Preparation of n-Alkane/Polycaprolactone Phase-Change Microcapsules via Single Nozzle Electro-Spraying: Characterization on Their Formation, Structures and Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PCM/PCL Electrospraying Solutions
2.3. Production of Microencapsulation Structures by Electrospraying
2.4. Morphological Characterization of the Particles
2.5. Fourier Transform Infrared (FT-IR) Analysis of the Samples
2.6. Thermal Analyses of the Samples
3. Results and Discussion
3.1. Size and Morphology of Electro-Sprayed mPCM
3.2. Structure of Electro-Sprayed mPCM
3.3. Phase Change Properties of Electro-Sprayed mPCM
3.4. Thermal Stability of Electro-Sprayed mPCM
3.5. Structural Stability of the Electro-Sprayed mPCM
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sharma, A.; Tyagi, V.V.; Chen, C.R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 2009, 13, 318–345. [Google Scholar] [CrossRef]
- Zalba, B.; Marín, J.M.; Cabeza, L.F.; Mehling, H. Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications. Appl. Therm. Eng. 2003, 23, 251–283. [Google Scholar] [CrossRef]
- Shchukina, E.M.; Graham, M.; Zheng, Z.; Shchukin, D.G. Nanoencapsulation of phase change materials for advanced thermal energy storage systems. Chem. Soc. Rev. 2018, 47, 4156–4175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, N.; Yuan, Y.; Cao, X.; Du, Y.; Zhang, Z.; Gui, Y. Latent Heat Thermal Energy Storage Systems with Solid-Liquid Phase Change Materials: A Review. Adv. Eng. Mater. 2018, 20, 1700753. [Google Scholar] [CrossRef]
- Salaün, F. The Manufacture of Microencapsulated Thermal Energy Storage Compounds Suitable for Smart Textile. In Developments in Heat Transfer; Dos Santos Bernardes, M.A., Ed.; Intech: Rijeka, Croatia, 2011; pp. 171–198. [Google Scholar] [CrossRef] [Green Version]
- Mondal, S. Phase change materials for smart textiles—An overview. Appl. Therm. Eng. 2008, 28, 1536–1550. [Google Scholar] [CrossRef]
- Sarier, N.; Onder, E. Organic phase change materials and their textile applications: An overview. Thermochim. Acta 2012, 540, 7–60. [Google Scholar] [CrossRef]
- Hallaj, S.A.; Selman, J.R. A Novel Thermal Management System for Electric Vehicle Batteries Using Phase-Change Material. J. Electrochem. Soc. 2000, 147, 3231–3236. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, Z.; Yang, T.; Qin, D.; Li, S.; Zhang, G.; Haghighat, F.; Joybari, M.M. A review on macro-encapsulated phase change material for building envelope applications. Build. Environ. 2018, 144, 281–294. [Google Scholar] [CrossRef]
- Wang, T.; Jiang, Y.; Huang, J.; Wang, S. High thermal conductive paraffin/calcium carbonate phase change microcapsules based composites with different carbon network. Appl. Energy 2018, 218, 184–191. [Google Scholar] [CrossRef]
- Liu, L.; Alva, G.; Huang, X.; Fang, G. Preparation, heat transfer and flow properties of microencapsulated phase change materials for thermal energy storage. Renew. Sustain. Energy Rev. 2016, 66, 399–414. [Google Scholar] [CrossRef]
