Effect of Electrospun Nanofiber Additive on Selected Mechanical Properties of Hardened Cement Paste
Abstract
:1. Introduction
2. Materials and Experimental Work
2.1. Characteristics of the Cement Used
2.2. A Method of Obtaining a Blend of Electrospun Nanofibers and Cement
2.3. Sample Preparation and Testing Methods
3. Results and Discussion
3.1. Mechanical Strength
3.2. SEM and TEM Results
3.3. Thermogravimetric Analysis Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xue, J.; Xie, J.; Liu, W.; Xia, Y. Electrospun Nanofibers: New Concepts, Materials, and Applications. Acc. Chem. Res. 2017, 50, 1976–1987. [Google Scholar] [CrossRef] [PubMed]
- Thenmozhi, S.; Dharmaraj, N.; Kadirvelu, K.; Kim, H.Y. Electrospun nanofibers: New generation materials for advanced applications. Mater. Sci. Eng. B 2017, 217, 36–48. [Google Scholar] [CrossRef]
- Arinstein, A. Electrospun Polymer Nanofibers; Pan Stanford Publishing Pte. Ltd.: Temasek Boulevard, Singapore, 2018. [Google Scholar]
- Zhu, L.; Wang, Z.; Shu, Q.; Takala, J.; Hiltunen, E.; Feng, P.; Yuan, Z. Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Water Res. 2013, 47, 4294–4302. [Google Scholar] [CrossRef] [PubMed]
- Gimenez, R.; Berli, C.L.A.; Bellino, M.G. Oil Recovery from Nanoporous Media via Water Condensation. Adv. Mater. Interfaces 2019, 1900250. [Google Scholar] [CrossRef]
- Ma, W.; Ding, Y.; Zhang, M.; Gao, S.; Li, Y.; Huang, C.; Fu, G. Nature-inspired chemistry toward hierarchical superhydrophobic, antibacterial and biocompatible nanofibrous membranes for effective UV-shielding, self-cleaning and oil-water separation. J. Hazard. Mater. 2020, 384, 121476. [Google Scholar] [CrossRef] [PubMed]
- Erdem, E.; Karapinar, N.; Donat, R. The removal of heavy metal cations by natural zeolites. J. Colloid Interface Sci. 2004, 280, 309–314. [Google Scholar] [CrossRef]
- Garrett, R.; Niiyama, E.; Kotsuchibashi, Y.; Uto, K.; Ebara, M. Biodegradable nanofiber for delivery of immunomodulating agent in the treatment of basal cell carcinoma. Fibers 2015, 3, 478–490. [Google Scholar] [CrossRef] [Green Version]
- Shin, S.-H.; Purevdorj, O.; Castano, O.; Planell, J.A.; Kim, H.-W. A Short Review: Recent Advances in Electrospinning for Bone Tissue Regeneration. J. Tissue Eng. 2012, 3. [Google Scholar] [CrossRef]
- Wang, X.; Lv, F.; Li, T.; Han, Y.; Yi, Z.; Liu, M.; Chang, J.; Wu, C. Electrospun Micropatterned Nanocomposites Incorporated With Cu2S Nanoflowers for Skin Tumor Therapy and Wound Healing. ASC Nano 2017, 11, 11337–11349. [Google Scholar] [CrossRef]
- Lu, Y.; Xiao, X.; Fu, J.; Huan, C.; Qi, S.; Zhan, Y.; Zhu, Y.; Xu, G. Novel smart textile with phase change materials encapsulated core-sheath structure fabricated by coaxial electrospinning. Chem. Eng. J. 2019, 355, 532–539. [Google Scholar] [CrossRef]
- Mirjalili, M.; Zohoori, S. Review for application of electrospinning and electrospun nanofibers technology in textile industry. J. Nanostructure Chem. 2016, 6, 207–213. [Google Scholar] [CrossRef] [Green Version]
- Baji, A.; Agarwal, K.; Oopath, S.V. Emerging Developments in the Use of Electrospun Fibers and Membranes for Protective Clothing Applications. Polymers 2020, 12, 492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Li, Q.; Tan, Z. A review of electrospun nanofiber-based separators for rechargeable lithium-ion batteries. J. Power Sources 2019, 443. [Google Scholar] [CrossRef]
- Liang, Z.; Zhao, Y.; Li, Y. Electrospun Core-Shell Nanofiber as Separator for Lithium-Ion Batteries with High Performance and Improved Safety. Energies 2019, 12. [Google Scholar] [CrossRef] [Green Version]
