Rainfall Standard of Disaster Prediction for Agricultural Droughts in S. Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Damage from Agricultural Droughts
2.2. Local Rainfall Observatories and Rainfall Status
2.3. Setting Up Reference Points for Disaster-Prediction Rainfall Relevant to Agricultural Drought Damage
2.4. Linear Regression Analysis
3. Results
3.1. Setting Up Reference Points for Rainfall in View of Disaster Prevention Relevant to Agricultural Droughts
3.2. Setting Up Rainfall in View of Disaster Reduction Relevant to Agricultural Droughts
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
No. | Station Index | Station Name | No. | Station Index | Station Name | No. | Station Index | Station Name |
---|---|---|---|---|---|---|---|---|
1 | 90 | Sokcho | 24 | 156 | Gwangju | 47 | 243 | Buan |
2 | 95 | Cheorwon | 25 | 159 | Busan | 48 | 244 | Imsil |
3 | 100 | Daegwallyeong | 26 | 162 | Tongyeong | 49 | 245 | Jeongeup |
4 | 101 | Chun Cheon | 27 | 165 | Mokpo | 50 | 247 | Namwon |
5 | 105 | Gangneung | 28 | 168 | Yeosu | 51 | 248 | Jangju |
6 | 108 | Seoul | 29 | 170 | Wando | 52 | 256 | Juam |
7 | 112 | Incheon | 30 | 184 | Jeju | 53 | 260 | Jangheung |
8 | 114 | Won-ju | 31 | 185 | Gosan | 54 | 261 | Goheung |
9 | 115 | Ulleungdo | 32 | 188 | Seongsan | 55 | 262 | Goheung |
10 | 119 | Suwon | 33 | 189 | Seogwipo | 56 | 271 | Bonghwa |
11 | 127 | Chungju | 34 | 192 | Jinju | 57 | 272 | Youngju |
12 | 129 | Seosan | 35 | 201 | Gangjwa | 58 | 273 | Mungyeong |
13 | 130 | Uljin | 36 | 202 | Yangpyeong | 59 | 277 | Yeongdeok |
14 | 131 | Cheongju | 37 | 203 | Icheon | 60 | 278 | Uiseong |
15 | 133 | Daejeon | 38 | 211 | Inje | 61 | 279 | Gumi |
16 | 135 | Chupungryeong | 39 | 212 | Hongcheon | 62 | 281 | Yeongcheon |
17 | 136 | Andong | 40 | 216 | Taebaek | 63 | 284 | Geochang |
18 | 138 | Pohang | 41 | 221 | Jecheon | 64 | 285 | Hapcheon |
19 | 140 | Gunsan | 42 | 226 | Boeun | 65 | 288 | Miryang |
20 | 143 | Daegu | 43 | 232 | Cheonan | 66 | 289 | Sancheong |
21 | 146 | Jeonju | 44 | 235 | Boryeong | 67 | 294 | Geoje |
22 | 152 | Ulsan | 45 | 236 | Buyeo | 68 | 295 | Namhae |
23 | 155 | Changwon | 46 | 238 | Geumsan |
Region Index | Station Index | Thiessen Weight | Station Index | Thiessen Weight | Station Index | Thiessen Weight |
---|---|---|---|---|---|---|
GW | 90 | 0.04 | 95 | 0.06 | 100 | 0.16 |
101 | 0.10 | 105 | 0.06 | 114 | 0.09 | |
130 | 0.01 | 211 | 0.15 | 212 | 0.11 | |
216 | 0.14 | 221 | 0.08 | 271 | 0.01 | |
GG | 95 | 0.19 | 101 | 0.04 | 108 | 0.15 |
112 | 0.02 | 114 | 0.01 | 119 | 0.18 | |
201 | 0.06 | 202 | 0.15 | 203 | 0.15 | |
212 | 0.01 | 232 | 0.04 | |||
GN | 152 | 0.02 | 155 | 0.09 | 159 | 0.03 |
162 | 0.04 | 192 | 0.12 | 248 | 0.02 | |
279 | 0.10 | 284 | 0.11 | 285 | 0.12 | |
288 | 0.15 | 289 | 0.12 | 294 | 0.04 | |
295 | 0.05 | |||||
GB | 130 | 0.04 | 135 | 0.10 | 136 | 0.08 |
138 | 0.08 | 143 | 0.07 | 152 | 0.03 | |
216 | 0.01 | 226 | 0.01 | 271 | 0.07 | |
272 | 0.06 | 273 | 0.09 | 277 | 0.09 | |
278 | 0.11 | 281 | 0.10 | 284 | 0.01 | |
285 | 0.02 | 288 | 0.02 | |||
GJ | 156 | 1.00 | ||||
DG | 143 | 0.93 | 285 | 0.07 | ||
DJ | 133 | 0.95 | 238 | 0.05 | ||
BS | 152 | 0.10 | 159 | 0.90 | ||