- Pan, L.; Tao, Q.; Zhang, S.; Wang, S.; Zhang, J.; Wang, S.; Wang, Z.; Zhang, Z. Preparation, characterization and thermal properties of micro-encapsulated phase change materials. Sol. Energy Mater. Sol. Cells 2012, 98, 66–70. [Google Scholar] [CrossRef]
- Bayés-García, L.; Ventolà, L.; Cordobilla, R.; Benages, R.; Calvet, T.; Cuevas-Diarte, M.A. Phase Change Materials (PCM) microcapsules with different shell compositions: Preparation, characterization and thermal stability. Sol. Energy Mater. Sol. Cells 2010, 94, 1235–1240. [Google Scholar] [CrossRef]
- Alkan, C.; Sarı, A.; Karaipekli, A. Preparation, thermal properties and thermal reliability of microencapsulated n-eicosane as novel phase change material for thermal energy storage. Energy Convers. Manag. 2011, 52, 687–692. [Google Scholar] [CrossRef]
- Salaün, F.; Devaux, E.; Bourbigot, S.; Rumeau, P. Development of Phase Change Materials in Clothing Part I: Formulation of Microencapsulated Phase Change. Text. Res. J. 2010, 80, 195–205. [Google Scholar] [CrossRef]
- Salaün, F.; Devaux, E.; Bourbigot, S.; Rumeau, P. Thermoregulating response of cotton fabric containing microencapsulated phase change materials. Thermochim. Acta 2010, 506, 82–93. [Google Scholar] [CrossRef]
- Umair, M.M.; Zhang, Y.; Iqbal, K.; Zhang, S.; Tang, B. Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review. Appl. Energy 2019, 235, 846–873. [Google Scholar] [CrossRef]
- Salaün, F.; Devaux, E.; Bourbigot, S.; Rumeau, P. Influence of process parameters on microcapsules loaded with n-hexadecane prepared by in situ polymerization. Chem. Eng. J. 2009, 155, 457–465. [Google Scholar] [CrossRef]
- Fredi, G.; Dorigato, A.; Fambri, L.; Pegoretti, A. Wax Confinement with Carbon Nanotubes for Phase Changing Epoxy Blends. Polymers 2017, 9, 405. [Google Scholar] [CrossRef] [Green Version]
- Salaün, F.; Bedek, G.; Devaux, E.; Dupont, D.; Gengembre, L. Microencapsulation of a cooling agent by interfacial polymerization: Influence of the parameters of encapsulation on poly(urethane-urea) microparticles characteristics. J. Membr. Sci. 2011, 370, 23–33. [Google Scholar] [CrossRef]
- Liu, X.; Lou, Y. Preparation of microencapsulated phase change materials by the sol-gel process and its application on textiles. Fibres Text. East. Eur. 2015, 23, 63–67. [Google Scholar]
- Fredi, G.; Dire, S.; Callone, E.; Ceccato, R.; Mondadori, F.; Pegoretti, A. Docosane-Organosilica Microcapsules for Structural Composites with Thermal Energy Storage/Release Capability. Materials 2019, 12, 1286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, J.C.; Ferri, A.; Giraud, S.; Jinping, G.; Salaün, F. Chitosan–carboxymethylcellulose-based polyelectrolyte complexation and microcapsule shell formulation. Int. J. Mol. Sci. 2018, 19, 2521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, J.C.; Salaün, F.; Giraud, S.; Ferri, A.; Guan, J. Surface behavior and bulk properties of aqueous chitosan and type-B gelatin solutions for effective emulsion formulation. Carbohydr. Polym. 