Taking Advantage of Promiscuity of Cold-Active Enzymes
Abstract
:Author Contributions
Funding
Conflicts of Interest
References
- Siddiqui, K.S. Some like it hot, some like it cold: Temperature dependent biotechnological applications and improvements in extremophilic enzymes. Biotechnol. Adv. 2015, 33, 1912–1922. [Google Scholar] [CrossRef]
- Smal, S.A.O.; Leiros, H.K.S.; Os, V.; Willassen, N.P. Cold adapted enzymes. Biotechnol. Annu. Rev. 2000, 6, 1–57. [Google Scholar] [CrossRef]
- Santiago, M.; Ramírez-Sarmiento, C.A.; Zamora, R.A.; Parra, L.P. Discovery, molecular mechanisms, and industrial applications of cold-active enzymes. Front. Microbiol. 2016, 7, 1408. [Google Scholar] [CrossRef]
- Bruno, S.; Coppola, D.; Di Prisco, G.; Giordano, D.; Verde, C. Enzymes from marine polar regions and their biotechnological applications. Mar. Drugs 2019, 17, 544. [Google Scholar] [CrossRef] [Green Version]
- Mangiagalli, M.; Brocca, S.; Orlando, M.; Lotti, M. The “cold revolution”. Present and future applications of cold-active enzymes and ice-binding proteins. New Biotechnol. 2020, 55, 5–11. [Google Scholar] [CrossRef]
- Langridge, P.; Morita, R.Y. Thermolability of Malic Dehydrogenase from the Obligate Psychrophile Vibrio marinus1. J. Bacteriol. 1966, 92, 418–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sočan, J.; Purg, M.; Åqvist, J. Computer simulations explain the anomalous temperature optimum in a cold-adapted enzyme. Nat. Commun. 2020, 11, 2644. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, S.; Gerday, C.; Feller, G. Temperature adaptation of proteins: Engineering mesophilic-like activity and stability in a cold-adapted α-amylase. J. Mol. Biol. 2003, 332, 981–988. [Google Scholar] [CrossRef] [PubMed]
- Olufsen, M.; Smalås, A.O.; Moe, E.; Brandsdal, B.O. Increased flexibility as a strategy for cold adaptation: A comparative molecular dynamics study of cold- and warm-active uracil DNA glycosylase. J. Biol. Chem. 2005, 280, 18042–18048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjelic, S.; Brandsdal, B.O.; Åqvist, J. Cold adaptation of enzyme reaction rates. Biochemistry 2008, 47, 10049–10057. [Google Scholar] [CrossRef]
- Joseph, B.; Ramteke, P.W.; Thomas, G.; Shrivastava, N. Standard Review Cold-active microbial Lipases: A versatile tool for industrial applications. Biotechnol. Mol. Biol. Rev. 2007, 2, 39–48. [Google Scholar]
- Nobeli, I.; Favia, A.D.; Thornton, J.M. Protein promiscuity and its implications for biotechnology. Nat. Biotechnol. 2009, 27, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Georlette, D.; Blaise, V.; Collins, T.; D’Amico, S.; Gratia, E.; Hoyoux, A.; Marx, J.C.; Sonan, G.; Feller, G.; Gerday, C. Some like it cold: Biocatalysis at low temperatures. FEMS Microbiol. Rev. 2004, 28, 25–42. [Google Scholar] [CrossRef] [Green Version]
- Tsigos, I.; Velonia, K.; Smonou, I.; Bouriotis, V. Purification and characterization of an alcohol dehydrogenase from the Antarctic psychrophile Moraxella sp. TAE123. Eur. J. Biochem. 1998, 254, 356–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davail, S.; Feller, G.; Narinx, E.; Gerday, C. Cold adaptation of proteins. J. Biol. Chem. 1994, 269, 17448–17453. [Google Scholar] [PubMed]
- Van Loo, B.; Jonas, S.; Babtie, A.C.; Benjdia, A.; Berteau, O.; Hyvönen, M.; Hollfelder, F. An efficient, multiply promiscuous hydrolase in the alkaline phosphatase superfamily. Proc. Natl. Acad. Sci. USA 2010, 107, 2740–2745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, R.; Gao, B.; Liu, X.; Ruan, F.; Zhang, Y.; Lou, J.; Feng, K.; Wunsch, C.; Li, S.M.; Dai, J.; et al. Molecular insights into the enzyme promiscuity of an aromatic prenyltransferase. Nat. Chem. Biol. 2017, 13, 226–234. [Google Scholar] [CrossRef]
- Copley, S.D. Shining a light on enzyme promiscuity. Curr. Opin. Struct. Biol. 2017, 47, 167–175. [Google Scholar] [CrossRef]
- Perritt, S.; Roberts, M. Flexural-slip structures in the Bushveld Complex, South Africa? J. Struct. Geol. 2007, 29, 1422–1429. [Google Scholar] [CrossRef]
- Van Petegem, F.; Collins, T.; Meuwis, M.A.; Gerday, C.; Feller, G.; Van Beeumen, J. The structure of a cold-adapted family 8 xylanase at 1.3 Å resolution. Structural adaptations to cold and investigation of the active site. J. Biol. Chem. 2003, 278, 7531–7539. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Wakamatsu, T.; Doi, K.; Sakuraba, H.; Ohshima, T. A psychrophilic leucine dehydrogenase from Sporosarcina psychrophila: Purification, characterization, gene sequencing and crystal structure analysis. J. Mol. Catal. B Enzym. 2012, 83, 65–72. [Google Scholar] [CrossRef]