SE | 108 | 1.00 | ||||
SJ | 131 | 0.44 | 133 | 0.34 | 232 | 0.22 |
US | 152 | 0.98 | 288 | 0.02 | ||
IC | 112 | 0.55 | 201 | 0.45 | ||
JN | 156 | 0.17 | 165 | 0.14 | 168 | 0.06 |
170 | 0.06 | 192 | 0.01 | 245 | 0.03 | |
247 | 0.05 | 256 | 0.17 | 260 | 0.13 | |
261 | 0.09 | 262 | 0.09 | 295 | 0.01 | |
JB | 135 | 0.01 | 140 | 0.08 | 146 | 0.17 |
156 | 0.01 | 236 | 0.01 | 238 | 0.10 | |
243 | 0.10 | 244 | 0.09 | 245 | 0.16 | |
247 | 0.11 | 248 | 0.13 | 284 | 0.02 | |
JJ | 184 | 0.30 | 185 | 0.19 | 188 | 0.26 |
189 | 0.25 | |||||
CN | 129 | 0.29 | 131 | 0.01 | 133 | 0.05 |
140 | 0.04 | 232 | 0.20 | 235 | 0.14 | |
236 | 0.19 | 238 | 0.08 | |||
CB | 114 | 0.01 | 127 | 0.26 | 131 | 0.17 |
133 | 0.02 | 135 | 0.08 | 203 | 0.04 | |
221 | 0.13 | 226 | 0.16 | 232 | 0.02 | |
238 | 0.05 | 272 | 0.04 | 273 | 0.03 |
References
- Mishra, A.K.; Singh, V.P. Drought modeling—A review. J. Hydrol. 2011, 403, 157–175. [Google Scholar] [CrossRef]
- Acuna-Soto, R.; Stahle, D.W.; Cleaveland, M.K.; Therrell, M.D. Megadrought and megadeath in 16th century Mexico. Emerg. Infect. Dis. 2002, 8, 360–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodhouse, C.A.; Overpeck, J.T. 2000 Years of Drought Variability in the Central United States. Bull. Am. Meteorol. Soc. 1998, 79, 2693–2714. [Google Scholar] [CrossRef]
- Buckley, B.M.; Anchukaitis, K.J.; Penny, D.; Fletcher, R.; Cook, E.R.; Sano, M.; Nam, L.C.; Wichienkeeo, A.; Minh, T.T.; Hong, T.M. Climate as a contributing factor in the demise of Angkor, Cambodia. Proc. Natl. Acad. Sci. USA 2010, 107, 6748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shanahan, T.M.; Overpeck, J.T.; Anchukaitis, K.J.; Beck, J.W.; Cole, J.E.; Dettman, D.L.; Peck, J.A.; Scholz, C.A.; King, J.W. Atlantic Forcing of Persistent Drought in West Africa. Science 2009, 324, 377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benson, L.; Petersen, K.; Stein, J. Anasazi (Pre-Columbian Native-American) Migrations During The Middle-12Th and Late-13th Centuries—Were they Drought Induced? Clim. Chang. 2007, 83, 187–213. [Google Scholar] [CrossRef] [Green Version]
- McKee, T.B. The Relationship of Drought Frequency and Duration of Time Scales. In Proceedings of the Eighth Conference on Applied Climatology, Anaheim, CA, USA, 12–17 January 1993; pp. 17–22. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Paulo, A.A.; Ferreira, E.; Coelho, C.; Pereira, L.S. Drought class transition analysis through Markov and Loglinear models, an approach to early warning. Agric. Water Manag. 2005, 77, 59–81. [Google Scholar] [CrossRef]
- Bacanli, U.G.; Firat, M.; Dikbas, F. Adaptive Neuro-Fuzzy Inference System for drought forecasting. Stoch. Environ. Res. Risk Assess. 2009, 23, 1143–1154. [Google Scholar] [CrossRef]
- Yuan, X.; Wood, E.F.; Luo, L.; Pan, M. A first look at Climate Forecast System version 2 (CFSv2) for hydrological seasonal prediction. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Cancelliere, A.; Mauro, G.D.; Bonaccorso, B.; Rossi, G. Drought forecasting using the Standardized Precipitation Index. Water Resour. Manag. 2007, 21, 801–819. [Google Scholar] [CrossRef]
