Economic Efficiency Assessment of Using Wood Waste in Cogeneration Plants with Multi-Stage Gasification
Abstract
:1. Introduction
2. The Technology of Multi-Stage Gasification of Wood Fuel
- –
- Increase in energy consumption in developing and densely populated countries (China, India, Brazil);
- –
- Significant fluctuations in world hydrocarbon prices;
- –
- Countries’ policies aimed at diversifying energy structures in the fuel and energy balance;
- –
- Development of distributed energy generation, which allows reducing the distance of energy transport through the use of local fuels;
- –
- The pursuit of environmental friendliness (through the use of renewable solid fuel resources, including waste).
3. Wood Fuel Resources in Russia
4. Energy Efficiency Assessment of Wood Fuel Gasification
5. Methodology for Economic Efficiency Assessment
6. Initial Data for Calculations
7. Results of Calculations and Their Analysis
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Roman | |
Cg | gasification thermal efficiency criterion |
d | annual discount rate |
Ê | net present value |
E(τ) | cash flow |
E0 | constant cash flow |
E1eμτ | variable cash flow |
F | annual fuel consumption |
H | enthalpy |
h | annual number of hours of using installed capacity |
K0 | construction costs |
K1 | dismantling costs |
K*0 | unforeseen expenses |
k0 | specific construction costs |
k1 | specific dismantling costs |
k*0 | specific unforeseen expenses |
p | price |
Q | annual energy production |
q | reaction or sensible heat |
T | temperature |
ΔT0 | construction time |
ΔT | lifetime |
ΔT1 | dismantling time |
W | installed capacity |
Greek | |
β | losses |
δ | annual fixed costs |
η | efficiency |
μ | growth rate |
μ* | annual growth rate |
σ | continuous discount rate |
τ | time |
ξ, Ω | functions defined in the text |
Subscripts | |
c | emissions |
e | electric energy |
f | fuel |
h | thermal energy |
References
- REN 21. Renewables 2020. Global Energy Status; REN21: Paris, France, 2020; Available online: https://www.ren21.net/wp-content/uploads/2019/05/gsr_2020_full_report_en.pdf (accessed on 20 October 2020).
- IEA. World Energy Outlook 2019. Paris. Available online: https://www.iea.org/reports/world-energy-outlook-2019 (accessed on 20 October 2020).
- Belyaev, L.S.; Marchenko, O.V.; Solomin, S.V. Studies on competitiveness of space and terrestrial solar power plants using global energy model. Glob. Energy Issues 2006, 57, 94–108. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014. IPCC Fifth Assessment Synthesis Report; IPCC: Geneva, Switzerland, 2014; Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full.pdf (accessed on 20 October 2020).
- Johansson, M.T. Bio-synthetic natural gas as fuel in steel industry reheating furnace—A case study of economic performance and effects on global CO2. Energy 2013, 57, 699–708. [Google Scholar] [CrossRef] [Green Version]
- Bildirici, M. Economic growth and biomass energy. Biomass Bioenergy 2013, 50, 19–24. [Google Scholar] [CrossRef]
- Domac, J.; Richards, K.; Risovic, S. Socio-economic drivers in implementing bioenergy projects. Biomass Bioenergy 2005, 28, 97–106. [Google Scholar] [CrossRef]
- Glushkov, D.; Nyashina, G.; Medvedev, V.; Vershinina, K. Relative environmental, economic, and energy performance indicators of fuel compositions with biomass. Appl. Sci. 2020, 10, 2092. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.A.; Zawawi, N.A.; Kasim, F.H.; Inayat, A.; Khasri, A. Assessing the gasification performance of biomass: A review on biomass gasification process conditions, optimization and economic evaluation. Renew. Sustain. Energy Rev. 2016, 53, 1333–1347. [Google Scholar] [CrossRef]
- Pereira, M.F.; Nicolau, V.P.; Bazzo, E. Exergoenvironmental analysis concerning the wood chips and wood pellets production chains. Biomass Bioenergy 2018, 119, 253–262. [Google Scholar] [CrossRef]
- Thrän, D.; Peetz, D.; Schaubach, K.; Backéus, S.; Benedetti, L.; Bruce, L. Global Wood Pellet Industry and Trade Study 2017; IEA: Paris, France, 2017. [Google Scholar]
- Drax Group Plc. Drax Moves Closer to Coal-Free Future with Unit four Conversion. Available online: https://www.drax.com/press_release/drax-closer-coal-free-future-fourth-biomass-unit-conversion (accessed on 22 May 2020).
