Milliwatt-Level Spontaneous Emission Across the 3.5–8 µm Spectral Region from Pr3+ Doped Selenide Chalcogenide Fiber Pumped with a Laser Diode
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Experimental Methods
3. Experimental Results and Discussion
3.1. Output Power Measurements from the Pr3+ Doped Spontaneous Emission Fiber Source
3.2. Mid-Infrared Emission from the Pr3+ Doped Selenide-Chalcogenide Glass Fiber in the Spectral Region: 3.5–8 µm
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jackson, S.D. Towards high-power mid-infrared emission from a fibre laser. Nat. Photonics 2012, 6, 423–431. [Google Scholar] [CrossRef]
- Walsh, B.M.; Lee, H.R.; Barnes, N.P. Mid infrared lasers for remote sensing applications. J. Lumin. 2016, 169, 400–405. [Google Scholar] [CrossRef]
- Woodward, R.I.; Majewski, M.R.; Hudson, D.D.; Jackson, S.D. Swept-wavelength mid-infrared fiber laser for real-time ammonia gas sensing. APL Photonics 2019, 4, 020801. [Google Scholar] [CrossRef] [Green Version]
- Petersen, C.R.; Prtljaga, N.; Farries, M.; Ward, J.; Napier, B.; Lloyd, G.R.; Nallala, J.; Stone, N.; Bang, O. Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source. Opt. Lett. 2018, 43, 999–1002. [Google Scholar] [CrossRef] [PubMed]
- Seddon, A.B.; Tang, Z.; Furniss, D.; Sujecki, S.; Benson, T.M. Progress in rare-earth-doped mid-infrared fiber lasers. Opt. Express 2010, 18, 26704–26719. [Google Scholar] [CrossRef] [PubMed]
- Maes, F.; Fortin, V.; Poulain, S.; Poulain, M.; Carrée, J.-Y.; Bernier, M.; Vallée, R. Room-temperature fiber laser at 3.92 µm. Optica 2018, 5, 761–764. [Google Scholar] [CrossRef]
- Majewski, M.R.; Woodward, R.I.; Carreé, J.-Y.; Poulain, S.; Poulain, M.; Jackson, S.D. Emission beyond 4 μm and mid-infrared lasing in a dysprosium-doped indium fluoride (InF3) fiber. Opt. Lett. 2018, 43, 1926–1929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, J. Fluoride fibre laser operating at 3.9 µm. Electron. Lett. 1995, 31, 1250–1251. [Google Scholar] [CrossRef]
- Jayasuriya, D.; Petersen, C.R.; Furniss, D.; Markos, C.; Tang, Z.; Habib, M.S.; Bang, O.; Benson, T.M.; Seddon, A.B. Mid-IR supercontinuum generation in birefringent, low loss, ultra-high numerical aperture Ge-As-Se-Te chalcogenide step-index fiber. Opt. Mater. Express 2019, 9, 2617–2629. [Google Scholar] [CrossRef]
- Petersen, C.R.; Engelsholm, R.D.; Markos, C.; Brilland, L.; Caillaud, C.; Trolès, J.; Bang, O. Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers. Opt. Express 2017, 25, 15336–15348. [Google Scholar] [CrossRef]
- Bernier, M.; Fortin, V.; El-Amraoui, M.; Messaddeq, Y.; Vallée, R. 3.77µm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber. Opt. Lett. 2014, 39, 2052–2055. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Furniss, D.; Fay, M.; Sakr, H.; Sójka, L.; Neate, N.; Weston, N.; Sujecki, S.; Benson, T.M.; Seddon, A.B. Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass. Opt. Mater. Express 2015, 5, 870–886. [Google Scholar] [CrossRef]
- Karaksina, E.V.; Shiryaev, V.S.; Churbanov, M.F.; Anashkina, E.A.; Kotereva, T.V.; Snopatin, G.E. Core-clad Pr(3+)-doped Ga(In)-Ge-As-Se-(I) glass fibers: Preparation, investigation, simulation of laser characteristics. Opt. Mater. 2017, 72, 654–660. [Google Scholar] [CrossRef] [Green Version]