- Santangelo, S. Electrospun Nanomaterials for Energy Applications: Recent Advances. Appl. Sci. 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Azevedo, N.H.d.; Gleize, P.J.P. Effect of silicon carbide nanowhiskers on hydration and mechanical properties of a Portland cement paste. Constr. Build. Mater. 2018, 169, 388–395. [Google Scholar] [CrossRef]
- Barbhuiya, S.; Chow, P. Nanoscaled Mechanical Properties of Cement Composites Reinforced with Carbon Nanofibers. Materials 2017, 10, 662. [Google Scholar] [CrossRef] [Green Version]
- Li, G.Y.; Wang, P.M.; Zhao, X. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon 2005, 43, 1239–1245. [Google Scholar] [CrossRef]
- Rocha, V.V.; Ludvig, P.; Trindade, A.C.C.; Silva, F.d. The influence of carbon nanotubes on the fracture energy, flexural and tensile behavior of cement based composites. Constr. Build. Mater. 2019, 209, 1–8. [Google Scholar] [CrossRef]
- Nguyen, T.N.M.; Yoo, D.; Kim, J.J. Cementitious Material Reinforced by Carbon Nanotube-Nylon 66 Hybrid Nanofibers: Mechanical strength and microstructure analysis. Mater. Today Commun. 2020, 23. [Google Scholar] [CrossRef]
- Nguyen, T.N.M.; Moon, J.; Kim, J.J. Microstructure and mechanical properties of hardened cement paste including Nylon 66 nanofibers. Constr. Build. Mater. 2020, 232, 117–132. [Google Scholar] [CrossRef]
- Kim, J.J.; Nguyen, T.N.M.; Nguyen, X.T.; Ta, D.H. Reinforcing cementitious material using singlewalled carbon nanotube-nylon 66 nanofibers. Transp. Commun. Sci. J. 2020, 71, 46–55. [Google Scholar] [CrossRef]
- C150-18, A. Standard Specification for Portland Cement; ASTM International: West Conshohocken, PA, USA, 2018. [Google Scholar]
- Rao, A.M.; Chen, J.; Richter, E.; Schlecht, U.; Eklund, P.C.; Haddon, R.C.; Venkateswaran, U.D.; Kwon, Y.K.; Tománek, D. Effect of van der Waals interactions on the Raman modes in single walled carbon nanotubes. Phys. Rev. Lett. 2001, 86, 3895–3898. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.Y.; Terentjev, E.M. Dispersion of Carbon Nanotubes: Mixing, Sonication, Stabilization, and Composite Properties. Polymers 2012, 4, 275–295. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Yi, Z.L.; Jing, Q.F.; Yue, R.L.; Jiang, W.; Lin, D.H. Sonication-assisted dispersion of carbon nanotubes in aqueous solutions of the anionic surfactant SDBS: The role of sonication energy. Chin. Sci. Bull. 2013, 58, 2082–2090. [Google Scholar] [CrossRef] [Green Version]
- Sabet, S.M.; Mahfuz, H.; Hashemi, J.; Nezakat, M.; Szpunar, J.A. Effects of sonication energy on the dispersion of carbon nanotubes in a vinyl ester matrix and associated thermo-mechanical properties. J. Mater. Sci. 2015, 50, 4729–4740. [Google Scholar] [CrossRef]
- C307-03(2012), A. Standard Test. Method for Tensile Strength of Chemical-Resistant Mortar, Grouts, and Monolithic Surfacings; ASTM International: West Conshohocken, PA, USA, 2012. [Google Scholar]
- C109/C109M-16a, A. Standard Test. Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens); ASTM International: West Conshohocken, PA, USA, 2016. [Google Scholar]
- Timoshenko, G. Mechanics of Materials; PWS-Kent Publishing: Boston, MA, USA, 1984. [Google Scholar]
- Mehta, P.K.; Monteiro, P.J.M. Concrete: Microstructure, Properties, and Materials; The McGraw-Hill Companies, Inc: New York City, NY, USA, 2006. [Google Scholar]
- Baji, A.; Mai, Y.W.; Wong, S.C.; Abtahi, M.; Du, X. Mechanical behavior of self-assembled carbon nanotube reinforced nylon 6,6 fibers. Compos. Sci. Technol. 2010, 70, 1401–1409. [Google Scholar] [CrossRef]