- Jalalkamali, A.; Moradi, M.; Moradi, N. Application of several artificial intelligence models and ARIMAX model for forecasting drought using the Standardized Precipitation Index. Int. J. Environ. Sci. Technol. 2015, 12, 1201–1210. [Google Scholar] [CrossRef] [Green Version]
- Shirmohammadi, B.; Moradi, H.; Moosavi, V.; Semiromi, M.T.; Zeinali, A. Forecasting of meteorological drought using Wavelet-ANFIS hybrid model for different time steps (case study: Southeastern part of east Azerbaijan province, Iran). Nat. Hazards 2013, 69, 389–402. [Google Scholar] [CrossRef]
- Sharda, V.N.; Prasher, S.O.; Patel, R.M.; Ojasvi, P.R.; Prakash, C. Performance of Multivariate Adaptive Regression Splines (MARS) in predicting runoff in mid-Himalayan micro-watersheds with limited data/Performances de régressions par splines multiples et adaptives (MARS) pour la prévision d’écoulement au sein de micro-bassins versants Himalayens d’altitudes intermédiaires avec peu de données. Hydrol. Sci. J. 2008, 53, 1165–1175. [Google Scholar] [CrossRef]
- Santos, C.A.G.; Morais, B.S.; Silva, G.B.L. Drought forecast using an artificial neural network for three hydrological zones in San Francisco River basin, Brazil. IAHS Publ. 2009, 333, 302–312. [Google Scholar]
- Mo, K.C.; Lyon, B. Global Meteorological Drought Prediction Using the North American Multi-Model Ensemble. J. Hydrometeorol. 2015, 16, 1409–1424. [Google Scholar] [CrossRef]
- Rhee, J.; Im, J. Meteorological drought forecasting for ungauged areas based on machine learning: Using long-range climate forecast and remote sensing data. Agric. For. Meteorol. 2017, 237–238, 105–122. [Google Scholar] [CrossRef]
- Lohani, V.K.; Loganathan, G.V. An early warning system for drought management using the palmer drought index1. Jawra J. Am. Water Resour. Assoc. 1997, 33, 1375–1386. [Google Scholar] [CrossRef]
- Rao, A.R.; Padmanabhan, G. Analysis and modeling of Palmer’s drought index series. J. Hydrol. 1984, 68, 211–229. [Google Scholar] [CrossRef]
- Şen, Z. Critical drought analysis by second-order Markov chain. J. Hydrol. 1990, 120, 183–202. [Google Scholar] [CrossRef]
- Kim, T.-W.; Valdés, J.B. Nonlinear Model for Drought Forecasting Based on a Conjunction of Wavelet Transforms and Neural Networks. J. Hydrol. Eng. 2003, 8, 319–328. [Google Scholar] [CrossRef] [Green Version]
- Khalighi, S.; Chen, Q.; Ebrahimi, S.; Nazari, A.; Choubin, B. Long-term precipitation forecast for drought relief using atmospheric circulation factors: A study on the Maharloo Basin in Iran. Hydrol. Earth Syst. Sci. Discuss. 2013, 10, 13333–13361. [Google Scholar] [CrossRef]
- Mishra, A.K.; Desai, V.R. Drought forecasting using stochastic models. Stoch. Environ. Res. Risk Assess. 2005, 19, 326–339. [Google Scholar] [CrossRef]
- Mishra, A.K.; Desai, V.R. Drought forecasting using feed-forward recursive neural network. Ecol. Model. 2006, 198, 127–138. [Google Scholar] [CrossRef]
- Mishra, A.K.; Desai, V.R.; Singh, V.P. Drought Forecasting Using a Hybrid Stochastic and Neural Network Model. J. Hydrol. Eng. 2007, 12, 626–638. [Google Scholar] [CrossRef]
- Tian, M.; Wang, P.; Khan, J. Drought Forecasting with Vegetation Temperature Condition Index Using ARIMA Models in the Guanzhong Plain. Remote Sens. 2016, 8, 690. [Google Scholar] [CrossRef] [Green Version]
