1. Introduction
Laser-based direct energy deposition (DED) is an additive manufacturing (AM) process that is used to fabricate metallic components layer by layer and uses a laser as the heat source to melt additive materials (in either powder or wire form) as they are deposited onto a substrate [
1]. The laser-based DED has found broad applications in the aerospace and marine industries due to its capability of making large-scale and customized parts in a cost-effective way. However, the laser-based DED process has poorer stability compared to traditional metal forming processes. It is prone to defects and dimensional inaccuracy due to various factors, including uneven thermal stress, strong melt pool dynamics, localized heat accumulation, inconsistent speed, and other unpredictable disturbances during laser beam delivery and material feeding [
2]. Therefore, closed-loop control systems with sensor feedbacks are highly desirable for the laser-based DED process [
3]. However, the nonlinearity and varying dynamics of the DED makes the search for robust control algorithms a challenging task. Constant controller parameters may not perform well for all the layers in DED, as the process conditions (e.g., the solidified layer temperature and the associated nominal melt pool size) change over time as the part grows [
4]. Moreover, a controller designed for a specific material may not be suitable for another material, since the nominal DED process parameters and material properties (e.g., thermal conductivity, viscosity, and emissivity) are different. Therefore, this research aimed to develop a data-driven adaptive control method in which the controller parameters are variables that can be automatically updated during the laser-based DED process.
Melt pool characteristics have a strong correlation with the process stability and part quality in DED, and hence they are frequently used in closed-loop control systems [
5]. The effects of DED process parameters on melt pool characteristics have been investigated quantitatively in previous research. It was found that the melt pool size and temperature are both positively influenced by the input energy density and hence the laser power [
6,
7]. The proportional–integral–derivative (PID) controller has been widely adopted in the development of melt-pool-based DED control systems due to its simplicity and effectiveness. For example, Bi et al. [
8,
9] used a pyrometer to sense the infrared (IR) radiation from the melt pool and sent the reading to a PID controller. Based on the error term calculated as the difference between the real-time IR signal and its nominal value, the PID controller could change the laser power in response to the fluctuation in melt pool temperature. Consistent height of the as-built part was achieved by the above approach. Hofman et al. [
10] utilized a complementary metal-oxide-semiconductor (CMOS) camera to capture the melt pool image and measure the melt pool width. Then, they applied a PID controller to increase and decrease the laser power to compensate for the rise and fall of the melt pool width, respectively. Similar studies used PID controllers to adjust the laser power based on the variation of melt pool area [
11,
12]. Enhancements have also been made to the conventional PID method, aiming to improve the controller performance under the varying dynamics of the DED process. For example, Moralejo et al. [
13] added a feedforward path to a PID controller, which could reduce the overshoot and improve the response speed. The authors also embedded the melt pool size setpoint into the preprogrammed computer numerical control (CNC) code. The position-dependent setpoint allowed the building of changeable geometries using a single-track toolpath. However, extensive experimentation was needed to obtain the correct controller parameters. Akbari and Kovacevic [
4] implemented an adaptive control strategy that handled the variation of melt pool response across multiple layers. System identification was performed for each layer, and the response of melt pool size to the laser power was represented by a first-order transfer function that had different coefficients for different layers. A PID controller was used to adjust the laser power; but instead of having constant parameters, its PID parameters were tuned for each layer using the corresponding transfer function. This strategy allowed the controller to be adaptable to changes in the heat conduction mode and cooling rate as the part height increased. However, the layer-by-layer system identification and controller tuning process was time-consuming and lacked automation, which made the above control strategy less user-friendly for industry applications. Song et al. [
14] proposed a two-input single-output hybrid controller that consisted of a rule-based height controller and a closed-loop temperature controller. The laser power was reduced by the height controller until the melt pool height was below the preset layer thickness threshold. Afterward, the temperature controller took over and adjusted the laser power based on the pyrometer feedback. Another hybrid control strategy was proposed for a laser–wire DED system by Gibson et al. [
15]. The laser power was controlled by the melt pool geometry using thermal camera feedback, while the printing speed and wire feeding rate were controlled by the part height on a per-layer basis. As the part height increased, both the printing speed and wire feeding rate increased. Hence, the average laser energy density decreased, which was allowed due to the heat accumulation in the freshly built layers below the melt pool. This approach could maintain the process stability and improve the productivity at the same time. However, since the heat accumulation effect strongly depended on the material, geometry, area, and maximum height of the part, the selection of controller parameters for a specific product might not be suitable for another product.