- Arora, B.; Mukherjee, J.; Gupta, M.N. Enzyme promiscuity: Using the dark side of enzyme specificity in white biotechnology. Sustain. Chem. Process. 2014, 2, 25. [Google Scholar] [CrossRef] [Green Version]
- Kapoor, M.; Gupta, M.N. Lipase promiscuity and its biochemical applications. Process. Biochem. 2012, 47, 555–569. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, B.; Lin, X. Enzymatic Promiscuity for Organic Synthesis and Cascade Process. Curr. Org. Chem. 2010, 14, 1966–1988. [Google Scholar] [CrossRef]
- Bertuletti, S.; Ferrandi, E.E.; Marzorati, S.; Vanoni, M.; Riva, S.; Monti, D. Insights into the Substrate Promiscuity of Novel Hydroxysteroid Dehydrogenases. Adv. Synth. Catal. 2020, 362, 2474–2485. [Google Scholar] [CrossRef]
- Panja, A.S.; Bandopadhyay, B.; Maiti, S. Protein thermostability is owing to their preferences to non-polar smaller volume amino acids, variations in residual physico-chemical properties and more salt-bridges. PLoS ONE 2015, 10, e0131495. [Google Scholar] [CrossRef]
- Isaksen, G.V.; Åqvist, J.; Brandsdal, B.O. Protein Surface Softness Is the Origin of Enzyme Cold-Adaptation of Trypsin. PLoS Comput. Biol. 2014, 10, e1003813. [Google Scholar] [CrossRef] [Green Version]
- Isaksen, G.V.; Åqvist, J.; Brandsdal, B.O. Enzyme surface rigidity tunes the temperature dependence of catalytic rates. Proc. Natl. Acad. Sci. USA 2016, 113, 7822–7827. [Google Scholar] [CrossRef] [Green Version]
- Stefansson, B.; Helgadóttir, L.; Olafsdottir, S.; Gudmundsdottir, Á.; Bjarnason, J.B. Characterization of cold-adapted Atlantic cod (Gadus morhua) trypsin I—Kinetic parameters, autolysis and thermal stability. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2010, 155, 186–194. [Google Scholar] [CrossRef]
- Kundys, A.; Białecka-Florjańczyk, E.; Fabiszewska, A.; Małajowicz, J. Candida antarctica Lipase B as Catalyst for Cyclic Esters Synthesis, Their Polymerization and Degradation of Aliphatic Polyesters. J. Polym. Environ. 2018, 26, 396–407. [Google Scholar] [CrossRef]
- Le, L.T.H.L.; Yoo, W.; Jeon, S.; Lee, C.; Kim, K.K.; Lee, J.H.; Kim, T.D. Biodiesel and flavor compound production using a novel promiscuous cold-adapted SGNH-type lipase (HaSGNH1) from the psychrophilic bacterium Halocynthiibacter arcticus. Biotechnol. Biofuels 2020, 13, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.H.; Yoo, W.; Lee, C.W.; Jeong, C.S.; Shin, S.C.; Kim, H.W.; Park, H.; Kim, K.K.; Kim, T.D.; Lee, J.H. Crystal structure and functional characterization of a cold-active acetyl xylan esterase (PbAcE) from psychrophilic soil microbe Paenibacillus sp. PLoS ONE 2018, 13, e0206260. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Pérez, B.; Zhang, Z.; Gao, R.; Guo, Z. Mining catalytic promiscuity from: Thermophilic archaea: An acyl-peptide releasing enzyme from Sulfolobus tokodaii (ST0779) for nitroaldol reactions. Green Chem. 2016, 18, 2753–2761. [Google Scholar] [CrossRef]
- Bouchaâla, E.; BouAli, M.; Ali, Y.B.; Miled, N.; Gargouri, Y.; Fendri, A. Biochemical Characterization and Molecular Modeling of Pancreatic Lipase from a Cartilaginous Fish, the Common Stingray (Dasyatis pastinaca). Appl. Biochem. Biotechnol. 2015, 176, 151–169. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, F.; Wang, C.; Zheng, L.; Wang, Z.; Zhao, R.; Wang, L. Lipase-mediated amidation of anilines with 1,3-diketones via C–C bond cleavage. Catalysts 2017, 7, 115. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Ji, F.; Wang, J.; Pu, Z.; Jiang, B.; Bao, Y. Purification and characterization of a novel organic solvent-tolerant and cold-adapted lipase from Psychrobacter sp. ZY124. Extremophiles 2018, 22, 287–300. [Google Scholar] [CrossRef]
- Malekabadi, S.; Badoei-dalfard, A.; Karami, Z. Biochemical characterization of a novel cold-active, halophilic and organic solvent-tolerant lipase from B. licheniformis KM12 with potential application for biodiesel production. Int. J. Biol. Macromol. 2018, 109, 389–398. [Google Scholar] [CrossRef]
- Adachi, D.; Hama, S.; Nakashima, K.; Bogaki, T.; Ogino, C.; Kondo, A. Production of biodiesel from plant oil hydrolysates using an Aspergillus oryzae whole-cell biocatalyst highly expressing Candida antarctica lipase B. Bioresour. Technol. 2013, 135, 410–416. [Google Scholar] [CrossRef]