2017, 173, 202–214. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Silva, L.; Rodríguez, J.F.; Carmona, M.; Romero, A.; Sánchez, P. Thermal and morphological stability of polystyrene microcapsules containing phase-change materials. J. Appl. Polym. Sci. 2011, 120, 291–297. [Google Scholar] [CrossRef]
- Alkan, C.; Aksoy, S.A.; Anayurt, R.A. Synthesis of poly (methyl methacrylate-co-acrylic acid)/n-eicosane microcapsules for thermal comfort in textiles. Text. Res. J. 2015, 85, 2051–2058. [Google Scholar] [CrossRef]
- Su, W.; Darkwa, J.; Kokogiannakis, G. Review of solid–liquid phase change materials and their encapsulation technologies. Renew. Sustain. Energy Rev. 2015, 48, 373–391. [Google Scholar] [CrossRef]
- Jamekhorshid, A.; Sadrameli, S.M.; Farid, M. A Review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renew. Sustain. Energy Rev. 2014, 31, 531–542. [Google Scholar] [CrossRef]
- Salaün, F. Microencapsulation technology for smart textile coatings. In Active Coatings for Smart Textiles; Hu, J., Ed.; Woodhead Publishing: Duxford, UK, 2016; pp. 179–220. [Google Scholar] [CrossRef]
- Zhang, S.C.; Campagne, C.; Salaun, F. Influence of Solvent Selection in the Electrospraying Process of Polycaprolactone. Appl. Sci. 2019, 9, 402. [Google Scholar] [CrossRef] [Green Version]
- Jaworek, A. Micro-and nanoparticle production by electrospraying. Powder Technol. 2007, 176, 18–35. [Google Scholar] [CrossRef]
- Jain, R.A. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 2000, 21, 2475–2490. [Google Scholar] [CrossRef]
- Bock, N.; Dargaville, T.R.; Woodruff, M.A. Electrospraying of polymers with therapeutic molecules: State of the art. Prog. Polym. Sci. 2012, 37, 1510–1551. [Google Scholar] [CrossRef] [Green Version]
- Fukui, Y.; Maruyama, T.; Iwamatsu, Y.; Fujii, A.; Tanaka, T.; Ohmukai, Y.; Matsuyama, H. Preparation of monodispersed polyelectrolyte microcapsules with high encapsulation efficiency by an electrospray technique. Colloids Surf. Physicochem. Eng. Asp. 2010, 370, 28–34. [Google Scholar] [CrossRef]
- Bock, N.; Woodruff, M.A.; Hutmacher, D.W.; Dargaville, T.R. Electrospraying, a Reproducible Method for Production of Polymeric Microspheres for Biomedical Applications. Polymers 2011, 3, 131–149. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Wang, L.; Huang, Y. Electrospun phase change fibers based on polyethylene glycol/cellulose acetate blends. Appl. Energy 2011, 88, 3133–3139. [Google Scholar] [CrossRef]
