Light-Activated Zirconium(IV) Phthalocyanine Derivatives Linked to Graphite Oxide Flakes and Discussion on Their Antibacterial Activity
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Material Syntheses
2.2. Material Characterization
2.3. Antibacterial Tests
3. Results
3.1. Spectroscopic Studies and Singlet Oxygen Generation
3.2. Antibacterial Tests
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Roguin, L.P.; Chiarante, N.; García Vior, M.C.; Marino, J. Zinc(II) phthalocyanines as photosensitizers for antitumor photodynamic therapy. Int. J. Biochem. Cell Biol. 2019, 114, 105575. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zheng, B.D.; Peng, X.H.; Li, S.Z.; Ying, J.W.; Zhao, Y.; Huang, J.D.; Yoon, J. Phthalocyanines as medicinal photosensitizers: Developments in the last five years. Coord. Chem. Rev. 2019, 379, 147–160. [Google Scholar] [CrossRef]
- Xia, C.; Wang, Y.; Chen, W.; Yu, W.; Wang, B.; Li, T. New Hydrophilic/Lipophilic Tetra-α-(4-carboxyphenoxy) Phthalocyanine Zinc-Mediated Photodynamic Therapy Inhibits the Proliferation of Human Hepatocellular Carcinoma Bel-7402 Cells by Triggering Apoptosis and Arresting Cell Cycle. Molecules 2011, 16, 1389–1401. [Google Scholar] [CrossRef] [PubMed]
- Nyamu, S.N.; Ombaka, L.; Masika, E.; Ng’ang’a, M. Antimicrobial photodynamic activity of phthalocyanine derivatives. Adv. Chem. 2018, 2018, 2598062. [Google Scholar] [CrossRef]
- Kędziora, A.; Speruda, M.; Krzyżewska, E.; Rybka, J.; Łukowiak, A.; Bugla-Płoskońska, G. Similarities and differences between silver ions and silver in nanoforms as antibacterial agents. Int. J. Mol. Sci. 2018, 19, 444. [Google Scholar] [CrossRef]
- Mikula, P.; Kalhotka, L.; Jancula, D.; Zezulka, S.; Korinkova, R.; Cerny, J.; Marsalek, B.; Toman, P. Evaluation of antibacterial properties of novel phthalocyanines against Escherichia coli—Comparison of analytical methods. J. Photochem. Photobiol. B Biol. 2014, 138, 230–239. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, H.; Gao, A.; Hou, A. Functional modification of cellulose fabrics with phthalocyanine derivatives and the UV light-induced antibacterial performance. Carbohydr. Polym. 2018, 201, 382–386. [Google Scholar] [CrossRef]
- da Silva, R.N.; Cunha, A.; Tomé, A.C. Phthalocyanine–sulfonamide conjugates: Synthesis and photodynamic inactivation of Gram-negative and Gram-positive bacteria. Eur. J. Med. Chem. 2018, 154, 60–67. [Google Scholar] [CrossRef]
- Aleksandrzak, M.; Kukulka, W.; Mijowska, E. Graphitic carbon nitride/graphene oxide/reduced graphene oxide nanocomposites for photoluminescence and photocatalysis. Appl. Surf. Sci. 2017, 398, 56–62. [Google Scholar] [CrossRef]
- Huo, P.; Zhao, P.; Wang, Y.; Liu, B.; Dong, M. An Effective Utilization of Solar Energy: Enhanced Photodegradation Efficiency of TiO2/Graphene-Based Composite. Energies 2018, 11, 630. [Google Scholar] [CrossRef]
- Liang, Q.; Zhang, M.; Liu, C.; Xu, S.; Li, Z. Sulfur-doped graphitic carbon nitride decorated with zinc phthalocyanines towards highly stable and efficient photocatalysis. Appl. Catal. A Gen. 2016, 519, 107–115. [Google Scholar] [CrossRef]
- Das, P.; Chakraborty, K.; Chakrabarty, S.; Ghosh, S.; Pal, T. Reduced graphene oxide—Zinc phthalocyanine composites as fascinating material for optoelectronic and photocatalytic applications. ChemistrySelect 2017, 2, 3297–3305. [Google Scholar] [CrossRef]
- Cheng, Z.; Dai, M.; Quan, X.; Li, S.; Zheng, D.; Liu, Y.; Yao, R. Synthesis and catalytic activity of activated carbon supported sulfonated cobalt phthalocyanine in the preparation of dimethyl disulfide. Appl. Sci. 2019, 9, 124. [Google Scholar] [CrossRef]
- Lukowiak, A.; Kedziora, A.; Strek, W. Antimicrobial graphene family materials: Progress, advances, hopes and fears. Adv. Colloid Interface Sci. 2016, 236, 101–112. [Google Scholar] [CrossRef]
- Anand, A.; Unnikrishnan, B.; Wei, S.C.; Chou, C.P.; Zhang, L.Z.; Huang, C.C. Graphene oxide and carbon dots as broad-spectrum antimicrobial agents—A minireview. Nanoscale Horiz. 2019, 4, 117–137. [Google Scholar] [CrossRef]