- Bae, S.Y.; Ryu, B.H.; Jang, E.; Kim, S.; Kim, T.D. Characterization and immobilization of a novel SGNH hydrolase (Est24) from Sinorhizobium meliloti. Appl. Microbiol. Biotechnol. 2013, 97, 1637–1647. [Google Scholar] [CrossRef]
- Dua, A.; Gupta, R. Functional characterization of hormone sensitive-like lipase from Bacillus halodurans: Synthesis and recovery of pNP-laurate with high yields. Extremophiles 2017, 21, 871–889. [Google Scholar] [CrossRef]
- Kim, B.; Yoo, W.; Huong Luu Le, L.T.; Kim, K.K.; Kim, H.-W.; Lee, J.H.; Kim, Y.-O.; Kim, T.D. Characterization and mutation anaylsis of a cold-active bacterial hormone-sensitive lipase from Salinisphaera sp. P7-4. Arch. Biochem. Biophys. 2019, 663, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Fernández De Las Heras, L.; Van Der Geize, R.; Drzyzga, O.; Perera, J.; María Navarro Llorens, J. Molecular characterization of three 3-ketosteroid-Δ1-dehydrogenase isoenzymes of Rhodococcus ruber strain Chol-4. J. Steroid Biochem. Mol. Biol. 2012, 132, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Capyk, J.K.; Casabon, I.; Gruninger, R.; Strynadka, N.C.; Eltis, L.D. Activity of 3-ketosteroid 9α-hydroxylase (KshAB) indicates cholesterol side chain and ring degradation occur simultaneously in Mycobacterium tuberculosis. J. Biol. Chem. 2011, 286, 40717–40724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kudalkar, G.P.; Tiwari, V.K.; Lee, J.D.; Berkowitz, D.B. A Hammett Study of Clostridium acetobutylicum Alcohol Dehydrogenase (CaADH): An Enzyme with Remarkable Substrate Promiscuity and Utility for Organic Synthesis. Synlett 2020, 31, 237–247. [Google Scholar] [CrossRef]
- Petratos, K.; Gessmann, R.; Daskalakis, V.; Papadovasilaki, M.; Papanikolau, Y.; Tsigos, I.; Bouriotis, V.; Bouriotis, V. Structure and Dynamics of a Thermostable Alcohol Dehydrogenase from the Antarctic Psychrophile Moraxella sp. TAE123. ACS Omega 2020, 5, 14523–14534. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, P.; Aldeborgh, H.; Carlucci, L.; Walsh, L.; Wasserman, J.; Zhou, E.; Lefurgy, S.T.; Mundorff, E.C. Alteration of substrate specificity of alanine dehydrogenase. Protein Eng. Des. Sel. 2015, 28, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Noda-García, L.; Juárez-Vázquez, A.L.; Ávila-Arcos, M.C.; Verduzco-Castro, E.A.; Montero-Morán, G.; Gaytán, P.; Carrillo-Tripp, M.; Barona-Gómez, F. Insights into the evolution of enzyme substrate promiscuity after the discovery of (βα)8 isomerase evolutionary intermediates from a diverse metagenome. BMC Evol. Biol. 2015, 15, 107. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Guptasarma, P. Endoglucanase activity at a second site in Pyrococcus furiosus triosephosphate isomerase—Promiscuity or compensation for a metabolic handicap? FEBS Open Bio 2017, 7, 1126–1143. [Google Scholar] [CrossRef]
- Sy, L.; Cs, K.; Wc, S.T.; Ll, F. Expression and Thermostability study of Triose Phosphate Isomerase (TIM) from Pseudomonas π9, a Psychrophilic Bacterium. Health Environ. J. 2014, 5, 65–82. [Google Scholar]
- Zadło-Dobrowolska, A.; Schmidt, N.G.; Kroutil, W. Promiscuous activity of C-acyltransferase from Pseudomonas protegens: Synthesis of acetanilides in aqueous buffer. Chem. Commun. 2018, 54, 3387–3390. [Google Scholar] [CrossRef] [Green Version]
- Eudes, A.; Pereira, J.H.; Yogiswara, S.; Wang, G.; Teixeira Benites, V.; Baidoo, E.E.K.; Lee, T.S.; Adams, P.D.; Keasling, J.D.; Loqué, D. Exploiting the substrate promiscuity of Hydroxycinnamoyl-CoA:Shikimate Hydroxycinnamoyl Transferase to reduce lignin. Plant Cell Physiol. 2016, 57, 568–579. [Google Scholar] [CrossRef] [PubMed]
- Griswold, K.E.; Aiyappan, N.S.; Iverson, B.L.; Georgiou, G. The Evolution of Catalytic Efficiency and Substrate Promiscuity in Human Theta Class 1-1 Glutathione Transferase. J. Mol. Biol. 2006, 364, 400–410. [Google Scholar] [CrossRef] [Green Version]
- Hou, Y.; Qiao, C.; Wang, Y.; Wang, Y.; Ren, X.; Wei, Q.; Wang, Q. Cold-adapted glutathione S-transferases from Antarctic psychrophilic bacterium Halomonas sp. ANT108: Heterologous expression, characterization, and oxidative resistance. Mar. Drugs 2019, 17, 147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, K.D.; Fosso, M.Y.; Mayhoub, A.S.; Garneau-Tsodikova, S. Investigating the promiscuity of the chloramphenicol nitroreductase from Haemophilus influenzae towards the reduction of 4-nitrobenzene derivatives. Bioorg. Med. Chem. Lett. 2019, 29, 1127–1132. [Google Scholar] [CrossRef] [PubMed]