One of the limitations in the existing control strategies that extensive experimentation is required to find the optimal controller parameters. The system identification and parameter tuning processes are cumbersome and time-consuming. Besides, although some of the aforementioned controllers considered interlayer changes in DED process conditions, they did not adapt to the intralayer variation of melt pool dynamics. Therefore, in this research, we propose a novel data-driven adaptive control strategy with automatic parameter tuning instead of using a prior plant model or static controller parameters. During the laser-based DED process, the sensor-captured melt pool size and the laser voltage signal are recorded in each time frame as the system input and output (I/O) data, respectively. The I/O data collected within a periodic time interval are stored in a buffer before they are fed into an autotuning unit to compute the optimal PID controller parameters. The PID controller with the updated parameters is used to adjust the laser power in the next time interval while the new sets of I/O data are being collected to overwrite the buffer. The controller parameters are reoptimized once again at the end of the cycle, using the updated I/O data that reflect the varying response dynamics of the melt pool. The virtual reference feedback tuning (VRFT) algorithm [
16] is implemented in the autotuning unit for PID parameter optimization. The data-driven controller update is performed periodically throughout the entire DED process regardless of the present time, layer, material, size, or shape. Prior and interlayer system identification experiments are no longer needed, thus saving time and cost. Besides, since the proposed adaptive controller is dynamically set by the time-dependent process data, it can be applied to parts with any materials, geometries, and sizes without modification, which makes its adoption convenient for industry end-users.
This paper is organized as follows:
Section 2 introduces the overall setup of the laser-based DED system with melt pool monitoring and closed-loop control.
Section 3 explains the details of the proposed data-driven adaptive control strategy.
Section 4 presents the experimental results that demonstrate the effectiveness of the proposed method. Lastly,
Section 5 concludes the paper and provides direction for future research.
4. Experimental Validation
The proposed data-driven adaptive controller was implemented in the laser-based DED system and validated experimentally. As listed in
Table 1, different materials, geometries, and deposition tool paths were tested to validate that the proposed controller could automatically adjust its parameters and was adaptable to different deposition situations without the necessity to conduct system identification. Specifically, three experiments were conducted: (1) solid semicylinder with profile tool paths in 316 L stainless steel, (2) solid semicylinder without profile tool paths in 316 L stainless steel, and (3) thin-wall pipe with a continuous spiral tool path in LPW-35N nickel alloy (a customized material designed by the authors’ organization). Experiments 1 and 2 each comprised three samples. The first sample was fabricated using the constant nominal process parameters listed without the employed control system in
Table 2. The second sample was fabricated using a conventional PID controller, where constant PID gains were used. The PID gains were determined by experiment-based system identification and trial-and-error. The third sample was fabricated using the proposed adaptive control method, where PID gains were automatically optimized and updated during the process. These three samples were compared with each other, and the effect of the adaptive controller was analyzed. Experiment 3 was conducted to validate that the proposed adaptive control method was still effective even when the powder material and part geometry were changed (compared to Experiments 1 and 2), while no additional experiment was needed to recalibrate the controller. The MPW data and the corresponding laser voltage output in these three experiments were recorded, and the results are discussed below.
Figure 5 shows the results of Experiment 1, comparing the samples of depositing the 30 mm diameter semicylinder structure using 316 L stainless steel. The part’s nominal height (
HN) was 9 mm, and the nominal semicylinder diameter (
DN) was 30 mm, as indicated in
Figure 5. In
Figure 5a, the semicylinder structure was fabricated using the constant laser voltage signal (6.2 V) without control. A laser profiler was used to scan the surface of the part and produce its 3D point cloud using the method introduced in [
26,
27]. The scanned surface reconstructed from the point cloud is shown in
Figure 5b, where the color bar indicates the distance in the z-direction from the points to the reference plane [
26]. The larger distance shown in the graph means the lower dimensional accuracy of the DED-fabricated part. A bulging area at the center of the surface that is significantly higher than the edges can be seen in
Figure 5b, which was caused by the unstable laser energy density and hence the uneven heat accumulation in the part.