- Patel, A.C.; Li, S.; Wang, C.; Zhang, W.; Wei, Y. Electrospinning of Porous Silica Nanofibers Containing Silver Nanoparticles for Catalytic Applications. Chem. Mater. 2007, 19, 1231–1238. [Google Scholar] [CrossRef]
- Roychand, R.; Silva, S.D.; Law, D.; Setunge, S. High volume fly ash cement composite modified with nano silica, hydrated lime and set accelerator. Mater. Struct. 2016, 49, 1997–2008. [Google Scholar] [CrossRef]
- Kim, J.J.; Foley, E.M.; Taha, M.M.R. Nano-mechanical characterization of synthetic calcium–silicate–hydrate (C–S–H) with varying CaO/SiO2 mixture ratios. Cement Concrete Compos. 2013, 36, 65–70. [Google Scholar] [CrossRef]
- Foley, E.M.; Kim, J.J.; Taha, M.M.R. Synthesis and nano-mechanical characterization of calcium-silicate-hydrate (C-S-H) made with 1.5 CaO/SiO2 mixture. Cem. Concr. Res. 2012, 42, 1225–1232. [Google Scholar] [CrossRef]
- Saeed, K.; Park, S.Y.; Haider, S.; Baek, J.B. In situ Polymerization of Multi-Walled Carbon Nanotube/Nylon-6 Nanocomposites and Their Electrospun Nanofibers. Nanoscale Res. Lett. 2009, 4, 39–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahhosseininia, M.; Bazgir, S.; Joupari, M.D. Fabrication and investigation of silica nanofibers via electrospinning. Mater. Sci. Eng. C 2017, 91, 502–511. [Google Scholar] [CrossRef] [PubMed]
- Newsome, T.E.; Olesik, S.V. Electrospinning Silica/Polyvinylpyrrolidone Composite Nanofibers. J. Appl. Polym. Sci. 2014, 40966–40975. [Google Scholar] [CrossRef]
- Taylor, H.F.W. Cement Chemistry; Thomas Telford: New York, NY, USA, 1997. [Google Scholar]
CaO | Al2O3 | SiO2 | SO3 | MgO | Fe2O3 | Ig. Loss | Specific Surface Area (cm2/g) | Compressive Strength, 28 Days (MPa) |
---|---|---|---|---|---|---|---|---|
61.33 | 6.40 | 21.01 | 2.30 | 3.02 | 3.12 | 1.40 | 2800 | 36 |
Polymer Solution | Presolution | N66 | PVP | CNTs |
---|---|---|---|---|
N66 polymer solution | 90 (Formic acid + Chloroform) | 10 | - | - |
CNTs-N66 polymer solution | 90 (Formic acid + Chloroform) | 9.6 | - | 0.4 |
TEOS/PVP polymer solution | 90 (TEOS + Butanol) | - | 10 | - |
CNTs-TEOS/PVP polymer solution | 90 (TEOS + Butanol) | - | 9.6 | 0.4 |
Applied Voltage (kV) | Syringe’s Volume (mL) | Taylor Cone Gauge | Needle-to-Collector Distance (mm) | Pumping Speed (µL/min) |
---|---|---|---|---|
12 | 12 | 20 | 60 | 30 |
Fracture Strain | Ductile Deformation Ratio | |
---|---|---|
Plain paste | 0.003 | 1.00 |
N66 NFs MCP | 0.0033 | 1.10 |
CNT-N66 NFs MCP | 0.0034 | 1.13 |
TEOS/PVP NFs MCP | 0.0038 | 1.27 |
CNTs-TEOS/PVP NFs MCP | 0.0039 | 1.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.N.M.; Lee, D.H.; Kim, J.J. Effect of Electrospun Nanofiber Additive on Selected Mechanical Properties of Hardened Cement Paste. Appl. Sci. 2020, 10, 7504. https://doi.org/10.3390/app10217504
Nguyen TNM, Lee DH, Kim JJ. Effect of Electrospun Nanofiber Additive on Selected Mechanical Properties of Hardened Cement Paste. Applied Sciences. 2020; 10(21):7504. https://doi.org/10.3390/app10217504
Chicago/Turabian StyleNguyen, Tri N.M., Do Hyung Lee, and Jung J. Kim. 2020. "Effect of Electrospun Nanofiber Additive on Selected Mechanical Properties of Hardened Cement Paste" Applied Sciences 10, no. 21: 7504. https://doi.org/10.3390/app10217504
APA StyleNguyen, T. N. M., Lee, D. H., & Kim, J. J. (2020). Effect of Electrospun Nanofiber Additive on Selected Mechanical Properties of Hardened Cement Paste. Applied Sciences, 10(21), 7504. https://doi.org/10.3390/app10217504