- Freund, G.S.; O’Brien, T.E.; Vinson, L.; Carlin, D.A.; Yao, A.; Mak, W.S.; Tagkopoulos, I.; Facciotti, M.T.; Tantillo, D.J.; Siegel, J.B. Elucidating Substrate Promiscuity within the FabI Enzyme Family. ACS Chem. Biol. 2017, 12, 2465–2473. [Google Scholar] [CrossRef]
- Chen, L.; Yu, H.; Yang, S.; Qian, Y.; Xie, J. Study on the Mechanism of Cold Tolerance of the Strain Shewanella putrefaciens WS13 Through Fatty Acid Metabolism. Nanosci. Nanotechnol. Lett. 2019, 11, 1718–1723. [Google Scholar] [CrossRef]
- Dommaraju, S.R.; Dogovski, C.; Czabotar, P.E.; Hor, L.; Smith, B.J.; Perugini, M.A. Catalytic mechanism and cofactor preference of dihydrodipicolinate reductase from methicillin-resistant Staphylococcus aureus. Arch. Biochem. Biophys. 2011, 512, 167–174. [Google Scholar] [CrossRef]
- Lee, C.W.; Park, S.H.; Lee, S.G.; Park, H.H.; Kim, H.J.; Park, H.; Park, H.; Lee, J.H. Crystal structure of dihydrodipicolinate reductase (PaDHDPR) from Paenisporosarcina sp. TG-14: Structural basis for NADPH preference as a cofactor. Sci. Rep. 2018, 8, 7936. [Google Scholar] [CrossRef]
- Jia, M.; Mishra, S.K.; Tufts, S.; Jernigan, R.L.; Peters, R.J. Combinatorial biosynthesis and the basis for substrate promiscuity in class I diterpene synthases. Metab. Eng. 2019, 55, 44–58. [Google Scholar] [CrossRef]
- Berg, T.O.; Gurung, M.K.; Altermark, B.; Smalås, A.O.; Ræder, I.L.U. Characterization of the N-acetylneuraminic acid synthase (NeuB) from the psychrophilic fish pathogen Moritella viscosa. Carbohydr. Res. 2015, 402, 133–145. [Google Scholar] [CrossRef]
- Sun, W.; Ji, W.; Li, N.; Tong, P.; Cheng, J.; He, Y.; Chen, Y.; Chen, X.; Wu, J.; Ouyang, P.; et al. Construction and expression of a polycistronic plasmid encoding N-acetylglucosamine 2-epimerase and N-acetylneuraminic acid lyase simultaneously for production of N-acetylneuraminic acid. Bioresour. Technol. 2013, 130, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Czech, L.; Wilcken, S.; Czech, O.; Linne, U.; Brauner, J.; Smits, S.H.J.; Galinski, E.A.; Bremer, E. Exploiting Substrate Promiscuity of Ectoine Hydroxylase for Regio- and Stereoselective Modification of Homoectoine. Front. Microbiol. 2019, 10, 2745. [Google Scholar] [CrossRef] [PubMed]
- Widderich, N.; Höppner, A.; Pittelkow, M.; Heider, J.; Smits, S.H.J.; Bremer, E. Biochemical properties of ectoine hydroxylases from extremophiles and their wider taxonomic distribution among microorganisms. PLoS ONE 2014, 9, e93809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Zhang, C.; An, S.; Fang, X.; Yu, D. Engineering substrate promiscuity in 2,4-dichlorophenol hydroxylase by: In silico design. RSC Adv. 2018, 8, 21184–21190. [Google Scholar] [CrossRef] [Green Version]
- Arora, P.K.; Bae, H. Bacterial degradation of chlorophenols and their derivatives. Microb. Cell Fact. 2014, 13, 31. [Google Scholar] [CrossRef] [Green Version]
- Ronau, J.A.; Paul, L.N.; Fuchs, J.E.; Corn, I.R.; Wagner, K.T.; Liedl, K.R.; Abu-Omar, M.M.; Das, C. An additional substrate binding site in a bacterial phenylalanine hydroxylase. Eur. Biophys. J. 2013, 42, 691–708. [Google Scholar] [CrossRef] [Green Version]
- Leiros, H.K.S.; Pey, A.L.; Innselset, M.; Moe, E.; Leiros, I.; Steen, I.H.; Martinez, A. Structure of phenylalanine hydroxylase from Colwellia psychrerythraea 34H, a monomeric cold active enzyme with local flexibility around the active site and high overall stability. J. Biol. Chem. 2007, 282, 21973–21986. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Wang, J.; Sun, Y.; Zhu, J.; Wu, S. Facilitating the evolution of esterase activity from a promiscuous enzyme (Mhg) with catalytic functions of amide hydrolysis and carboxylic acid perhydrolysis by engineering the substrate entrance tunnel. Appl. Environ. Microbiol. 2016, 82, 6748–6756. [Google Scholar] [CrossRef] [Green Version]
- Hashim, N.H.F.; Mahadi, N.M.; Illias, R.M.; Feroz, S.R.; Abu Bakar, F.D.; Murad, A.M.A. Biochemical and structural characterization of a novel cold-active esterase-like protein from the psychrophilic yeast Glaciozyma antarctica. Extremophiles 2018, 22, 607–616. [Google Scholar] [CrossRef]