- McCann, J.T.; Marquez, M.; Xia, Y. Melt coaxial electrospinning: A versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers. Nano Lett. 2006, 6, 2868–2872. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Ke, H.; Dong, J.; Wei, Q.; Lin, J.; Zhao, Y.; Song, L.; Hu, Y.; Huang, F.; Gao, W.; et al. Effects of nano-SiO2 on morphology, thermal energy storage, thermal stability, and combustion properties of electrospun lauric acid/PET ultrafine composite fibers as form-stable phase change materials. Appl. Energy 2011, 88, 2106–2112. [Google Scholar] [CrossRef]
- Moghaddam, M.K.; Mortazavi, S.M.; Khayamian, T. Preparation of calcium alginate microcapsules containing n-nonadecane by a melt coaxial electrospray method. J. Electrost. 2015, 73, 56–64. [Google Scholar] [CrossRef]
- Moghaddam, M.K.; Mortazavi, S.M.; Khaymian, T. Micro/nano-encapsulation of a phase change material by coaxial electrospray method. Iran. Polym. J. 2015, 24, 759–774. [Google Scholar] [CrossRef]
- Kamali Moghaddam, M.; Mortazavi, S.M. Preparation, characterisation and thermal properties of calcium alginate/n-nonadecane microcapsules fabricated by electro-coextrusion for thermo-regulating textiles. J. Microencapsul. 2015, 32, 737–744. [Google Scholar] [CrossRef]
- Yuan, W.-J.; Wang, Y.-P.; Li, W.; Wang, J.-P.; Zhang, X.-X.; Zhang, Y.-K. Microencapsulation and characterization of polyamic acid microcapsules containing n-octadecane via electrospraying method. Mater. Express 2015, 5, 480–488. [Google Scholar] [CrossRef]
- Roy, J.C.; Giraud, S.; Ferri, A.; Mossotti, R.; Guan, J.; Salaun, F. Influence of process parameters on microcapsule formation from chitosan-Type B gelatin complex coacervates. Carbohydr. Polym. 2018, 198, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.-J.; Kim, C.-H.; Park, J.-K. Structure-property relationship in PCL/starch blend compatibilized with starch-g-PCL copolymer. J. Polym. Sci. Part B Polym. Phys. 1999, 37, 2430–2438. [Google Scholar] [CrossRef]
- Zhang, S.; Campagne, C.; Salaün, F. Preparation of Electrosprayed Poly(caprolactone) Microparticles Based on Green Solvents and Related Investigations on the Effects of Solution Properties as Well as Operating Parameters. Coatings 2019, 9, 84. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Marijnissen, J.C.; Wang, C.H. Microparticles developed by electrohydrodynamic atomization for the local delivery of anticancer drug to treat C6 glioma in vitro. Biomaterials 2006, 27, 3321–3332. [Google Scholar] [CrossRef]
- Entekhabi, E.; Haghbin Nazarpak, M.; Moztarzadeh, F.; Sadeghi, A. Design and manufacture of neural tissue engineering scaffolds using hyaluronic acid and polycaprolactone nanofibers with controlled porosity. Mater. Sci. Eng. C 2016, 69, 380–387. [Google Scholar] [CrossRef]
- Bordes, C.; Freville, V.; Ruffin, E.; Marote, P.; Gauvrit, J.Y.; Briancon, S.; Lanteri, P. Determination of poly(epsilon-caprolactone) solubility parameters: Application to solvent substitution in a microencapsulation process. Int. J. Pharm. 2010, 383, 236–243. [Google Scholar] [CrossRef]