- Gerasymchuk, Y.; Lukowiak, A.; Wedzynska, A.; Kedziora, A.; Bugla-Ploskonska, G.; Piatek, D.; Bachanek, T.; Chernii, V.; Tomachynski, L.; Strek, W. New photosensitive nanometric graphite oxide composites as antimicrobial material with prolonged action. J. Inorg. Biochem. 2016, 159, 142–148. [Google Scholar] [CrossRef]
- Tomachynski, L.A.; Chernii, V.Y.; Volkov, S.V. Synthesis of dichloro phthalocyaninato complexes of titanium, zirconium, and hafnium. Russ. J. Inorg. Chem. 2002, 47, 254–257. [Google Scholar]
- Tomachynski, L.A.; Chernii, V.Y.; Gorbenko, H.N.; Filonenko, V.V.; Volkov, S.V. Synthesis, spectral properties, and antitumor activity of a new axially substituted phthalocyanine complex of zirconium(IV) with citric acid. Chem. Biodivers. 2004, 1, 862–867. [Google Scholar] [CrossRef]
- Tretyakova, I.N.; Chernii, V.Y.; Tomachynski, L.A.; Volkov, S.V. Synthesis and luminescent properties of new zirconium(IV) and hafnium(IV) phthalocyanines with various carbonic acids as out-planed ligands. Dyes Pigments 2007, 75, 67–72. [Google Scholar] [CrossRef]
- National Committee for Clinical Laboratory Standards. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—7th Edition; (M7-A5); Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2006; Volume 26. [Google Scholar]
- Carloni, P.; Damiani, E.; Greci, L.; Stipa, P.; Tanfani, F.; Tartaglini, E.; Wozniak, M. On the use of 1,3-diphenylisobenzofuran (DPBF). Reactions with carbon and oxygen centered radicals in model and natural systems. Res. Chem. Intermed. 1993, 19, 395–405. [Google Scholar] [CrossRef]
- Bayat, F.; Karimi, A. Design of photodynamic chitosan hydrogels bearing phthalocyanine-colistin conjugate as an antibacterial agent. Int. J. Biol. Macromol. 2019, 129, 927–935. [Google Scholar] [CrossRef] [PubMed]
- Ryskova, L.; Buchta, V.; Karaskova, M.; Rakusan, J.; Cerny, J.; Slezak, R. In vitro antimicrobial activity of light-activated phthalocyanines. Cent. Eur. J. Biol. 2013, 8, 168–177. [Google Scholar] [CrossRef]
- Teng, Q.; Chen, S.; Xie, W. Preparation of phthalocyanine immobilized bacterial cellulose nanocomposites for decoloration of dye wastewater: Key role of spacers. Appl. Sci. 2018, 8, 1021. [Google Scholar] [CrossRef]
- Yamada, M.; Nakamura, K.; Kameda, T.; Kobayashi, F.; Matsuki, A.; Tsuiki, H.; Higaki, S.; Iwasaka, Y.; Hayakawa, K. Function of rayon fibers with metallophthalocyanine derivatives: Potential of low-molecular weight polycyclic aromatic hydrocarbon removal and bacillus sp. removal. Chem. Pharm. Bull. 2015, 63, 38–42. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lukowiak, A.; Gerasymchuk, Y.; Wedzynska, A.; Tahershamsi, L.; Tomala, R.; Strek, W.; Piatek, D.; Korona-Glowniak, I.; Speruda, M.; Kedziora, A.; et al. Light-Activated Zirconium(IV) Phthalocyanine Derivatives Linked to Graphite Oxide Flakes and Discussion on Their Antibacterial Activity. Appl. Sci. 2019, 9, 4447. https://doi.org/10.3390/app9204447
Lukowiak A, Gerasymchuk Y, Wedzynska A, Tahershamsi L, Tomala R, Strek W, Piatek D, Korona-Glowniak I, Speruda M, Kedziora A, et al. Light-Activated Zirconium(IV) Phthalocyanine Derivatives Linked to Graphite Oxide Flakes and Discussion on Their Antibacterial Activity. Applied Sciences. 2019; 9(20):4447. https://doi.org/10.3390/app9204447
Chicago/Turabian StyleLukowiak, Anna, Yuriy Gerasymchuk, Anna Wedzynska, Leili Tahershamsi, Robert Tomala, Wieslaw Strek, Dominika Piatek, Izabela Korona-Glowniak, Mateusz Speruda, Anna Kedziora, and et al. 2019. "Light-Activated Zirconium(IV) Phthalocyanine Derivatives Linked to Graphite Oxide Flakes and Discussion on Their Antibacterial Activity" Applied Sciences 9, no. 20: 4447. https://doi.org/10.3390/app9204447
APA StyleLukowiak, A., Gerasymchuk, Y., Wedzynska, A., Tahershamsi, L., Tomala, R., Strek, W., Piatek, D., Korona-Glowniak, I., Speruda, M., Kedziora, A., & Bugla-Ploskonska, G. (2019). Light-Activated Zirconium(IV) Phthalocyanine Derivatives Linked to Graphite Oxide Flakes and Discussion on Their Antibacterial Activity. Applied Sciences, 9(20), 4447. https://doi.org/10.3390/app9204447