- Watanabe, S.; Fukumori, F.; Watanabe, Y. Substrate and metabolic promiscuities of d-altronate dehydratase family proteins involved in non-phosphorylative d-arabinose, sugar acid, l-galactose and l-fucose pathways from bacteria. Mol. Microbiol. 2019, 112, 147–165. [Google Scholar] [CrossRef]
- Staley, J.T.; Boyd, W.L. L-serine dehydratase (deaminase) of psychrophiles and mesophiles from polar and temperate habitats. Can. J. Microbiol. 1967, 13, 1333–1342. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Jayasinghe-Arachchige, V.M.; Hu, Q.; Schenk, G.; Prabhakar, R. Effect of Chemically Distinct Substrates on the Mechanism and Reactivity of a Highly Promiscuous Metallohydrolase. ACS Catal. 2020, 10, 3684–3696. [Google Scholar] [CrossRef]
- Suzumoto, Y.; Dym, O.; Roviello, G.N.; Worek, F.; Sussman, J.L.; Manco, G. Structural and functional characterization of new ssopox variant points to the dimer interface as a driver for the increase in promiscuous paraoxonase activity. Int. J. Mol. Sci. 2020, 21, 1683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meier, M.M.; Rajendran, C.; Malisi, C.; Fox, N.G.; Xu, C.; Schlee, S.; Barondeau, D.P.; Ho, B.; Sterner, R.; Raushel, F.M. Molecular Engineering of Organophosphate Hydrolysis Activity from a Weak Promiscuous Lactonase Template. J. Am. Chem. Soc. 2013, 135, 11670–11677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, W.; Xu, Q.; Huang, H.; Li, S. Efficient production of peracetic acid in aqueous solution with cephalosporin-deacetylating acetyl xylan esterase from Bacillus subtilis. Process. Biochem. 2015, 50, 2121–2127. [Google Scholar] [CrossRef]
- Lee, C.W.; Yoo, W.; Park, S.H.; Le, L.T.H.L.; Jeong, C.S.; Ryu, B.H.; Shin, S.C.; Kim, H.W.; Park, H.; Kim, K.K.; et al. Structural and functional characterization of a novel cold-active S-formylglutathione hydrolase (SfSFGH) homolog from Shewanella frigidimarina, a psychrophilic bacterium. Microb. Cell Fact. 2019, 18, 140. [Google Scholar] [CrossRef] [Green Version]
- Asoodeh, A.; Ghanbari, T. Characterization of an extracellular thermophilic alkaline esterase produced by Bacillus subtilis DR8806. J. Mol. Catal. B Enzym. 2013, 85–86, 49–55. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, Y.; Li, J.; Feng, Y.; Lu, N.; Zhu, B.; Xue, S. Structural and functional analysis of a low-temperature-active alkaline esterase from South China Sea marine sediment microbial metagenomic library. J. Ind. Microbiol. Biotechnol. 2015, 42, 1449–1461. [Google Scholar] [CrossRef]
- Rémy, B.; Plener, L.; Poirier, L.; Elias, M.; Daudé, D.; Chabrière, E. Harnessing hyperthermostable lactonase from Sulfolobus solfataricus for biotechnological applications. Sci. Rep. 2016, 6, 37780. [Google Scholar] [CrossRef] [Green Version]
- See-Too, W.S.; Convey, P.; Pearce, D.A.; Chan, K.G. Characterization of a novel N-acylhomoserine lactonase, AidP, from Antarctic Planococcus sp. Microb. Cell Fact. 2018, 17, 179. [Google Scholar] [CrossRef] [Green Version]
- Huston, A.L.; Haeggström, J.Z.; Feller, G. Cold adaptation of enzymes: Structural, kinetic and microcalorimetric characterizations of an aminopeptidase from the Arctic psychrophile Colwellia psychrerythraea and of human leukotriene A4 hydrolase. Biochim. Biophys. Acta—Proteins Proteom. 2008, 1784, 1865–1872. [Google Scholar] [CrossRef] [PubMed]
- Biaggio, R.T.; da Silva, R.R.; da Rosa, N.G.; Leite, R.S.R.; Arantes, E.C.; de Freitas Cabral, T.P.; Juliano, M.A.; Juliano, L.; Cabral, H. Purification and biochemical characterization of an extracellular serine peptidase from Aspergillus terreus. Prep. Biochem. Biotechnol. 2016, 46, 298–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, J.Q.; Ambrosini, A.; Passaglia, L.M.P.; Brandelli, A. A new cold-adapted serine peptidase from Antarctic Lysobacter sp. A03: Insights about enzyme activity at low temperatures. Int. J. Biol. Macromol. 2017, 103, 854–862. [Google Scholar] [CrossRef] [PubMed]
- Kiss, A.L.; Hornung, B.; Rádi, K.; Gengeliczki, Z.; Sztáray, B.; Juhász, T.; Szeltner, Z.; Harmat, V.; Polgár, L. The Acylaminoacyl Peptidase from Aeropyrum pernix K1 Thought to Be an Exopeptidase Displays Endopeptidase Activity. J. Mol. Biol. 2007, 368, 509–520. [Google Scholar] [CrossRef]
- Brunialti, E.A.S.; Gatti-Lafranconi, P.; Lotti, M. Promiscuity, stability and cold adaptation of a newly isolated acylaminoacyl peptidase. Biochimie 2011, 93, 1543–1554. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Kang, L.; Liu, Z.; Yuan, S. Gene cloning, heterologous expression and characterization of a Coprinopsis cinerea endo-β-1,3(4)-glucanase. Fungal Biol. 2017, 121, 61–68. [Google Scholar] [CrossRef]