- Pereira, C.N.; Vebber, G.C. A Relationship Between the Heat of Vaporization, Surface Tension, and the Solubility Parameters, Which Includes the Ratio of the Coordination Numbers, Based on Stefan’s Rule. Polym. Eng. Sci. 2018, 59, 312–321. [Google Scholar] [CrossRef]
- Valo, H.; Peltonen, L.; Vehvilainen, S.; Karjalainen, M.; Kostiainen, R.; Laaksonen, T.; Hirvonen, J. Electrospray encapsulation of hydrophilic and hydrophobic drugs in poly(l-lactic acid) nanoparticles. Small 2009, 5, 1791–1798. [Google Scholar] [CrossRef]
- Mochane, M.J.; Luyt, A.S. Preparation and properties of polystyrene encapsulated paraffin wax as possible phase change material in a polypropylene matrix. Thermochim. Acta 2012, 544, 63–70. [Google Scholar] [CrossRef]
- Jenquin, M.R.; McGinity, J.W. Characterization of acrylic resin matrix films and mechanisms of drug-polymer interactions. Int. J. Pharm. 1994, 101, 23–34. [Google Scholar] [CrossRef]
- Dubernet, C. Thermoanalysis of microspheres. Thermochim. Acta 1995, 248, 259–269. [Google Scholar] [CrossRef]
Sample Label | Latent Heat (J·g−1) | Tonset (°C) | Tc or Tm (°C) | Tend (°C) | LC (%) | EE (%) | Xc(th) (%) | Xc(m) (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n-hexadecane | heating | 199.4 ± 2.2 | 17.9 | 20.7 | 23.7 | ||||||||
cooling | 195.9 ± 4.7 | 16.2 | 16.0 | 13.0 | |||||||||
PCL-EA | heating | 57.0 ± 1.1 | 54.9 | 56.4 | 58.5 | ||||||||
cooling | 54.7 ± 1.3 | 41.2 | 39.5 | 37.2 | |||||||||
n-hecxadecane /PCL(30/70)-EA | heating | 52.1 ± 7.3 | 32.5 ± 1.5 | 17.7 | 55.0 | 19.9 | 56.2 | 20.2 | 57.7 | 26.1 ± 3.7 | 87.1 ± 12.2 | 33.3 ± 1.5 | 31.5 ± 1.5 |
cooling | 51.7 ± 6.6 | 33.6 ± 3.9 | 16.0 | 41.5 | 15.9 | 39.9 | 14.7 | 37.1 | |||||
n-hecxadecane /PCL(50/50)-EA | heating | 88.7 ± 4.1 | 25.0 ± 0.6 | 17.6 | 55.0 | 19.2 | 56.2 | 21.2 | 57.8 | 44.5 ± 2.0 | 89.0 ± 4.1 | 35.8 ± 0.8 | 32.0 ± 0.7 |
cooling | 88.1 ± 1.8 | 25.7 ± 0.5 | 16.1 | 40.9 | 16.4 | 38.7 | 14.0 | 36.0 | |||||
n-hecxadecane /PCL(70/30)-EA | heating | 113.2 ± 7.2 | 24.1 ± 1.1 | 17.5 | 55.0 | 19.5 | 56.2 | 22.7 | 58.4 | 56.8 ± 3.7 | 81.1 ± 5.2 | 57.7 ± 2.8 | 40.0 ± 1.9 |
cooling | 111.7 ± 5.1 | 25.9 ± 1.8 | 16.1 | 40.8 | 16.4 | 38.8 | 13.6 | 35.8 | |||||
PCL-Chl | heating | 59.6 ± 2.0 | 55.6 | 57.6 | 59.8 | ||||||||
cooling | 57.2 ± 1.9 | 41.5 | 37.9 | 34.4 | |||||||||
n-hecxadecane PCL(30/70)-Chl | heating | 35.6 ± 0.7 | 31.6 ± 1.6 | 15.9 | 54.9 | 18.1 | 56.2 | 19.1 | 57.8 | 17.8 ± 0.4 | 59.4 ± 1.2 | 32.4 ± 1.6 | 27.6 ± 1.4 |
cooling | 35.3 ± 1.0 | 33.2 ± 1.6 | 13.6 | 41.2 | 12.8 | 39.0 | 11.9 | 36.1 | |||||
n-hecxadecane PCL(50/50)-Chl | heating | 72.4 ± 0.6 | 25.0 ± 0.3 | 17.2 | 55.0 | 19.2 | 56.3 | 21.0 | 58.0 | 36.3 ± 0.3 | 72.6 ± 0.6 | 35.8 ± 0.4 | 28.1 ± 0.1 |
cooling | 71.1 ± 0.4 | 26.0 ± 0.5 | 15.8 | 41.1 | 14.8 | 39.4 | 12.4 | 36.6 | |||||
n-hecxadecane /PCL(70/30)-Chl | heating | 99.4 ± 5.7 | 17.0 ± 1.5 | 17.5 | 55.0 | 19.5 | 56.2 | 21.0 | 57.7 | 49.9 ± 2.8 | 71.2 ± 4.1 | 40.5 ± 2.7 | 24.2 ± 2.2 |