- Morid, S.; Smakhtin, V.; Bagherzadeh, K. Drought forecasting using artificial neural networks and time series of drought indices. Int. J. Climatol. 2007, 27, 2103–2111. [Google Scholar] [CrossRef]
- Barros, A.P.; Bowden, G.J. Toward long-lead operational forecasts of drought: An experimental study in the Murray-Darling River Basin. J. Hydrol. 2008, 357, 349–367. [Google Scholar] [CrossRef]
- Cutore, P.; Mauro, G.D.; Cancelliere, A. Forecasting Palmer Index Using Neural Networks and Climatic Indexes. J. Hydrol. Eng. 2009, 14, 588–595. [Google Scholar] [CrossRef]
- Karamouz, M.; Rasouli, K.; Nazif, S. Development of a Hybrid Index for Drought Prediction: Case Study. J. Hydrol. Eng. 2009, 14, 617–627. [Google Scholar] [CrossRef]
- Marj, A.F.; Meijerink, A.M.J. Agricultural drought forecasting using satellite images, climate indices and artificial neural network. Int. J. Remote Sens. 2011, 32, 9707–9719. [Google Scholar] [CrossRef]
- Mishra, S.S.; Nagarajan, R. Forecasting drought in Tel river basin using feed-forward recursive neural network. Int. Proc. Chem. Biol. Environ. Eng. (IPCBEE) 2012, 41, 122–126. [Google Scholar]
- Khan, M.S.; Coulibaly, P. Application of Support Vector Machine in Lake Water Level Prediction. J. Hydrol. Eng. 2006, 11, 199–205. [Google Scholar] [CrossRef]
- KiŞI, O.; ÇImen, M. Evapotranspiration modelling using support vector machines/Modélisation de l’évapotranspiration à l’aide de ‘support vector machines’. Hydrol. Sci. J. 2009, 54, 918–928. [Google Scholar] [CrossRef]
- ÇImen, M. Estimation of daily suspended sediments using support vector machines. Hydrol. Sci. J. 2008, 53, 656–666. [Google Scholar] [CrossRef]
- Madadgar, S.; Moradkhani, H. Spatio-temporal drought forecasting within Bayesian networks. J. Hydrol. 2014, 512, 134–146. [Google Scholar] [CrossRef]
- Chen, S.H.; Pollino, C.A. Good practice in Bayesian network modelling. Environ. Model. Softw. 2012, 37, 134–145. [Google Scholar] [CrossRef]
- Steinemann, A.C. Using Climate Forecasts for Drought Management. J. Appl. Meteorol. Climatol. 2006, 45, 1353–1361. [Google Scholar] [CrossRef]
- Almedeij, J. Long-term periodic drought modeling. Stoch. Environ. Res. Risk Assess. 2016, 30, 901–910. [Google Scholar] [CrossRef]
- Yun, Y.N. 1995 Drought Record Investigation Report, 1st ed.; Korea Institute of Civil Engineering and Building Technology: Goyang, Korea, 1995. [Google Scholar]
- Yun, Y.N. 2001 Drought Record investigation Report, 1st ed.; Korea Institute of Civil Engineering and Building Technology: Goyang, Korea, 2001. [Google Scholar]
- Central Disaster and Safety Countermeasures Headquarters. ‘08~‘09 Achievement Report on Drought Overcoming, 1st ed.; National Emergency Management Agency: Seoul, Korea, 2009.
- Ministry of the Interior and Safety; Ministry of Agriculture, Food and Rural Affairs; Ministry of Environment; Korea Meteorological Administration. 2018 National Drought Information Statistics Collection, 1st ed.; Related Administration Department Union: Seoul, Korea, 2018.
- Green Growth Korea. 2010 Abnormal Climate Special Report, 1st ed.; Korea Meteorological Administration: Seoul, Korea, 2010.