- Pelé, A.L.; Braud, A.; Doualan, J.L.; Starecki, F.; Nazabal, V.; Chahal, R.; Boussard-Plédel, C.; Bureau, B.; Moncorgé, R.; Camy, P. Dy3+ doped GeGaSbS fluorescent fiber at 4.4 μm for optical gas sensing: Comparison of simulation and experiment. Opt. Mater. 2016, 61, 37–44. [Google Scholar]
- Shaw, L.B.; Cole, B.; Thielen, P.A.; Sanghera, J.S.; Aggarwal, I.D. Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber. IEEE J. Quantum Electron. 2001, 37, 1127–1137. [Google Scholar] [CrossRef]
- Shaw, L.B.; Harbison, B.B.; Cole, B.; Sanghera, J.S.; Aggarwal, I.D. Spectroscopy of the IR transitions in Pr3+ doped heavy metal selenide glasses. Opt. Express 1997, 1, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Chahal, R.; Starecki, F.; Doualan, J.-L.; Němec, P.; Trapananti, A.; Prestipino, C.; Tricot, G.; Boussard-Pledel, C.; Michel, K.; Braud, A.; et al. Nd3+:Ga-Ge-Sb-S glasses and fibers for luminescence in mid-IR: Synthesis, structural characterization and rare earth spectroscopy. Opt. Mater. Express 2018, 8, 1650–1671. [Google Scholar] [CrossRef]
- Sanghera, J.S.; Shaw, L.B.; Aggarwal, I.D. Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 114–119. [Google Scholar] [CrossRef]
- Churbanov, M.F.; Denker, B.I.; Galagan, B.I.; Koltashev, V.V.; Plotnichenko, V.G.; Sverchkov, S.E.; Sukhanov, M.V.; Velmuzhov, A.P. Peculiarities of 1.6-7.5µm Pr3+ luminescence in Ge36Ga5Se59 glass. Opt. Mater. Express 2019, 9, 4154–4164. [Google Scholar] [CrossRef]
- Starecki, F.; Abdellaoui, N.; Braud, A.; Doualan, J.-L.; Boussard-Plédel, C.; Bureau, B.; Camy, P.; Nazabal, V. 8µm luminescence from a Tb3+ GaGeSbSe fiber. Opt. Lett. 2018, 43, 1211–1214. [Google Scholar] [CrossRef]
- Starecki, F.; Braud, A.; Abdellaoui, N.; Doualan, J.-L.; Boussard-Plédel, C.; Bureau, B.; Camy, P.; Nazabal, V. 7 to 8 µm emission from Sm3+ doped selenide fibers. Opt. Express 2018, 26, 26462–26469. [Google Scholar] [CrossRef] [PubMed]
- Seddon, A.B.; Furniss, D.; Tang, Z.Q.; Sojka, Ł.; Benson, T.M.; Caspary, R.; Sujecki, S. True mid-infrared Pr3+ absorption cross-section in a selenide-chalcogenide host-glass. In Proceedings of the 2016 18th International Conference on Transparent Optical Networks (ICTON), Trento, Italy, 11–14 July 2016; pp. 1–6. [Google Scholar]
- Sujecki, S.; Sojka, L.; Pawlik, E.; Anders, K.; Piramidowicz, R.; Tang, Z.; Furniss, D.; Barney, E.; Benson, T.; Seddon, A. Numerical analysis of spontaneous mid-infrared light emission from terbium ion doped multimode chalcogenide fibers. J. Lumin. 2018, 199, 112–115. [Google Scholar] [CrossRef]
- Starecki, F.; Morais, S.; Chahal, R.; Boussard-Plédel, C.; Bureau, B.; Palencia, F.; Lecoutre, C.; Garrabos, Y.; Marre, S.; Nazabal, V. IR emitting Dy3+ doped chalcogenide fibers for in situ CO2 monitoring in high pressure microsystems. Int. J. Greenh. Gas Control 2016, 55, 36–41. [Google Scholar] [CrossRef]
- Ari, J.; Starecki, F.; Boussard-Plédel, C.; Ledemi, Y.; Messaddeq, Y.; Doualan, J.-L.; Braud, A.; Bureau, B.; Nazabal, V. Co-doped Dy3+ and Pr3+ Ga5Ge20Sb10S65 fibers for mid-infrared broad emission. Opt. Lett. 2018, 43, 2893–2896. [Google Scholar] [CrossRef]
- Starecki, F.; Braud, A.; Doualan, J.-L.; Ari, J.; Boussard-Plédel, C.; Michel, K.; Nazabal, V.; Camy, P. All-optical carbon dioxide remote sensing using rare earth doped chalcogenide fibers. Opt. Lasers Eng. 2019, 122, 328–334. [Google Scholar] [CrossRef]