cooling | 96.9 ± 4.7 | 15.8 ± 0.4 | 15.7 | 41.0 | 15.5 | 38.8 | 13.8 | 35.6 |
Sample Label | Latent Heat (J·g−1) | Tonset (°C) | Tm or Tc (°C) | Tend (°C) | LC (%) | EE (%) | Xc(th) (%) | Xc(m) (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n-eicosane | heating | 205.3 ± 1.7 | 34.3 | 36.9 | 39.2 | ||||||||
cooling | 204.2 ± 1.9 | 35.7 | 30.7 | 28.7 | |||||||||
PCL-EA | heating | 57.0 ± 1.1 | 54.9 | 56.4 | 58.5 | ||||||||
cooling | 54.7 ± 1.3 | 41.2 | 39.5 | 37.2 | |||||||||
n-eicosane /PCL(30/70)-EA | heating | 42.3 ± 2.0 | 32.1 ± 1.1 | 32.8 | 55.3 | 35.5 | 57.0 | 36.6 | 59.0 | 20.6 ± 1.0 | 68.6 ± 3.2 | 32.9 ± 1.1 | 29.0 ± 1.0 |
cooling | 41.2 ± 3.1 | 31.3 ± 2.7 | 34.2 | 41.4 | 28.1 | 40.3 | 27.3 | 38.5 | |||||
n-eicosane /PCL(50/50)-EA | heating | 72.4 ± 7.3 | 21.2 ± 1.2 | 33.2 | 55.5 | 36.3 | 57.0 | 37.8 | 58.7 | 35.3 ± 3.4 | 70.6 ± 7.2 | 30.5 ± 1.7 | 23.5 ± 1.3 |
cooling | 72.1 ± 7.1 | 21.6 ± 1.6 | 34.8 | 42.0 | 29.4 | 40.6 | 28.2 | 39.0 | |||||
n-eicosane /PCL(70/30)-EA | heating | 107.2 ± 2.4 | 17.8 ± 0.5 | 33.9 | 55.8 | 36.4 | 57.1 | 38.4 | 58.6 | 52.3 ± 1.1 | 74.7 ± 1.6 | 42.5 ± 1.3 | 26.7 ± 0.9 |
cooling | 106.9 ± 2.6 | 17.7 ± 0.7 | 35.4 | 42.9 | 31.5 | 41.2 | 30.0 | 39.6 | |||||
PCL-Chl | heating | 59.6 ± 2.0 | 55.6 | 57.6 | 59.8 | ||||||||
cooling | 57.2 ± 1.9 | 41.5 | 37.9 | 34.4 | |||||||||
n-eicosane /PCL(30/70)-Chl | heating | 60.2 ± 0.2 | 37.3 ± 2.4 | 34.0 | 55.4 | 36.0 | 56.7 | 37.1 | 58.1 | 29.3 ± 0.1 | 97.8 ± 0.4 | 38.2 ± 2.4 | 37.9 ± 2.4 |
cooling | 59.9 ± 1.3 | 38.0 ± 5.5 | 35.2 | 41.6 | 30.9 | 40.6 | 30.2 | 39.0 | |||||
n-eicosane /PCL(50/50)-Chl | heating | 94.3 ± 0.8 | 28.1 ± 2.5 | 34.2 | 55.4 | 36.3 | 56.7 | 37.7 | 58.6 | 45.9 ± 0.4 | 91.9 ± 0.8 | 40.3 ± 3.5 | 37.2 ± 5.4 |
cooling | 93.1 ± 3.3 | 29.8 ± 4.1 | 34.5 | 41.9 | 32.1 | 40.6 | 30.9 | 39.0 | |||||
n-eicosane /PCL(70/30)-Chl | heating | 121.1 ± 1.9 | 17.4 ± 0.6 | 34.3 | 55.6 | 36.7 | 57.0 | 39.6 | 58.3 | 59.0 ± 0.9 | 84.3 ± 0.7 | 41.6 ± 1.3 | 30.4 ± 1.0 |
cooling | 117.4 ± 1.2 | 17.2 ± 0.5 | 35.5 | 43.4 | 31.2 | 41.5 | 29.7 | 39.9 |
Sample | Initial Degradation Temperature (°C) | First Step | Second Step | ||||
---|---|---|---|---|---|---|---|
Weight Loss (100–350 °C) (%) | Maximum Degradation Temperature (°C) | Maximum Degradation Rate (%/°C) | Weight Loss (350–500 °C) (%) | Maximum Degradation Temperature (°C) | Maximum Degradation Rate (%.°C−1) | ||
PCL-EA | 358.9 ± 3.1 | 4.2 ± 0.9 | - | - | 95.0 ± 1.1 | 411.4 ± 0.4 | 2.2 ± 0.1 |
PCL-Chl | 369.2 ± 3.6 | 3.0 ± 0.4 | - | - | 96.1 ± 0.4 | 413.4 ± 1.6 | 2.3 ± 0.02 |
Raw n-hexadecane | 151.6 ± 1.1 | 99.4 ± 0.1 | 246.6 ± 0.7 | 2.2 ± 0.1 | - | - | - |
n-hexadecane/PCL (30/70)-EA | 150.8 ± 1.9 | 29.6 ± 1.7 | 174.3 ± 9.1 | 0.3 ± 0.1 | 69.6 ± 1.9 | 412.9 ± 3.4 | 2.0 ± 0.9 |
n-hexadecane/PCL (50/50)-EA | 145.8 ± 2.3 | 39.5 ± 5.7 | 183.5 ± 10.3 | 0.5 ± 0.2 | 59.3 ± 6.3 | 411.9 ± 2.4 | 1.4 ± 0.2 |
n-hexadecane/PCL (70/30)-EA | 149.5 ± 5.8 | 59.2 ± 4.3 | 214.9 ± 5.9 | 0.9 ± 0.2 | 39.9 ± 8.5 | 413.3 ± 1.4 | 1.0 ± 0.2 |
