.9–90.0 | 73.0–73.5 | 74.8–75.0 | 96.2–96.8 | 83.6–84.5 | 75.9–76.4 | 96.3–96.5 |
Dataset | Best Result (Literature) | Best Result (This Paper) | ||
---|---|---|---|---|
LBP | LBP | LBP | ||
KTH-TIPS | 94.3 [23] | 94.3 [23] | 94.0 [23] | 94.1–94.6 (POTS) |
KTH-TIPS2b | 92.3 [23] | 92.3 [23] | 92.1 [23] | 95.3–95.5 (POTS) |
Kylberg-Sintorn | N/A | 99.1 [43] | N/A | 95.3–96.5 (POTS) |
Outex-13 | 85.3 [1] | 86.3 [1] | 85.9 [1] | 82.3–82.5 (POTS) |
Outex-14 | 74.3 [1] | 73.4 [1] | 72.3 [1] | 97.7–98.1 (POTS) |
PapSmear | N/A | N/A | 66.2 [43] | 83.6–84.5 (POTS) |
PlantLeaves | 69.9 [23] | 65.2 [23] | 71.9 [23] | 75.9–76.4 (POTS) |
RawFoot | N/A | N/A | 80.5 [43] | 96.4–96.5 (POTS) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smeraldi, F.; Bianconi, F.; Fernández, A.; González, E. Partial Order Rank Features in Colour Space. Appl. Sci. 2020, 10, 499. https://doi.org/10.3390/app10020499
Smeraldi F, Bianconi F, Fernández A, González E. Partial Order Rank Features in Colour Space. Applied Sciences. 2020; 10(2):499. https://doi.org/10.3390/app10020499
Chicago/Turabian StyleSmeraldi, Fabrizio, Francesco Bianconi, Antonio Fernández, and Elena González. 2020. "Partial Order Rank Features in Colour Space" Applied Sciences 10, no. 2: 499. https://doi.org/10.3390/app10020499
APA StyleSmeraldi, F., Bianconi, F., Fernández, A., & González, E. (2020). Partial Order Rank Features in Colour Space. Applied Sciences, 10(2), 499. https://doi.org/10.3390/app10020499