Figure 5c shows the sample deposited using a conventional PID controller with constant PID gains ((
KP,
KI,
KD) = (0.04, 0.02, 0.00)). The PID gains were tuned based on Ziegler-Nichols criteria [
28] via trial-and-error experiments, which was considerably time-consuming and ineffective in terms of manpower and cost. The top surface of the conventional PID controlled sample is shown in
Figure 5d. It can be seen that its surface was flatter and the central bulge height was smaller than that in the uncontrolled sample. This is due to the effect of the closed-loop control on stabilizing the heat input and reducing the localized heat accumulation.
Figure 5e shows the sample deposited with the proposed adaptive controller, and its surface was also scanned and reconstructed, as shown in
Figure 5f. It can be observed that the central bulge area was further flattened compared with the conventional PID controlled sample.
Figure 6a–c shows the time plots of the MPW data and laser voltage signals for the uncontrolled sample, conventional PID controlled sample, and adaptively controlled sample, respectively. In
Figure 6a, a progressive increase in the MPW is observed due to the accumulated heat built up in the part when using a constant laser voltage. The MPW exceeded 140 pixels at the end of the fabrication process with the trend of growing even larger. In
Figure 6b, the conventional PID controller was used, and the growth of MPW was reduced compared to the uncontrolled sample. However, there was still an increasing trend in MPW. About half of the MPW data were in the range of 120–130 pixels after 250 s, suggesting an unstable heat input across the surface and the possibility of more severe geometry inaccuracy if the deposition continues. In
Figure 6c, the adaptive controller showed a more significant effect on stabilizing the melt pool than the conventional PID controller. The laser voltage signal was reduced gradually to decrease the average energy density as the process continued. The MPW data were maintained at a narrower range of 115–120 pixels throughout the entire deposition process. Therefore, uneven localized heat accumulation was minimized, and the possibility of surface defect occurrence was reduced.
During the closed-loop control, the laser voltage output was constrained by a maximum value of 6.2 V. This value was the limit of the DED process window determined in previous experiments, in order to prevent material failure. In fact, as shown in
Figure 6b,c, the laser voltage was below 6.0 V for most of the time and seldomly hit the 6.2 V limit.
Figure 7 shows the PID gain variations for the entire time-plots extracted from
Figure 6c, where the controller parameters (
KP,
KI,
KD) were updated in each adaptive control interval (10 s in this study). The collected I/O dataset in each interval was used to optimize the controller parameters automatically without manual tuning. The resultant controller parameters were truncated at three decimals, as shown in the plot. The resultant PID controller had zero derivative gains (
KD = 0), which was acceptable in this case since the negligible derivative action could reduce the system’s sensitivity to noises. When the first layer was deposited, a significant portion of the input heat was conducted to the substrate, and hence the melt pool was in a transient state. Since neither surface defect nor geometric nonconformance was observed in the first layer, a constant laser voltage was applied. As the deposition process continued, the heat transfer rate between part and substrate reached a steady state, and the local fluctuation of the MPW would potentially lead to geometric inaccuracies. Therefore, the control action was started in the second layer at the time around 30 s. After the second layer, the MPW was stabilized and maintained within 115–120 pixels.
Figure 8 illustrates the results of Experiment 2. The samples in Experiment 2 had the same nominal dimensions as those in Experiment 1 but with different tool path settings. In particular, the samples printed in Experiment 2 did not include the profile tool path. Only the infill was built, while the outer contour of each layer was not deposited.
Figure 8a,b shows the sample fabricated with the constant laser voltage (6.2 V) without control. With a higher central bulge and lower edges, this sample had a more significant distortion than that seen in
Figure 5 in Experiment 1, which was the result of less material added to the edges to compensate for the distortion when the profile tool path was absent. The conventional PID control method was used for the sample in
Figure 8c,d. Both the height and area of the surface bulge area were reduced compared to those in the uncontrolled sample. However, before the PID controller was deployed, system identifications and trial-and-error experiments were conducted to determine the PID gains, thus introducing extra time and material wastage. With the proposed adaptive controller employed, as shown in
Figure 8e,f, the sample had a flatter surface, sharper edges, and hence a better geometric accuracy than its uncontrolled and conventional PID controlled counterparts.