n-hexadecane/PCL (30/70)-Chl | 150.1 ± 3.1 | 27.3 ± 0.9 | 173.5 ± 2.7 | 0.3 ± 0.03 | 72.0 ± 1.0 | 413.7 ± 0.3 | 1.8 ± 0.02 |
n-hexadecane/PCL (50/50)-Chl | 147.3 ± 4.6 | 37.4 ± 2.4 | 177.5 ± 1.6 | 0.4 ± 0.04 | 61.8 ± 2.8 | 412.5 ± 1.5 | 1.5 ± 0.1 |
n-hexadecane/PCL (70/30)-Chl | 151.8 ± 6.1 | 60.4 ± 4.0 | 217.0 ± 1.0 | 0.9 ± 0.1 | 38.9 ± 7.3 | 414.7 ± 2.4 | 0.9 ± 0.1 |
Sample | Initial Degradation Temperature (°C) | First Step | Second Step | ||||
---|---|---|---|---|---|---|---|
Weight Loss (100–350 °C) (%) | Maximum Degradation Temperature (°C) | Maximum Degradation Rate (%/°C) | Weight Loss (350–500 °C) (%) | Maximum Degradation Temperature (°C) | Maximum Degradation Rate (%/°C) | ||
PCL-EA | 358.9 ± 3.1 | 4.2 ± 0.9 | - | - | 95.0 ± 1.1 | 411.4 ± 0.4 | 2.2 ± 0.1 |
PCL-Chl | 369.2 ± 3.6 | 3.0 ± 0.4 | - | - | 96.1 ± 0.4 | 413.4 ± 1.6 | 2.3 ± 0.02 |
raw n-eicosane | 178.8 ± 1.3 | 99.9 ± 0.1 | 269.1 ± 0.01 | 2.6 ± 0.1 | - | - | - |
n-eicosane/PCL (30/70)-EA | 196.4 ± 9.7 | 26.9 ± 3.0 | 236.1 ± 6.1 | 0.4 ± 0.1 | 72.4 ± 5.4 | 414.9 ± 0.6 | 1.7 ± 0.1 |
n-eicosane/PCL (50/50)-EA | 194.0 ± 13.6 | 44.1 ± 4.9 | 254.8 ± 3.5 | 0.9 ± 0.04 | 55.3 ± 5.4 | 413.6 ± 2.3 | 1.3 ± 0.2 |
n-eicosane/PCL (70/30)-EA | 188.8 ± 14.0 | 58.1 ± 6.8 | 248.2 ± 12.9 | 1.2 ± 0.2 | 41.6 ± 6.8 | 407.0 ± 5.1 | 1.0 ± 0.3 |
n-eicosane/PCL (30/70)-Chl | 194.3 ± 11.8 | 30.6 ± 4.4 | 237.3 ± 4.9 | 0.4 ± 0.1 | 68.8 ± 4.3 | 414.4 ± 1.8 | 1.6 ± 0.1 |
n-eicosane/PCL (50/50)-Chl | 195.9 ± 7.8 | 49.5 ± 4.0 | 268.1 ± 1.0 | 1.0 ± 0.1 | 49.8 ± 3.7 | 414.1 ± 2.2 | 1.2 ± 0.1 |
n-eicosane/PCL (70/30)-Chl | 186.8 ± 10.5 | 69.3 ± 1.1 | 269.5 ± 5.6 | 1.3 ± 0.2 | 30.2 ± 0.8 | 413.2 ± 3.5 | 0.7 ± 0.04 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Campagne, C.; Salaün, F. Preparation of n-Alkane/Polycaprolactone Phase-Change Microcapsules via Single Nozzle Electro-Spraying: Characterization on Their Formation, Structures and Properties. Appl. Sci. 2020, 10, 561. https://doi.org/10.3390/app10020561
Zhang S, Campagne C, Salaün F. Preparation of n-Alkane/Polycaprolactone Phase-Change Microcapsules via Single Nozzle Electro-Spraying: Characterization on Their Formation, Structures and Properties. Applied Sciences. 2020; 10(2):561. https://doi.org/10.3390/app10020561
Chicago/Turabian StyleZhang, Shengchang, Christine Campagne, and Fabien Salaün. 2020. "Preparation of n-Alkane/Polycaprolactone Phase-Change Microcapsules via Single Nozzle Electro-Spraying: Characterization on Their Formation, Structures and Properties" Applied Sciences 10, no. 2: 561. https://doi.org/10.3390/app10020561
APA StyleZhang, S., Campagne, C., & Salaün, F. (2020). Preparation of n-Alkane/Polycaprolactone Phase-Change Microcapsules via Single Nozzle Electro-Spraying: Characterization on Their Formation, Structures and Properties. Applied Sciences, 10(2), 561. https://doi.org/10.3390/app10020561