- Xue, X.; Wang, R.; Tu, T.; Shi, P.; Ma, R.; Luo, H.; Yao, B.; Su, X. The N-terminal GH10 domain of a multimodular protein from Caldicellulosiruptor bescii is a versatile xylanase/β-glucanase that can degrade crystalline cellulose. Appl. Environ. Microbiol. 2015, 81, 3823–3833. [Google Scholar] [CrossRef] [Green Version]
- Uppenberg, J.; Hansen, M.T.; Patkar, S.; Jones, T.A. The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. Structure 1994, 2, 293–308. [Google Scholar] [CrossRef] [Green Version]
- Martinelle, M.; Holmquist, M.; Hult, K. On the interfacial activation of Candida antarctica lipase A and B as compared with Humicola lanuginosa lipase. Biochim. Biophys. Acta (BBA)/Lipids Lipid Metab. 1995, 1258, 272–276. [Google Scholar] [CrossRef]
- Svedendahl, M.; Carlqvist, P.; Branneby, C.; Allnér, O.; Frise, A.; Hult, K.; Berglund, P.; Brinck, T. Direct epoxidation in Candida antarctica lipase B studied by experiment and theory. ChemBioChem 2008, 9, 2443–2451. [Google Scholar] [CrossRef]
- Branneby, C.; Carlqvist, P.; Hult, K.; Brinck, T.; Berglund, P. Aldol additions with mutant lipase: Analysis by experiments and theoretical calculations. J. Mol. Catal. B Enzym. 2004, 31, 123–128. [Google Scholar] [CrossRef]
- Majumder, A.B.; Ramesh, N.G.; Gupta, M.N. A lipase catalyzed condensation reaction with a tricyclic diketone: Yet another example of biocatalytic promiscuity. Tetrahedron Lett. 2009, 50, 5190–5193. [Google Scholar] [CrossRef]
- Priego, J.; Ortíz-Nava, C.; Carrillo-Morales, M.; López-Munguía, A.; Escalante, J.; Castillo, E. Solvent engineering: An effective tool to direct chemoselectivity in a lipase-catalyzed Michael addition. Tetrahedron 2009, 65, 536–539. [Google Scholar] [CrossRef]
- Rios, M.Y.; Salazar, E.; Olivo, H.F. Chemo-enzymatic Baeyer-Villiger oxidation of cyclopentanone and substituted cyclopentanones. J. Mol. Catal. B Enzym. 2008, 54, 61–66. [Google Scholar] [CrossRef]
- Papaleo, E.; Parravicini, F.; Grandori, R.; De Gioia, L.; Brocca, S. Structural investigation of the cold-adapted acylaminoacyl peptidase from Sporosarcina psychrophila by atomistic simulations and biophysical methods. Biochim. Biophys. Acta—Proteins Proteom. 2014, 1844, 2203–2213. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yang, G.; Liu, Y.; Feng, Y. Discrimination of esterase and peptidase activities of acylaminoacyl peptidase from hyperthermophilic Aeropyrum pernix K1 by a single mutation. J. Biol. Chem. 2006, 281, 18618–18625. [Google Scholar] [CrossRef] [Green Version]
- Gao, R.; Feng, Y.; Ishikawa, K.; Ishida, H.; Ando, S.; Kosugi, Y.; Cao, S. Cloning, purification and properties of a hyperthermophilic esterase from archaeon Aeropyrum pernix K1. J. Mol. Catal. B Enzym. 2003, 24–25, 1–8. [Google Scholar] [CrossRef]
- Brocca, S.; Ferrari, C.; Barbiroli, A.; Pesce, A.; Lotti, M.; Nardini, M. A bacterial acyl aminoacyl peptidase couples flexibility and stability as a result of cold adaptation. FEBS J. 2016, 283, 4310–4324. [Google Scholar] [CrossRef]
- Kim, K.-H.; Lee, C.W.; Dangi, B.; Park, S.-H.; Park, H.; Oh, T.-J.; Lee, J.H. Crystal Structure and Functional Characterization of a Cytochrome P450 (BaCYP106A2) from Bacillus sp. PAMC 23377. J. Microbiol. Biotechnol. 2017, 27, 1472–1482. [Google Scholar] [CrossRef]
- Kiss, F.M.; Schmitz, D.; Zapp, J.; Dier, T.K.F.; Volmer, D.A.; Bernhardt, R. Comparison of CYP106A1 and CYP106A2 from Bacillus megaterium—Identification of a novel 11-oxidase activity. Appl. Microbiol. Biotechnol. 2015, 99, 8495–8514. [Google Scholar] [CrossRef]
Enzyme | Source Organisms | Function |
---|---|---|
Alkaline phosphatase (AP) | Alteromonas undina P2 | Removal of 3′ and 5′ phosphate groups |
Antarctic bacterium TAB 5 | ||
Pandalus borealis | ||
Lipase | Candida antarctica | Resolution of chiral compounds and transesterification production of biodiesel |
Uracil-DNA N-Glycosylase | Gadus morhua | Elimination of carryover polymerase chain reaction (PCR) products by hydrolyzing N-glycoside bond between uracil base and sugar skeleton, cutting uracil from dU-containing DNA. |
Marine bacterium BMTU 3346 | ||
Psychrophilic marine bacterium | ||
