A Non-Volatile Memory Based on NbOx/NbSe2 Van der Waals Heterostructures
Abstract
:1. Introduction
2. Materials and Memristor Fabrication
2.1. Synthesis of NbSe2 by Using Chemical Vapor Deposition (CVD) Method
2.2. Fabrication of NbOx/NbSe2 Heterostructured Memristor Device
3. Results
3.1. Characterization
3.1.1. NbSe2 Material Characterization
3.1.2. NbSe2 Electrical Characterization
3.2. Properties of the NbOx/NbSe2 Heterostructured Memristor Device
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zidan, M.A.; Strachan, J.P.; Lu, W.D. The future of electronics based on memristive systems. Nat. Electron. 2018, 1, 22–29. [Google Scholar] [CrossRef]
- Sangwan, V.K.; Hersam, M.C. Neuromorphic nanoelectronic materials. Nat. Nanotechnol. 2020, 15, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Gong, T.; Wang, H.; Guo, Z.; Zhang, H. Memristive devices based on emerging two-dimensional materials beyond graphene. Nanoscale 2019, 11, 12413–12435. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Ramanathan, S. Mott memory and neuromorphic devices. Proc. IEEE 2015, 103, 1289–1310. [Google Scholar] [CrossRef] [Green Version]
- Novoselov, K.S.; Jiang, D.; Schedin, F.; Booth, T.J.; Khotkevich, V.V.; Morozov, S.V.; Geim, A.K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453. [Google Scholar] [CrossRef] [Green Version]
- Podzorov, V.; Gershenson, M.E.; Kloc, C.; Zeis, R.; Bucher, E. High-mobility field-effect transistors based on transition metal dichalcogenides. Appl. Phys. Lett. 2004, 84, 3301–3303. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Tongay, S.; Zhou, J.; Li, J.; Wu, J. Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 2013, 102, 012111. [Google Scholar] [CrossRef] [Green Version]
- Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y.I.L.; et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, D.; Timmermans, M.Y.; Tian, Y.; Nasibulin, A.G.; Kauppinen, E.I.; Kishimoto, S.; Mizutani, T.; Ohno, Y. Flexible high-performance carbon nanotube integrated circuits. Nat. Nanotechnol. 2011, 6, 156–161. [Google Scholar] [CrossRef]
- Kang, J.; Cao, W.; Xie, X.; Sarkar, D.; Liu, W.; Banerjee, K. Graphene and beyond-graphene 2D crystals for next-generation green electronics. Micro-Nanotechnol. Sens. Syst. Appl. VI 2014, 9083, 908305. [Google Scholar]
- Phan, T.L.; Vu, Q.A.; Kim, Y.R.; Shin, Y.S.; Lee, I.M.; Tran, M.D.; Jiang, J.; Luong, D.H.; Liao, L.; Lee, Y.H.; et al. Efficient gate modulation in a screening-engineered MoS2/single-walled carbon nanotube network heterojunction vertical field-effect transistor. ACS Appl. Mater. Interfaces 2019, 11, 25516–25523. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.R.; Phan, T.L.; Shin, Y.S.; Kang, W.T.; Won, U.Y.; Lee, I.; Kim, J.E.; Kim, K.; Lee, Y.H.; Yu, W.J. Unveiling the hot carrier distribution in vertical graphene/h-BN/Au van der Waals Heterostructures for high-performance photodetector. ACS Appl. Mater. Interfaces 2020, 12, 10772–10780. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.E.; No, Y.H.; Kim, J.N.; Shin, Y.S.; Kang, W.T.; Kim, Y.R.; Kim, K.N.; Kim, Y.H.; Yu, W.J. Highly sensitive graphene biosensor by monomolecular self-assembly of receptors on graphene surface. Appl. Phys. Lett. 2017, 110, 203702. [Google Scholar] [CrossRef]
- Fan, S.; Vu, Q.A.; Lee, S.; Phan, T.L.; Han, G.; Kim, Y.-M.; Yu, W.J.; Lee, Y.H. Tunable negative differential resistance in van der Waals Heterostructures at room temperature by tailoring the interface. ACS Nano 2019, 13, 8193–8201. [Google Scholar] [CrossRef]
- Muñoz, R.; Gómez-Aleixandre, C. Review of CVD synthesis of graphene. Chem. Vap. Depos. 2013, 19, 297–322. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yao, Y.; Sendeku, M.G.; Yin, L.; Zhan, X.; Wang, F.; Wang, Z.; He, J. Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures. Adv. Mater. 2019, 31, 1–30. [Google Scholar] [CrossRef]
- Cai, Z.; Liu, B.; Zou, X.; Cheng, H.-M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 2018, 118, 6091–6133. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhou, Q.; Shi, L.; Chen, Q.; Wang, J. Recent advances in oxidation and degradation mechanisms of ultrathin 2D materials under ambient conditions and their passivation strategies. J. Mater. Chem. A 2019, 7, 4291–4312. [Google Scholar] [CrossRef]