- Biagini, E.; Barontini, F.; Tognotti, L. Gasification of agricultural residues in a demonstrative plant: Corn cobs. Bioresour. Technol. 2015, 173, 11–176. [Google Scholar] [CrossRef] [PubMed]
- Situmorang, Y.A.; Zhao, Z.; Yoshida, A.; Abudula, A.; Guan, G. Small-scale biomass gasification systems for power generation (<200 kW class): A review. Renew. Sustain. Energy Rev. 2020, 117, 109486. [Google Scholar]
- Sartor, K.; Dewallef, P. Integration of heat storage system into district heating networks fed by a biomass CHP plant. J. Energy Storage 2018, 15, 350–358. [Google Scholar] [CrossRef]
- Patuzzi, F.; Prando, D.; Vakalis, S.; Rizzo, A.M.; Chiaramonti, D.; Tirler, W.; Mimmoa, T.; Gasparellaa, A.; Baratieria, M. Small-scale biomass gasification CHP systems: Comparative performance assessment and monitoring experiences in South Tyrol (Italy). Energy 2016, 112, 285–293. [Google Scholar] [CrossRef]
- Ahrenfeldt, J.; Thomsen, T.P.; Henriksen, U.; Claussen, L.R. Biomass gasification cogeneration—A review of state of the art technology and near future perspectives. Appl. Therm. Eng. 2013, 50, 1407–1417. [Google Scholar] [CrossRef] [Green Version]
- Molino, A.; Chianese, S.; Musmarra, D. Biomass gasification technology: The state of the art overview. J. Energy Chem. 2016, 25, 10–25. [Google Scholar] [CrossRef]
- Castaldi, M.; van Deventer, J.; Lavoie, J.M.; Legrand, J.; Nzihou, A.; Pontikes, Y.; Py, X.; Vandecasteele, C.; Vasudevan, P.T.; Verstraete, W. Progress and prospects in the field of biomass and waste to energy and added-value materials. Waste Biomass Valoriz. 2017, 8, 1875–1884. [Google Scholar] [CrossRef] [Green Version]
- Bocci, E.; Sisinni, M.; Moneti, M.; Vecchione, L.; Di Carlo, A.; Villarini, M. State of art of small scale biomass gasification power systems: A review of the different typologies. Energy Procedia 2014, 45, 247–256. [Google Scholar] [CrossRef] [Green Version]
- Vakalis, S.; Baratieri, M. State-of-the-art of small scale biomass gasifiers in the region of South Tyrol. Waste Biomass Valoriz. 2015, 6, 817–829. [Google Scholar] [CrossRef]
- IEA Bioenergy Task 33. Available online: http://www.ieatask33.org/app/webroot/files/file/publications/T33%20Projects/Status%20report%20final.pdf (accessed on 20 October 2020).