- Korea Meteorological Administration. 2011 Abnormal Climate Special Report, 1st ed.; Related Administration Department Union: Seoul, Korea, 2011. [Google Scholar]
- Korea Meteorological Administration. 2012 Abnormal Climate Special Report, 1st ed.; Related Administration Department Union: Seoul, Korea, 2012. [Google Scholar]
- Korea Meteorological Administration. 2013 Abnormal Climate Special Report, 1st ed.; Related Administration Department Union: Seoul, Korea, 2013. [Google Scholar]
- Korea Meteorological Administration. 2014 Abnormal Climate Special Report, 1st ed.; Related Administration Department Union: Seoul, Korea, 2014. [Google Scholar]
- Korea Meteorological Administration. 2015 Abnormal Climate Special Report, 1st ed.; Related Administration Department Union: Seoul, Korea, 2015. [Google Scholar]
- Korea Meteorological Administration. 2016 Abnormal Climate Special Report, 1st ed.; Related Administration Department Union: Seoul, Korea, 2016. [Google Scholar]
- Korea Meteorological Administration. 2017 Abnormal Climate Special Report, 1st ed.; Related Administration Department Union: Seoul, Korea, 2017. [Google Scholar]
- Korea Meteorological Administration. 2018 Abnormal Climate Special Report, 1st ed.; Related Administration Department Union: Seoul, Korea, 2018. [Google Scholar]
Region Index | Municipality | Population (Thousand People) | Area (km2) | |
---|---|---|---|---|
Number | Acronyms | |||
42 | GW | Gangwon-do | 1540 | 16,902.2 |
41 | GG | Gyeonggi-do | 13,240 | 10,381.1 |
48 | GN | Gyeongsangnum-do | 3360 | 11,815.8 |
47 | GB | Gyeongsangbuk-do | 2670 | 19,128.7 |
29 | GJ | Gwangju Metropolitan City | 1460 | 501.2 |
27 | DG | Daegu Metropolitan City | 2440 | 883.5 |
30 | DJ | Daejeon Metropolitan City | 1470 | 539.9 |
26 | BS | Busan Metropolitan City | 3410 | 993.5 |
11 | SE | Seoul | 9730 | 605.6 |
36 | SJ | Sejong Metropolitan Autonomous City | 340 | 465.5 |
31 | US | Ulsan Metropolitan City | 1150 | 1144.6 |
28 | IC | Incheon Metropolitan City | 2960 | 1156.4 |
46 | JN | Jeollanam-do | 1870 | 15,434.2 |
45 | JB | Jeollabuk-do | 1820 | 8131.3 |
50 | JJ | Jeju Province | 670 | 2051.3 |
44 | CN | Chungcheongnum-do | 2120 | 8744.1 |
43 | CB | Chungcheongbuk-do | 1600 | 7406.9 |
Sum | 51,850 | 106,285.8 |
Year | Agricultural Drought Damage Month Period | Damage Area (ha) | Region Index of Drought Damage | |
---|---|---|---|---|
Start | End | |||
1965 | 06 | 09 | 89,134 | JN, GG, GN |
1966 | 06 | 09 | 44,857 | JN, GN |
1967 | 06 | 09 | 420,488 | JN, GN, JB, CN, JJ |
1968 | 06 | 09 | 470,423 | JN, JB, GB, GN, CN, JN, GG |
1969 | 06 | 09 | 5977 | GB, JN |
1970 | 06 | 09 | 6015 | JN |
1971 | 06 | 09 | 12,774 | JN, JJ |
1972 | 06 | 09 | 13,545 | JN |
1973 | 06 | 09 | 48,493 | GB, GN |
1975 | 06 | 09 | 37,401 | GN, GB, CN, CB, GG |
1976 | 06 | 09 | 28,218 | GN, GB, CN, JN, CB |
1977 | 06 | 09 | 60,246 | SE, BS, GG, JN, CB, CN, JB, JN, GB, GN, JJ |
1978 | 05 | 06 | 18,563 | SE, GG, JN, CB, CN |
1981 | 05 | 07 | 145,457 | CB, CN, JB, JN, GB, GN |
1982 | 05 | 07 | 231,244 | CB, CN, JB, JN, GB, GN |
1994 | 07 | 09 | 253,803 | CB, CN, JB, JN, GB, GN, JJ, DG, GJ, DJ |