Nuclease | Shewanella sp. strain Ac10 | Cleavage of phosphodiester bonds in DNA to yield oligonucleotides with 5′-phosphate and 3′-hydroxyl termini. |
Pandalus borealis | ||
Protease | Arctic marine microbial | Hydrolyzation of a variety of peptide bonds |
Mesophilic or Thermophiles | Psychrophiles | |||||||
---|---|---|---|---|---|---|---|---|
Enzyme Class Abbreviation | Source Organisms | Substrate | Product | Abbreviation | Source Organisms | Substrate | Product | |
Lipase | PPL | Porcine pancreas [33] | Aldehyde b Nitromethane b | β-nitroalcohols b (ee%–85%) | SPL | Dasyatis pastinaca [34] | Triacylglycerols a | Glycerol a Acetic acid a |
ANL | Aspergillus Niger [35] | Anilines b 1,3-Diketones b | Acetanilide b | ZC12 | Psychrobacter sp. ZY124 [36] | Fatty acid esters a p-nitrophenyl esters b | (S)-1-phenylethanol (ee%–92%) p-nitrophenol b Carboxylic acid b | |
KM12 | Bacillus Licheniformis [37] | Fatty acid esters a Long chain p-nitrophenyl Esters b | Glycerol a Fatty acid a p-nitrophenol b Carboxylic acid b | |||||
r-CALB | Aspergillus oryzae [38] | Fatty esters a | Glycerol a Fatty acid a | CALB | Candida Antarctica [35] | Aldehyde b Nitromethane b Anilines b 1,3-Diketones b | β-nitroalcohols b (ee%–90%) Acetanilide b | |
SGNH | Sinorhizobium meliloti [39] | p-nitrophenyl acetate b Butyrate b Valerate b α- and β-naphthyl acetate b (R)- and (S)-methyl-3-hydroxy-2-methylpropionate b | p-nitrophenol b Acetic acid b Butyric acid b Valeric acid b β-naphthanol b (R)- and (S)-3-hydroxy-2-methylpropionate b Methanol b | SGNH | Halocynthiibacter arcticus [31] | Fatty acid esters a tert-butyl acetate b Glucose pentaacetate b p-nitrophenyl esters b | Glycerol a Fatty acid a tert-butyl alcohol b Acetic acid b Glucose b p-nitrophenol b Carboxylic acid b | |
HSL | Bacillus halodurans [40] | p-nitrophenyl palmitate a Unsaturated fatty acyl esters a | p-nitrophenol a Palmitic acid a Unsaturated fatty acid a Glycerol a | SHL | Salinisphaera sp. P7-4 [41] | Fatty acid esters a p-nitrophenyl esters b Glyceryl tributyrate b 4-methylumbelliferyl (4 MU)-acetate b 7-aminocephalosporanic acid b Glucose pentaacetate b (R,S)-naproxol acetate | Glycerol a Fatty acid a p-nitrophenol b Carboxylic acid b Glycerol a tert-butyric acid b 4-Methylumbelliferone b Deacetylated aminocephalosporanic acid b Acetic acid b Glucose b (R)-naproxol (ee%–8.3%) | |
Dehydrogenase | Dm7α-HSDH | Deinococcus marmoris [25] | Steroids a α-ketoesters b | Keto-steroids a α-hydroxyester b | KstDs | Rhodococcus ruber [42] | 4-androstene-3,17-dione a 9α-hydroxy-4-androstene-3,17-dione a | 1,4-androstadiene-3,17-dione a 9-α-hydroxy-1,4-androstadiene-3,17-dione a |
Ngi1_7αHSDH | Metagenome [25] | |||||||
Ec7α-HSDH | Escherichia coli [25] | |||||||
Ca7α-HSDH | Clostridium absonum [25] | |||||||
Hh7α-HSDH | Halomonas halodenitrificans [25] | |||||||
Ca7β-HSDH | Clostridium absonum [25] | |||||||
Cae7β-HSDH | Collinsella aerofaciens [25] | KshAB | Mycobacterium tuberculosis [43] | 1,4-androstadiene-3,17-dione a | 3-hydroxy-9,10-seconandrost-1,3,5(10)-trien-9,17-dione a | |||
Hh7β-HSDH | Halomonas halodenitrificans [25] | |||||||
Bsp7β-HSDH | Brucella sp. [25] | |||||||
Rs7β-HSDH | Rhodobacter sphaeroides | |||||||
Csp12α-HSDH | Clostridium sp. [25] | |||||||
Sc7β-HSDH | Stanieria cyanosphaera [25] | |||||||
CaADH | Clostridium acetobutylicum [44] | MoADH | Moraxella sp. TAE123 [45] | Carboxylic aicd | ||||
MtADH | Mycobacterium tuberculosis [46] | N/A | ||||||
Isomerase | PriA | Actinobacteria [47] | N’-[(5′-phosphoribosyl) formimino] -5-aminoimidazole-4-carboxamide Ribonucleotide a Phosphoribosyl anthranilate b | N’-[(5′-phosphoribulosyl) formimino]-5-aminoimidazole-4-carboxamide ribonucleotide a 1-[(2-carboxyphenyl)amino]-1-deoxyribulose 5-phosphate b | N/A | |||
TIM | Pyrococcus furiosus [48] | Cellobioside–resorufin a | Resorufin a | TIM | Pseudomonas sp. [49] | glyceraldehyde-3-phosphate a Triose phosphate a | Dihydroxyacetone phosphate a | |
Transferase | PpATaseCH | Pseudomonas protegens [50] | 2,4- diacetylphloroglucinol a Aniline derivatives b | 1,3,5-trihydroxy-Phloroglucinol a N-acetanilide derivative b | N/A | |||
HCT | Switchgrass Arabidopsis [51] | Lignin b | p-Coumaroyl conjugates | N/A | ||||
hGSTT1-1 | Human [52] | Glutathione a 7-amino-4-chloromethyl coumarinb | rHsGST | Halomonas sp. ANT108 [53] | Glutathione a Chlorodinitrobenzene a | Glutathione-Chlorodinitrobenzene a conjugate | ||