- García, R.; Pizarro, C.; Lavín, A.G.; Bueno, J.L. Biomass sources for thermal conversion. Techno-economical overview. Fuel 2017, 195, 182–189. [Google Scholar] [CrossRef]
- Kozlov, A.N.; Svishchev, D.A.; Khudiakova, G.I.; Ryzhkov, A.F. A kinetic analysis of the thermochemical conversion of solid fuels (A review). Solid Fuel Chem. 2017, 51, 205–213. [Google Scholar] [CrossRef]
- Kozlov, A.N.; Svishchev, D.A. Transformation of the mineral matter of fuel wood in thermochemical conversion processes. Solid Fuel Chem. 2016, 50, 226–231. [Google Scholar] [CrossRef]
- Hupa, M.; Karlström, O.; Vainio, E. Biomass combustion technology development—It is all about chemical details. Proc. Combust. Inst. 2017, 36, 113–134. [Google Scholar] [CrossRef]
- Asadullah, M. Barriers of commercial power generation using biomass gasification gas: A review. Renew. Sustain. Energy Rev. 2014, 29, 201–215. [Google Scholar] [CrossRef]
- Susastriawan, A.A.P.; Saptoadi, H.; Purnomo. Small-scale downdraft gasifiers for biomass gasification: A review. Renew. Sustain. Energy Rev. 2017, 76, 989–1003. [Google Scholar] [CrossRef]
- Hasler, P.H.; Nussbaumer, T. Gas cleaning for IC engine applications from fixed bed biomass gasification. Biomass Bioenergy 1999, 16, 385–395. [Google Scholar] [CrossRef]
- Saleem, F.; Harris, J.; Zhang, K.; Harvey, A. Non-thermal plasma as a promising route for the removal of tar from the product gas of biomass gasification—A critical review. Chem. Eng. J. 2020, 382, 122761. [Google Scholar] [CrossRef]
- Jeong, Y.S.; Choi, Y.K.; Kang, B.S.; Ryu, J.H.; Kim, H.S.; Kang, M.S.; Ryuc, L.-H.; Kim, J.-S. Lab-scale and pilot-scale two-stage gasification of biomass using active carbon for production of hydrogen-rich and low-tar producer gas. Fuel Process. Technol. 2020, 198, 106240. [Google Scholar] [CrossRef]
- Mednikov, A.S. A review of technologies for multistage wood biomass gasification. Therm. Eng. 2018, 65, 531–546. [Google Scholar] [CrossRef]
- Heidenreich, S.; Foscolo, P.U. New concepts in biomass gasification. Prog. Energy Combust. Sci. 2015, 46, 72–95. [Google Scholar] [CrossRef]
- Donskoi, I.G.; Kozlov, A.N.; Svishchev, D.A.; Shamanskii, V.A. Numerical investigation of the staged gasification of wet wood. Therm. Eng. 2017, 4, 258–264. [Google Scholar] [CrossRef]
- Kozlov, A.; Svishchev, D.; Marchenko, O.; Solomin, S.; Shamansky, V.; Keiko, A. Development of a multi-stage biomass gasification technology to produce quality gas. In Proceedings of the 25th European Biomass Conference and Exhibition—Setting the Course for a Biobased Economy, Stockholm, Sweden, 12–15 June 2017; ETA: Florence, Italy, 2017; pp. 776–781. [Google Scholar]
- Kozlov, A.; Marchenko, O.; Solomin, S. The modern state of wood biomass gasification technologies and their economic efficiency. Energy Procedia 2019, 158, 1004–1008. [Google Scholar] [CrossRef]
