Power Flow Analysis on the Dual Input Transmission Mechanism of Small Wind Turbine Systems
Abstract
:1. Introduction
2. Mathematical Model for a Small Wind Turbine System
2.1. Wind Power Model
2.2. Synchronous Generator
2.3. Gear Train Mechanism
2.4. Adjustable Flywheel Mechanism
3. Computational Algorithm
4. Numerical Results and Discussion
4.1. Magnetic Flux Control and Power Flow Analysis
4.2. Variable Inertial Flywheel
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cetin, N.S.; Yurdusev, M.A.; Ata, R.; Özdemir, A. Assessment of optimum tip speed ratio of wind turbines. Math. Comput. Appl. 2005, 10, 147–154. [Google Scholar]
- Chen, K. Numerical Study of HAWT with Twisted Blade. Master’s Thesis, National Taiwan University of Science and Technology, Taipei, Taiwan, 2005. [Google Scholar]
- Bunlung, N.; Somporn, S.; Somchai, C. Development of a wind turbine simulator for wind generator testing. Int. Energy J. 2007, 8. Available online: http://www.rericjournal.ait.ac.th/index.php/reric/article/view/173 (accessed on 17 October 2020).
- Freudenstein, F.; Yang, A.T. Kinematics and Statics of a Coupled Epicyclic Spur-Gear Train. Mech. Mach. Theory 1972, 7, 263–275. [Google Scholar] [CrossRef]
- Velex, P.; Flamand, L. Dynamic Response of Planetary Trains to Mesh Parametric Excitations. J. Mech. Des. Trans. ASME 1996, 118, 7–14. [Google Scholar] [CrossRef]
- Özgüven, H.N.; Houser, D.R. Mathematical models used in gear dynamics—A review. J. Sound Vib. 1988, 121, 383–411. [Google Scholar] [CrossRef]
- Chang, H.C. Conceptual and Topological Design for Variable Moment of Inertia Flywheels. Master’s Thesis, Kun Shan University, Tainan, Taiwan, 2007. [Google Scholar]
- Van de Ven, J. Fluidic Variable Inertia Flywheel. In Proceedings of the 7th International Energy Conversion Engineering Conference, Denver, CO, USA, 2–5 August 2009. [Google Scholar]
- Hasan, W.U.I. Variable speed wind turbine control system: Design & Model. J. Indep. Stud. Res. Comput. 2010, 8, 44–51. [Google Scholar]
- IEC 61400-2:2013 Wind Turbines—Design Requirements for Small Wind Turbines. Available online: https://collections.iec.ch/std/series/iec61400-2%7Bed3.0%7Den.nsf/doc.xsp?open&documentId=E6E2B42DB46F6F2CC1257CD6005860F5 (accessed on 17 October 2020).
- Drew, D.R.; Barlow, J.F.; Cockerill, T.T. Estimating the potential yield of small wind turbines in urban areas: A case study for Greater London, UK. J. Wind Eng. Ind. Aerodyn. 2013, 115, 104–111. [Google Scholar] [CrossRef] [Green Version]
- Kamp, L.M.; Vanheule, L.F.I. Review of the small wind turbine sector in Kenya: Status and bottlenecks for growth. Renew. Sustain. Energy Rev. 2015, 49, 470–480. [Google Scholar] [CrossRef]
- Lopez-Gonzalez, A.; Ranaboldo, M.; Domenech, B.; Ferrer-Marti, L. Evaluation of small wind turbines for rural electrification: Case studies from extreme climatic conditions in Venezuela. Energy 2020, 209, 118450. [Google Scholar] [CrossRef]
- Anup, K.C.; Jonathan, W.; Tania, U. Urban wind conditions and small wind turbines in the built environment: A review. Renew. Energy 2019, 131, 268–283. [Google Scholar]
- Battisti, L.; Benini, A.; Brighenti, A.; Dell’Anna, S.; Raciti Castelli, M. Small wind turbine effectiveness in the urban environment. Renew. Energy 2018, 129, 102–113. [Google Scholar] [CrossRef]
- Wu, Y.K.; Lin, H.J.; Lin, J.H. Certification and testing technology for small wind turbine in Taiwan. Sustain. Energy Technol. Assess. 2019, 31, 34–42. [Google Scholar]
- Carbo Molina, A.; Bartoli, G.; De Troyer, T. Wind tunnel testing of small vertical-axis wind turbines in turbulent flows. Procedia Eng. 2017, 199, 3176–3181. [Google Scholar] [CrossRef]