1995 | 07 | 08 | 20,370 | CB, CN, JB, JN, GN |
2013 | 07 | 08 | 7626 | JN, GB, GN, JJ |
2015 | 06 | 06 | 7358 | IC, GG, JN, CB, GB |
2016 | 07 | 08 | 39,826 | CN, JN, JB, GB |
2017 | 05 | 07 | 9549 | JN, GN |
2018 | 07 | 08 | 22,507 | JB, JN, GB, GN, CB, CN, GG, JN, IC, SJ, GJ, DJ |
Count | 22 | 1,993,874 | 108 |
Month | Rainfall (mm) | Cumulative Rainfall (mm) | Ratio (%) |
---|---|---|---|
1 | 27.2 | 27.2 | 2.1 |
2 | 35.4 | 62.6 | 2.8 |
3 | 55.4 | 118.0 | 4.4 |
4 | 89.0 | 207.0 | 7.0 |
5 | 95.3 | 302.3 | 7.5 |
6 | 143.7 | 446.0 | 11.3 |
7 | 285.8 | 731.9 | 22.5 |
8 | 259.4 | 991.2 | 20.4 |
9 | 147.1 | 1138.3 | 11.6 |
10 | 57.8 | 1196.1 | 4.5 |
11 | 49.1 | 1245.2 | 3.9 |
12 | 26.1 | 1271.4 | 2.1 |
Region Index | Average Rainfall (mm) | 2)−1) | |
---|---|---|---|
Agricultural Drought Damage | Municipality | ||
GW | 1156 | 1335 | 179 |
GG | 1123 | 1335 | 212 |
GN | 1275 | 1369 | 94 |
GB | 1036 | 1110 | 75 |
GJ | 1213 | 1357 | 145 |
DG | 913 | 1063 | 150 |
DJ | 1412 | 1252 | −160 |
BS | 1088 | 1481 | 393 |
SE | 1092 | 1393 | 301 |
SJ | 1638 | 1218 | −420 |
US | - | 1272 | - |
IC | 973 | 1230 | 257 |
JN | 1202 | 1313 | 111 |
JB | 1126 | 1254 | 129 |
JJ | 1704 | 1631 | −73 |
CN | 1127 | 1237 | 110 |
CB | 1086 | 1203 | 117 |
Average | 1199 | 1297 | 101 |
Year | Agricultural Drought Damage Rainfall (mm) | Average Rainfall (mm) | 2)−1) |
---|---|---|---|
1965 | 1115 | 1203 | 88 |
1966 | 1117 | 1205 | 88 |
1967 | 1119 | 1208 | 89 |
1968 | 1121 | 1210 | 89 |
1969 | 1123 | 1213 | 90 |
1970 | 1125 | 1215 | 90 |
1971 | 1127 | 1218 | 91 |
1972 | 1129 | 1220 | 91 |
1973 | 1131 | 1223 | 92 |
1975 | 1135 | 1228 | 93 |
1976 | 1137 | 1230 | 93 |
1977 | 1139 | 1233 | 94 |
1978 | 1141 | 1235 | 94 |
1981 | 1147 | 1243 | 96 |
1982 | 1149 | 1245 | 96 |
1994 | 1173 | 1275 | 102 |
1995 | 1175 | 1278 | 103 |
2013 | 1211 | 1323 | 112 |
2015 | 1215 | 1328 | 113 |
2016 | 1217 | 1330 | 113 |
2017 | 1219 | 1333 | 114 |
2018 | 1221 | 1335 | 114 |
Average | 1154 | 1251 | 97 |
Year | Agricultural Drought Relief Rainfall (mm) | Year | Agricultural Drought Relief Rainfall (mm) |
---|---|---|---|
1965 | 140 | 1977 | 149 |
1966 | 141 | 1978 | 149 |
1967 | 142 | 1981 | 152 |
1968 | 142 | 1982 | 152 |
1969 | 143 | 1994 | 161 |
1970 | 144 | 1995 | 161 |
1971 | 144 | 2013 | 174 |
1972 | 145 | 2015 | 176 |
1973 | 146 | 2016 | 176 |
1975 | 147 | 2017 | 177 |
1976 | 148 | 2018 | 178 |
Average | 154 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Park, M. Rainfall Standard of Disaster Prediction for Agricultural Droughts in S. Korea. Appl. Sci. 2020, 10, 7423. https://doi.org/10.3390/app10217423
Song Y, Park M. Rainfall Standard of Disaster Prediction for Agricultural Droughts in S. Korea. Applied Sciences. 2020; 10(21):7423. https://doi.org/10.3390/app10217423
Chicago/Turabian StyleSong, Youngseok, and Moojong Park. 2020. "Rainfall Standard of Disaster Prediction for Agricultural Droughts in S. Korea" Applied Sciences 10, no. 21: 7423. https://doi.org/10.3390/app10217423
APA StyleSong, Y., & Park, M. (2020). Rainfall Standard of Disaster Prediction for Agricultural Droughts in S. Korea. Applied Sciences, 10(21), 7423. https://doi.org/10.3390/app10217423