- Carpene, L.; Bertrand, V.; Olivier, T. Comparing biomass-based and conventional heating systems with costly CO2 emissions: Cost estimations and breakeven prices for large-scale district heating schemes. Int. J. Glob. Energy Issues 2017, 40, 20–42. [Google Scholar] [CrossRef]
- Arun, P. Optimum design of biomass gasifier integrated hybrid energy systems. Int. J. Renew. Energy Res. 2015, 5, 892–895. [Google Scholar]
- Wood, S.R.; Rowley, P.N. A techno-economic analysis of small-scale, biomass-fuelled combined heat and power for community housing. Biomass Bioenergy 2011, 35, 3849–3858. [Google Scholar] [CrossRef] [Green Version]
- Marchenko, O.V.; Solomin, S.V.; Kozlov, A.N. Possibilities of use of wood wastes in the power industry of Russia. Ecol. Ind. Russ. 2019, 23, 17–21. [Google Scholar] [CrossRef]
- Nussbaumer, T.; Neuenschwander, P. A new method for an economic assessment of heat and power plants using dimensionless numbers. Biomass Bioenergy 2000, 18, 181–188. [Google Scholar] [CrossRef]
- Sartor, K.; Quoilin, S.; Dewallef, P. Simulation and optimization of a CHP biomass plant and district heating network. Appl. Energy 2014, 130, 474–483. [Google Scholar] [CrossRef] [Green Version]
- Levin, A.B. Bioenergy—Important means of increasing efficiency of forest complex of Russia. For. Bull. 2012, 16, 160–165. [Google Scholar]
- Levin, A.B.; Sukhanov, V.S.; Sheremetev, O.V. The energy potential of the fuel resource of wood bio-energetics of the Russian Federation. For. Bull. 2010, 14, 37–42. [Google Scholar]
- Prins, M.J.; Ptasinski, K.J.; Janssen, F.J. From coal to biomass gasification: Comparison of thermodynamic efficiency. Energy 2007, 32, 1248–1259. [Google Scholar] [CrossRef]
- Glushko, V.P. (Ed.) Thermodynamic Properties of Individual Substances; Foreign Technology Division, Air Force Systems Command: Baltimore, MD, USA, 1967. [Google Scholar]
- Ivanov, P.P.; Kovbasyuk, V.I.; Medvedev, Y.V. On the calculated optimization of a gasifier. High Temp. 2012, 50, 779–784. [Google Scholar] [CrossRef]
- Ivanov, P.P.; Kovbasyuk, V.I.; Medvedev, Y.V. The thermochemical analysis of the effectiveness of various gasification technologies. Therm. Eng. 2013, 60, 367–373. [Google Scholar] [CrossRef]
- Polianczyk, E.V.; Glazov, S.V. Model for filtration combustion of carbon: Approximation of a thermodynamically equilibrium composition of combustion products. Combust. Explos. Shock Waves 2014, 50, 251–261. [Google Scholar] [CrossRef]
- Glazov, S.V.; Polianczyk, E.V. Filtration combustion of carbon in the presence of endothermic oxidizers. Combust. Explos. Shock Waves 2015, 51, 540–548. [Google Scholar] [CrossRef]
- Zaitsev, A.V.; Ryzhkov, A.F.; Silin, V.E.; Zagrutdinov, R.S.; Popov, A.V.; Bogatova, T.F. Gasification Technologies in Energetics; Sokrat: Ekaterinburg, Russia, 2010. (In Russian) [Google Scholar]
- Arabloo, M.; Bahadori, A.; Ghiasi, M.M.; Lee, M.; Abbas, A.; Zendehboudi, S. A novel modeling approach to optimize oxygen-steam ratios in coal gasification process. Fuel 2015, 153, 1–5. [Google Scholar] [CrossRef]