Figure 9 shows the time plots of the MPW and laser voltage in Experiment 2. The MPW value of the uncontrolled sample increased continuously until it exceeded 150 pixels at the end of the fabrication. The MPW value of the conventional PID controlled sample shows a slower growth compared to the uncontrolled sample. Compared to the conventional PID controller, the proposed adaptive control method was able to further stabilize the MPW while keeping it within the range of 115–130 pixels. The proposed adaptive control method was proven effective regardless of the tool path setting.
Experiment 3 was conducted to validate the capability of the proposed adaptive controller in improving the geometric accuracy for any random part, without extra controller tuning or system identification. Compared to the previous two experiments, Experiment 3 involved different material (LPW-35N nickel alloy instead of 316 L stainless steel), geometry (a thin-walled hollow part instead of a solid part), tool path (continuous spiral path instead of zigzag straight path segments), and process parameters (different powder feeding rates and layer thicknesses). The fabrication result of Experiment 3 is shown in
Figure 10.
Figure 10a shows the uncontrolled sample deposited with the constant laser voltage (6.2 V), which shows a wavy top surface with obvious bulge and dent regions. The highest point and lowest point were measured at 24.25 mm and 21.33 mm, respectively, making a height difference of 2.92 mm. The significant unevenness of the top surface was mainly due to the inconsistent printing velocity along the spiral tool path when the robot carrying the optical head kept accelerating or decelerating in both X and Y directions. The inconsistent velocity resulted in inconsistent laser energy density input to the melt pool.
Figure 10b shows the sample fabricated with the proposed adaptive controller enabled. The adaptively controlled sample had a more even surface than the uncontrolled counterparts. The lowest and highest points were 22.90 mm and 24.15 mm, respectively, and the 1.25 mm height difference was less than half that of the uncontrolled sample. As a result of the adaptive closed-loop control, the geometric accuracy of the thin-walled part could be improved. The inconsistent energy density due to velocity inconsistency was compensated for by the controlled laser voltage.
Figure 10c,d shows the time plots of the MPW data and laser voltage signal in Experiment 3. When the MPW rose due to higher energy density (and slower absolute speed), the laser signal was reduced, attempting to lower the MPW, and vice versa. The stabilizing effect of the proposed controller can be observed from the MPW plot in
Figure 10d, which has considerably smaller fluctuation than that in
Figure 10c. Similar to Experiments 1 and 2, Experiment 3 also demonstrated the capability of the proposed controller in reducing heat accumulation. This capability was more important for thin-walled hollow parts than solid parts since thin-walled parts had smaller cross-sections and hence poorer heat conduction rate. The MPW of the uncontrolled sample grew to nearly 140 pixels in
Figure 10c, whereas the MPW of the adaptively controlled sample remained in the narrow range of 95–105 pixels in
Figure 10d throughout the process. The reduced heat accumulation due to the relative consistency of the MPW also contributed to the better accuracy of the controlled sample.
The above experiments demonstrated the effectiveness of the proposed data-driven adaptive control strategy in enhancing the laser-based DED system’s performance. In general, the proposed adaptive control method could produce a better result than the uncontrolled and conventional PID controlled processes in terms of MPW stabilization and geometric accuracy improvement. More importantly, the proposed adaptive control method could eliminate the costly and inefficient controller tuning procedures used in the conventional PID method. A different set of controller parameters needed to be obtained by system identification and trial-and-error experiments in conventional PID whenever the process conditions were changed. In comparison, the proposed data-driven adaptive controller could be used to fabricate parts with any shapes, materials, tool paths, or process parameters. Experiment-based system identification and manual tweaking of the controller was not required even when the DED process conditions were changed for different parts. The controller parameters could be optimized and updated automatically on-the-fly during the DED process without human intervention, and the reduced complexity in controller implementation could pave the way to broader adoption of closed-loop DED systems by industry end-users.