- Shiryaev, V.S.; Karaksina, E.V.; Kotereva, T.V.; Churbanov, M.F.; Velmuzhov, A.P.; Nezhdanov, A.V. Special pure Pr(3+) doped Ga3Ge31As18Se48 glass for active mid-IR optics. J. Lumin. 2019, 209, 225–231. [Google Scholar] [CrossRef]
- Sourková, P.; Frumarova, B.; Frumar, M.; Nemec, P.; Kincl, M.; Nazabal, V.; Moizan, V.; Doualan, J.-L.; Moncorgé, R. Spectroscopy of infrared transitions of Pr3+ ions in Ga–Ge–Sb–Se glasses. J. Lumin. 2009, 129, 1148–1153. [Google Scholar] [CrossRef]
- Sakr, H.; Furniss, D.; Tang, Z.; Sojka, L.; Moneim, N.A.; Barney, E.; Sujecki, S.; Benson, T.M.; Seddon, A.B. Superior photoluminescence (PL) of Pr3+-In, compared to Pr3+-Ga, selenide-chalcogenide bulk glasses and PL of optically-clad fiber. Opt. Express 2014, 22, 21236–21252. [Google Scholar] [CrossRef]
- Shiryaev, V.S.; Karaksina, E.V.; Kotereva, T.V.; Churbanov, M.F.; Velmuzhov, A.P.; Sukhanov, M.V.; Ketkova, L.A.; Zernova, N.S.; Plotnichenko, V.G.; Koltashev, V.V. Preparation and investigation of Pr3+-doped Ge–Sb–Se–In–I glasses as promising material for active mid-infrared optics. J. Lumin. 2017, 183, 129–134. [Google Scholar] [CrossRef]
- Ma, C.; Guo, H.; Xu, Y.; Wu, Z.; Li, M.; Jia, X.; Nie, Q. Effect of glass composition on the physical properties and luminescence of Pr3+ ion-doped chalcogenide glasses. J. Am. Ceram. Soc. 2019, 102, 6794–6801. [Google Scholar] [CrossRef]
- Liu, Z.; Bian, J.; Huang, Y.; Xu, T.; Wang, X.; Dai, S. Fabrication and characterization of mid-infrared emission of Pr3+ doped selenide chalcogenide glasses and fibres. RSC Adv. 2017, 7, 41520–41526. [Google Scholar] [CrossRef] [Green Version]
- Palma, G.; Falconi, M.C.; Starecki, F.; Nazabal, V.; Ari, J.; Bodiou, L.; Charrier, J.; Dumeige, Y.; Baudet, E.; Prudenzano, F. Design of praseodymium-doped chalcogenide micro-disk emitting at 4.7 µm. Opt. Express 2017, 25, 7014–7030. [Google Scholar] [CrossRef] [PubMed]
- Shpotyuk, Y.; Boussard-Pledel, C.; Nazabal, V.; Chahal, R.; Ari, J.; Pavlyk, B.; Cebulski, J.; Doualan, J.L.; Bureau, B. Ga-modified As2Se3–Te glasses for active applications in IR photonics. Opt. Mater. 2015, 46, 228–232. [Google Scholar] [CrossRef]
- Bodiou, L.; Starecki, F.; Lemaitre, J.; Nazabal, V.; Doualan, J.-L.; Baudet, E.; Chahal, R.; Gutierrez-Arroyo, A.; Dumeige, Y.; Hardy, I.; et al. Mid-infrared guided photoluminescence from integrated Pr3+-doped selenide ridge waveguides. Opt. Mater. 2018, 75, 109–115. [Google Scholar] [CrossRef]
- Walsh, B.M.; Hommerich, U.; Yoshikawa, A.; Toncelli, A. Mid-infrared spectroscopy of Pr-doped materials. J. Lumin. 2018, 197, 349–353. [Google Scholar] [CrossRef]
- Bowman, S.R.; Shaw, L.B.; Feldman, B.J.; Ganem, J. A 7-µm praseodymium-based solid-state laser. IEEE J. Quantum Electron. 1996, 32, 646–649. [Google Scholar] [CrossRef]
- Bowman, S.R.; Ganem, J.; Feldman, B.J.; Kueny, A.W. Infrared laser characteristics of praseodymium-doped lanthanum trichloride. IEEE J. Quantum Electron. 1994, 30, 2925–2928. [Google Scholar] [CrossRef]