- Gassner, M.; Merechal, F. Thermodynamic comparison of the FICFB and Viking gasification concepts. Energy 2009, 34, 1744–1753. [Google Scholar] [CrossRef] [Green Version]
- Jarvinen, M.P.; Zevenhoven, R.; Vakkilainen, E.K. Auto-gasification of a biofuel. Combust. Flame 2002, 131, 357–370. [Google Scholar] [CrossRef]
- Shpil’rajn, E.E. Possibility of increasing of efficiency of heat power units using chemical recovery of heat. Izv. Sssr. Energ. I Transp. 1985, 6, 115–123. (In Russian) [Google Scholar]
- Chuayboon, S.; Abanades, S.; Rodat, S. Comprehensive performance assessment of a continuous solar-driven biomass gasifier. Fuel Process. Technol. 2018, 182, 1–14. [Google Scholar] [CrossRef]
- Svishchev, D.A.; Kozlov, A.N.; Donskoy, I.G.; Ryzhkov, A.F. A semi-empirical approach to the thermodynamic analysis of downdraft gasification. Fuel 2016, 168, 91–106. [Google Scholar] [CrossRef]
- Ahrenfeldt, J.; Henriksen, U.; Jensen, T.K.; Gobel, B.; Wiese, L.; Kather, A.; Egsgaard, H. Validation of a continuous combined heat and power (CHP) operation of a two-stage biomass gasifier. Energy Fuels 2006, 20, 2672–2680. [Google Scholar] [CrossRef]
- Gadsboll, R.O.; Clausen, L.R.; Thomsen, T.P.; Ahrenfeldt, J.; Henriksen, U.B. Flexible TwoStage biomass gasifier designs for polygeneration operation. Energy 2019, 166, 939–950. [Google Scholar] [CrossRef]
- Indrawan, N.; Thapa, S.; Bhoi, P.R.; Huhnke, R.L.; Kumar, A. Engine power generation and emission performance of syngas generated from low-density biomass. Energy Conv. Manag. 2017, 148, 593–603. [Google Scholar] [CrossRef]
- Martinez, J.D.; Mahkamov, K.; Andrade, R.V.; Lora, E.E.S. Syngas production in downdraft biomass gasifiers and its application using internal combustion engines. Renew. Energy 2012, 38, 1–9. [Google Scholar] [CrossRef]
- Chaves, L.I.; da Silva, M.J.; de Souza, S.N.M.; Secco, D.; Rosa, H.A.; Nogueira, C.E.C.; Frigo, E.P. Small-scale power generation analysis: Downdraft gasifier coupled to engine generator set. Renew. Sustain. Energy Rev. 2016, 58, 491–498. [Google Scholar] [CrossRef]
- Projected Costs of Generating Electricity. 2015 Edition; IAEA: Vienna, Austria; OECD Nuclear Energy Agency: Paris, France, 2015; p. 215.
- Marchenko, O.V.; Solomin, S.V. Economic efficiency of renewable energy sources in autonomous energy systems in Russia. Int. J. Renew. Energy Res. 2014, 4, 548–554. [Google Scholar]
- Marchenko, O.V.; Solomin, S.V. Efficiency of hybrid renewable energy systems in Russia. Int. J. Renew. Energy Res. 2017, 7, 1561–1569. [Google Scholar]
- Marchenko, O.V.; Solomin, S.V. Efficiency assessment of renewable energy sources. In Proceedings of the E3S Web of Conferences, International Conference of Young Scientists “Energy Systems Research 2019”, Irkutsk, Russia, 27–30 May 2019; Volume 114, pp. 1–6. [Google Scholar]
Federal District | Logging mln m3 | Lumber mln m3 | Plywood mln m3 | Cellulose mln t | Wood Pulp mln t |
---|---|---|---|---|---|
Central | 25.2 | 1.9 | 1.0 | 0.0 | 0.0 |
Northwestern | 60.8 | 8.0 | 1.3 | 5.2 | 1.5 |