- Ryder, C.R.; Wood, J.D.; Wells, S.A.; Yang, Y.; Jariwala, D.; Marks, T.J.; Schatz, G.C.; Hersam, M.C. Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat. Chem. 2016, 8, 597–602. [Google Scholar] [CrossRef]
- Kang, K.; Godin, K.; Kim, Y.D.; Fu, S.; Cha, W.; Hone, J.; Yang, E.H. Graphene-assisted antioxidation of tungsten disulfide monolayers: Substrate and electric-field effect. Adv. Mater. 2017, 29, 1603898. [Google Scholar] [CrossRef] [PubMed]
- Akinaga, H.; Shima, H. Resistive Random Access Memory (ReRAM) based on metal oxides. Proc. IEEE 2010, 98, 2237–2251. [Google Scholar] [CrossRef]
- Wong, H.-P.; Lee, H.; Yu, S.; Chen, Y.; Wu, Y.; Chen, P.; Lee, B.; Chen, F.T.; Tsai, M. Metal–oxide RRAM. Proc. IEEE 2012, 100, 1951–1970. [Google Scholar] [CrossRef]
- Permyakova, O.O.; Rogozhin, A.E. Simulation of resistive switching in memristor structures based on transition metal oxides. Russ. Microelectron. 2020, 49, 303–313. [Google Scholar] [CrossRef]
- Kumar, S.; Wang, Z.; Huang, X.; Kumari, N.; Davila, N.; Strachan, J.P.; Vine, D.; Kilcoyne, A.L.D.; Nishi, Y.; Williams, R.S. Oxygen migration during resistance switching and failure of hafnium oxide memristors. Appl. Phys. Lett. 2017, 110, 103503. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Yun, S.J.; Park, J.C.; Park, M.H.; Park, J.H.; Kim, K.K.; Lee, Y.H. Seed growth of tungsten diselenide nanotubes from tungsten oxides. Small 2015, 11, 2192–2199. [Google Scholar] [CrossRef] [PubMed]
- Jiao, L.; Fan, B.; Xian, X.; Wu, Z.; Zhang, J.; Liu, Z. Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing. J. Am. Chem. Soc. 2008, 130, 12612–12613. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Huang, X.; Lin, J.; Cui, J.; Chen, Y.; Zhu, C.; Liu, F.; Zeng, Q.; Zhou, J.; Yu, P.; et al. High-quality monolayer superconductor NbSe2 grown by chemical vapour deposition. Nat. Commun. 2017, 8, 1–8. [Google Scholar] [CrossRef]
- Zhao, B.; Dang, W.; Yang, X.; Li, J.; Bao, H.; Wang, K.; Luo, J.; Zhang, Z.; Li, B.; Xie, H.; et al. van der Waals epitaxial growth of ultrathin metallic NiSe nanosheets on WSe2 as high performance contacts for WSe2 transistors. Nano Res. 2019, 12, 1683–1689. [Google Scholar] [CrossRef]
- Huang, J.-K.; Pu, J.; Hsu, C.-L.; Chiu, M.-H.; Juang, Z.-Y.; Chang, Y.-H.; Chang, W.-H.; Iwasa, Y.; Takenobu, T.; Li, L.-J. Large-area synthesis of highly crystalline WSe(2) monolayers and device applications. ACS Nano 2014, 8, 923–930. [Google Scholar] [CrossRef] [Green Version]
- Boandoh, S.; Choi, S.H.; Park, J.H.; Park, S.Y.; Bang, S.; Jeong, M.S.; Lee, J.S.; Kim, H.J.; Yang, W.; Choi, J.Y.; et al. A novel and facile route to synthesize atomic-layered MoS2 film for large-area electronics. Small 2017, 13, 1–9. [Google Scholar] [CrossRef]
- Wang, B.; Luo, H.; Wang, X.; Wang, E.; Sun, Y.; Tsai, Y.C.; Zhu, H.; Liu, P.; Jiang, K.; Liu, K. Bifunctional NbS2-based asymmetric heterostructure for lateral and vertical electronic devices. ACS Nano 2020, 14, 175–184. [Google Scholar] [CrossRef]
- Ismail, M.; Huang, C.-Y.; Panda, D.; Hung, C.-J.; Tsai, T.-L.; Jieng, J.-H.; Lin, C.-A.; Chand, U.; Rana, A.M.; Ahmed, E.; et al. Forming-free bipolar resistive switching in nonstoichiometric ceria films. Nanoscale Res. Lett. 2014, 9, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, E.W.; Ismail, R. Conduction mechanism of valence change resistive switching memory: A survey. Electronics 2015, 4, 586–613. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.E.; Vu, V.T.; Vu, T.T.H.; Phan, T.L.; Kim, Y.R.; Kang, W.T.; Kim, K.; Lee, Y.H.; Yu, W.J. A Non-Volatile Memory Based on NbOx/NbSe2 Van der Waals Heterostructures. Appl. Sci. 2020, 10, 7598. https://doi.org/10.3390/app10217598
Kim JE, Vu VT, Vu TTH, Phan TL, Kim YR, Kang WT, Kim K, Lee YH, Yu WJ. A Non-Volatile Memory Based on NbOx/NbSe2 Van der Waals Heterostructures. Applied Sciences. 2020; 10(21):7598. https://doi.org/10.3390/app10217598
Chicago/Turabian StyleKim, Ji Eun, Van Tu Vu, Thi Thanh Huong Vu, Thanh Luan Phan, Young Rae Kim, Won Tae Kang, Kunnyun Kim, Young Hee Lee, and Woo Jong Yu. 2020. "A Non-Volatile Memory Based on NbOx/NbSe2 Van der Waals Heterostructures" Applied Sciences 10, no. 21: 7598. https://doi.org/10.3390/app10217598
APA StyleKim, J. E., Vu, V. T., Vu, T. T. H., Phan, T. L., Kim, Y. R., Kang, W. T., Kim, K., Lee, Y. H., & Yu, W. J. (2020). A Non-Volatile Memory Based on NbOx/NbSe2 Van der Waals Heterostructures. Applied Sciences, 10(21), 7598. https://doi.org/10.3390/app10217598