- Evans, S.P.; Bradley, D.R.; Clausen, P.D. Development and experimental verification of a 5kW small wind turbine aeroelastic model. J. Wind Eng. Ind. Aerodyn. 2018, 181, 104–111. [Google Scholar] [CrossRef]
- Kot, R.; Rolak, M.; Malinowski, M. Comparison of maximum peak power tracking algorithm for a small wind turbine. Math. Comput. Simul. 2013, 91, 29–40. [Google Scholar] [CrossRef]
- Lipian, M.; Dobrev, I.; Massouh, F.; Jozwik, K. Small wind turbine argumentation: Numerical investigations of shrouded- and twin-rotor wind turbines. Energy 2020, 201, 11758. [Google Scholar] [CrossRef]
- ElCheikh, A.; Elkhoury, M.; Kiwata, T.; Kono, T. Performance analysis of a small-scale orthopter-type vertical axis wind turbine. J. Wind Eng. Ind. Aerodyn. 2018, 180, 19–33. [Google Scholar] [CrossRef]
- Kishore, R.A.; Pyria, S. Design and experimental verification of a high efficiency small wind energy portable turbine (SWEPT). J. Wind Eng. Ind. Aerodyn. 2013, 118, 12–19. [Google Scholar] [CrossRef]
- Martin, G.H. Epicyclics with Two Inputs: Kinematics and Dynamics in Machine; Waveland Press, Inc.: Long Grove, IL, USA, 2002; p. 284. [Google Scholar]
- Huang, Y.; Zhang, L. Design of planetary gears for wind power transmission mechanism. In International Conference on Applications and Techniques in Cyber Intelligence ATCI 2019; Abawajy, J., Choo, K.K., Islam, R., Xu, Z., Atiquzzaman, M., Eds.; Springer: Cham, Switzerland, 2020; Volume 1017. [Google Scholar] [CrossRef]
- Anekar, N.; Deshmukh, S.; Nimbalkar, S. Planetary Helical Gear System. In Proceedings of the International Conference of Science and Technology, Pune, India, 21–22 February 2014. [Google Scholar]
- Klimina, L.; Shalimova, E. Dual-propeller wind Turbine with a differential Planetary Gear. Mehatronika Avtom. Upr. 2017, 18, 679–684. [Google Scholar] [CrossRef]
- Knight, A. Power and Torque; Synchronous Machine. Available online: http://people.ucalgary.ca/~aknigh/electrical_machines/synchronous/s_power_torque.html (accessed on 6 October 2020).
Terms | Values | ||||||
---|---|---|---|---|---|---|---|
Gear Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Number of teeth | 60 | 80 | 90 | 20 | 30 | 30 | 20 |
Gear Number | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
Number of teeth | 20 | 30 | 30 | 20 | 70 | 70 | 75 |
Gear | m (mm) | F (mm) | Gear | m (mm) | F (mm) |
---|---|---|---|---|---|
1 | 5 | 20 | 8 | 6 | 60 |
2 | 5 | 20 | 9 | 6 | 60 |
3 | 5 | 20 | 10 | 6 | 60 |
4 | 6 | 60 | 11 | 6 | 60 |
5 | 6 | 60 | 12 | 5 | 20 |
6 | 6 | 60 | 13 | 5 | 20 |
7 | 6 | 60 | 14 | 5 | 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, A.-D.; Hung, T.-P.; Kuang, J.-H.; Tsai, H.-A. Power Flow Analysis on the Dual Input Transmission Mechanism of Small Wind Turbine Systems. Appl. Sci. 2020, 10, 7333. https://doi.org/10.3390/app10207333
Lin A-D, Hung T-P, Kuang J-H, Tsai H-A. Power Flow Analysis on the Dual Input Transmission Mechanism of Small Wind Turbine Systems. Applied Sciences. 2020; 10(20):7333. https://doi.org/10.3390/app10207333
Chicago/Turabian StyleLin, Ah-Der, Tsung-Pin Hung, Jao-Hwa Kuang, and Hsiu-An Tsai. 2020. "Power Flow Analysis on the Dual Input Transmission Mechanism of Small Wind Turbine Systems" Applied Sciences 10, no. 20: 7333. https://doi.org/10.3390/app10207333
APA StyleLin, A. -D., Hung, T. -P., Kuang, J. -H., & Tsai, H. -A. (2020). Power Flow Analysis on the Dual Input Transmission Mechanism of Small Wind Turbine Systems. Applied Sciences, 10(20), 7333. https://doi.org/10.3390/app10207333