- Yu, D.; Ballato, J.; Riman, R.E. The Temperature-Dependence of Multiphonon Relaxation of Rare-Earth Ions in Solid-State Hosts. J. Phys. Chem. C Nanomater. Interfaces 2016, 120, 9958–9964. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.G.; Park, B.J.; Kim, K.H.; Heo, J. Pr3+- and Pr3+/Er3+-doped selenide glasses for potential 1.6 μm optical amplifier materials. Etri. J. 2001, 23, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.G.; Kim, K.H.; Park, B.J.; Heo, J. 1.6 μm emission from Pr3+:(3F3,3F4)→3H4 transition in Pr3+- and Pr3+/Er3+-doped selenide glasses. Appl. Phys. Lett. 2001, 78, 1249–1251. [Google Scholar] [CrossRef]
- Choi, Y.G.; Seo, Y.B.; Heo, J. Enhancement in lifetimes of the Pr3+: 1.6 μm emission in Ge-Ga-As-Se glasses with CsBr addition. J. Mater. Sci. Lett. 2003, 22, 795–798. [Google Scholar] [CrossRef]
- Han, Y.S.; Heo, J. Midinfrared emission properties of Pr3+-doped chalcogenide glasses at cryogenic temperature. J. Appl. Phys. 2003, 93, 8970–8974. [Google Scholar] [CrossRef] [Green Version]
- Sujecki, S.; Sojka, L.; Beres-Pawlik, E.; Anders, K.; Piramidowicz, R.; Tang, Z.; Furniss, D.; Barney, E.; Benson, T.; Seddon, A. Experimental and numerical investigation to rationalize both near-infrared and mid-infrared spontaneous emission in Pr3+ doped selenide-chalcogenide fiber. J. Lumin. 2019, 209, 14–20. [Google Scholar] [CrossRef]
- Sojka, L.; Tang, Z.; Jayasuriya, D.; Shen, M.; Furniss, D.; Barney, E.; Benson, T.M.; Seddon, A.B.; Sujecki, S. Ultra-broadband mid-infrared emission from a Pr3+/Dy3+ co-doped selenide-chalcogenide glass fiber spectrally shaped by varying the pumping arrangement [Invited]. Opt. Mater. Express 2019, 9, 2291–2306. [Google Scholar] [CrossRef]
- Kamensky, V.A.; Scripachev, I.V.; Snopatin, G.E.; Pushkin, A.A.; Churbanov, M.F. High-power As-S glass fiber delivery instrument for pulse YAG:Er laser radiation. Appl. Opt. 1998, 37, 5596–5599. [Google Scholar] [CrossRef]
- Tang, Z.; Shiryaev, V.S.; Furniss, D.; Sojka, L.; Sujecki, S.; Benson, T.M.; Seddon, A.B.; Churbanov, M.F. Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics. Opt. Mater. Express 2015, 5, 1722–1737. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sojka, L.; Tang, Z.; Jayasuriya, D.; Shen, M.; Nunes, J.; Furniss, D.; Farries, M.; Benson, T.M.; Seddon, A.B.; Sujecki, S. Milliwatt-Level Spontaneous Emission Across the 3.5–8 µm Spectral Region from Pr3+ Doped Selenide Chalcogenide Fiber Pumped with a Laser Diode. Appl. Sci. 2020, 10, 539. https://doi.org/10.3390/app10020539
Sojka L, Tang Z, Jayasuriya D, Shen M, Nunes J, Furniss D, Farries M, Benson TM, Seddon AB, Sujecki S. Milliwatt-Level Spontaneous Emission Across the 3.5–8 µm Spectral Region from Pr3+ Doped Selenide Chalcogenide Fiber Pumped with a Laser Diode. Applied Sciences. 2020; 10(2):539. https://doi.org/10.3390/app10020539
Chicago/Turabian StyleSojka, Lukasz, Zhuoqi Tang, Dinuka Jayasuriya, Meili Shen, Joel Nunes, David Furniss, Mark Farries, Trevor M. Benson, Angela B. Seddon, and Slawomir Sujecki. 2020. "Milliwatt-Level Spontaneous Emission Across the 3.5–8 µm Spectral Region from Pr3+ Doped Selenide Chalcogenide Fiber Pumped with a Laser Diode" Applied Sciences 10, no. 2: 539. https://doi.org/10.3390/app10020539
APA StyleSojka, L., Tang, Z., Jayasuriya, D., Shen, M., Nunes, J., Furniss, D., Farries, M., Benson, T. M., Seddon, A. B., & Sujecki, S. (2020). Milliwatt-Level Spontaneous Emission Across the 3.5–8 µm Spectral Region from Pr3+ Doped Selenide Chalcogenide Fiber Pumped with a Laser Diode. Applied Sciences, 10(2), 539. https://doi.org/10.3390/app10020539