Southern | 0.7 | 0.2 | 0.0 | 0.0 | 0.04 |
North Caucasian | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 |
Volga | 34.4 | 3.0 | 1.2 | 1.0 | 0.8 |
Ural | 17.1 | 0.9 | 0.4 | 0.0 | 0.02 |
Siberian | 79.0 | 11.6 | 0.3 | 2.2 | 0.0 |
Far Eastern | 21.0 | 2.8 | 0.0 | 0.1 | 0.0 |
Total | 238.6 | 28.5 | 4.2 | 8.6 | 2.4 |
Products | Year | |||
---|---|---|---|---|
2018 | 2030 (Forecast) | |||
Production | Waste | Production | Waste | |
Logging | 238.6 | 53.9–82.1 | 230.5–286.1 | 52.1–98.4 |
Lumber | 28.5 | 13.1–23.9 | 62.1–69.5 | 28.6–62.6 |
Plywood | 4.2 | 6.5–8.0 | 5.1–5.9 | 7.9–11.2 |
Tare | 0.4 | 1.1 | 0.5–0.8 | 1.4–2.2 |
Cellulose | 38.8 | 4.7 | 43.4–63.3 | 5.2–7.6 |
Wood Pulp | 6.3 | 4.4 | 6.8–10.5 | 4.8–7.3 |
Total | 316.8 | 83.7–124.2 | 348.4–436.1 | 100.0–189.3 |
Fuel | Moisture Content % | Ash Content % | Organic Matter Composition % | Heat Recovery MJ/kg | Cg | CGE | Heat Value of Syngas | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | H | O | N | S | MJ/Nm3 | MJ/kg of fuel | ||||||
Wood (dried) | 6.8 | 0.4 | 49 | 6 | 45 | 0 | 0 | 0 | 2.76 1.0 | 0.44 0.80 | 1.97 5.74 | 7.21 13.29 |
Wood (humid) | 18.25 | 5.91 | 1.0 | 1.23 | 11.68 | 20.26 | ||||||
Brown coal (dried) | 10 | 30 | 63 | 4 | 32 | 1 | 0 | 0 | 1.97 1.0 | 0.48 0.77 | 2.42 4.94 | 6.62 10.77 |
Brown coal (humid) | 28.9 | 5.65 | 1.0 | 1.26 | 11.62 | 17.28 | ||||||
Peat | 50 | 10 | 56 | 6 | 35 | 1 | 2 | 0.84 | 1.0 | 0.79 | 5.20 | 7.16 |
Fuel | k, $/kW | δ, 1/year | ηe | ηh | ∆T, year | Fuel Price, $/toe |
---|---|---|---|---|---|---|
Fossil Fuel | ||||||
Coal | 1000–1250 | 0.07 | 0.28–0.30 | 0.52–0.55 | 20 | 36–57 |
Natural gas | 650–700 | 0.05 | 0.30–0.32 | 0.53–0.56 | 15 | 93–100 |
Diesel fuel | 450–550 | 0.07 | 0.30–0.32 | 0.40–0.48 | 15 | 890–990 |
Biomass | ||||||
Wood chips | 1100–1350 | 0.10 | 0.25–0.27 | 0.48–0.53 | 20 | 29–72 |
Pellets | 900–1000 | 0.07 | 0.27–0.30 | 0.50–0.55 | 20 | 150–200 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchenko, O.; Solomin, S.; Kozlov, A.; Shamanskiy, V.; Donskoy, I. Economic Efficiency Assessment of Using Wood Waste in Cogeneration Plants with Multi-Stage Gasification. Appl. Sci. 2020, 10, 7600. https://doi.org/10.3390/app10217600
Marchenko O, Solomin S, Kozlov A, Shamanskiy V, Donskoy I. Economic Efficiency Assessment of Using Wood Waste in Cogeneration Plants with Multi-Stage Gasification. Applied Sciences. 2020; 10(21):7600. https://doi.org/10.3390/app10217600
Chicago/Turabian StyleMarchenko, Oleg, Sergei Solomin, Alexander Kozlov, Vitaly Shamanskiy, and Igor Donskoy. 2020. "Economic Efficiency Assessment of Using Wood Waste in Cogeneration Plants with Multi-Stage Gasification" Applied Sciences 10, no. 21: 7600. https://doi.org/10.3390/app10217600
APA StyleMarchenko, O., Solomin, S., Kozlov, A., Shamanskiy, V., & Donskoy, I. (2020). Economic Efficiency Assessment of Using Wood Waste in Cogeneration Plants with Multi-Stage Gasification. Applied Sciences, 10(21), 7600. https://doi.org/10.3390/app10217600