Reductase | CNR | Haemophilus influenzae [54] | Chloramphenicol a 4-nitrobenzene derivatives b | Reduced chloramphenicol a Aniline derivatives b | N/A | |||
FabI | Plasmodim falciparum [55] | Crotonyl Coenzyme A a, trans-2-pentenal b 3-pentene-2-one b | Saturated Crotonyl Coenzyme A a 2-pentanal b pentane-2-one b | Fab A, Fab B, Fab D, Fab F, Fab G, Fab H and Fab Z | Shewanella putrefaciens WS13 [56] | Fatty acid metabolism | ||
DHDPR | MRSA [57] | Dihydrodipicolinate a NADPH a | Tetrahydrodipicolinate a | PaDHDPR | Paenisporosarcina sp. TG-14 [58] | Dihydrodipicolinate a NADPH a | Tetrahydrodipicolinate a | |
Synthases | DTSs | Kitasatospora griseola, Streptomyces cyslabdanicus, Salinispora arenicola, Bradyrhizobium japonicum, Erwinia tracheiphila [59] | Terpentedienyl diphosphate a copalyl diphosphate (CPP) a ent-CPP a (E,E,E)-geranylgeranyl diphosphate b (Z,Z,Z)-nerylneryl diphosphate b (E,E)-farnesyl diphosphate b (E,E,E,E)-geranylfarnesyl diphosphate b syn-CPP b 7-endo-CPP b, ent-7-endo-CPP b 8α-hydroxy-CPP b 8β-hydroxy-ent-CPP b 9α-hydroxy-CPP b kolavenyl diphosphate (KPP) b ent-KPP b halimadienyl diphosphate (HPP) b syn-HPP b syn-halima-5(10) b 13E-dienyl diphosphate b mutildienyl diphosphate b | N/A | ||||
Nal | Escherichia coli K12 [60] | N-acetylglucosamine (GlcNAc) a Pyruvate a | MvNeuB | Moritella viscosa [61] | N-acetylneuraminic acid a Phosphoenolpyruvate b | |||
Hydroxylase | EctD | Pseudomonas stutzeri [62] | Ectoine a Homoectoine b | EctD | Sphingopyxis alaskensis [63] | L-aspartate-β-semialdehyde a | ||
TfdB-JLU | Rhodococcus opacus 1G Rhodococcus erythropolis Pseudomonas sp. NCIB934 [64,65] | 2,4-dichlorophenoxyacetic acid a Chlorophenol b Dichlorophenol b Trichlorophenol derivatives b | N/A | |||||
cPAH | Chromobacterium violaceum [66] | Phenylalanine a | PAH | Colwellia psychrerythraea [67] | Phenylalanine a | |||
Hydrolases | Mhg | Pseudomonas fluorescens [68] | γ-lactamase a Perhydrolase a Esters b | HsGST | Glaciozyma antarctica [69] | Dienelactone a p-nitrophenyl esters b | ||
Dehydratase | DaDHT | Herbaspirillum huttiense [70] | D- altronate a L-fuconate b D-Arabinonate bL-xylonate b D-idonate b L-gluconate b | Pyruvate b L-Lactate b Glycolate b Glycerate b | LsDHT | Pseudomonas aeruginosa [71] | L-serine a | |
Esterase | EaGPE | Enterobacter aerogenes [72] | Diesters glycerol-3-Phosphoethanolamine a 4-nitrophenyl phosphate (NPP) b Bis(4-nitrophenyl) phosphate (BNPP) b Diethyl-nitrophenylphosphate (paraoxon) b | Glycerol a Ethanolamine Phosphoric acid a Carboxylic acid a Diethyl phosphate b p-nitrophenol b | N/A | |||
PLL | Saccharolobus solfataricus [73] | Paraoxon a chemical warfare nerve agents b | Diethyl phosphate a p-nitrophenol a | N/A | ||||
PLL | Deinococcus radiodurans [74] | Phosphotriesters a Organophosphates b | Phosphoric acid a Alcohols a | N/A | ||||
AXE | Bacillus subtilis [75] | Glycerol triacetate b Ethyl acetate b | Glycerol b Acetic acid b Ethanol b | PbAcE | Paenibacillus sp. R4 [32] | Acetyl xylan a p-nitrophenyl esters b α-β-naphthyl esters b carbohydrate esters b tertiary alcohol esters b lipids b, and antibiotics b | Xylanol a Acetic acid a p-nitrophenol b Carboxylic acid b α-β-naphthanol b Carbohydrate b tert- alcohol b Fatty acid b Glycerol b | |
N/A | SfSFGH | Shewanella frigidimarina [76] | p-nitrophenyl esters b glucose pentaacetate b | p-nitrophenol b Carboxylic acid b Glucose b Acetic acid b | ||||
Est | Bacillus subtilis DR8806 [77] | p-nitrophenyl acetate a | p-nitrophenol a Acetic acid a | Est12 | Butyrivibrio proteoclasticus [78] | Carbohydrate esters a short- and middle-chain p-nitrophenol esters b | Carbohydrate a Carboxylic acid a p-nitrophenol b | |
Lactonase | SsoPox | Sulfolobus solfataricus [79] | Acyl-homoserine lactones a Paraoxon b | Acyl-homoserine a Lactones a Diethyl phosphate b p-nitrophenol b | AidP | Planococcus sp.[80] | Acyl-homoserine lactonesa | Acyl-homoserine a Lactones a |
Peptidase | ST1737 | Sulfolobus tokodaii [33] | Aldehyde b Nitromethane b | β-nitroalcohols (ee%–85%) | ColAP | Colwellia psychrerythraea [81] | l-alanine-4-nitroanilide hydrochloride a | Alanine a p-nitroaniline a |
ST0779 | Sulfolobus tokodaii [33] | Aldehyde b Nitromethane b | β-nitroalcohols (ee%–94%) | N/A | ||||
SAt | Aspergillus terreus [82] | Azocasein a | Leucine a Glycine a p-nitroaniline a Benzyl alcohol a | LsPc | Lysobacter sp. [83] | Azocasein a Gelatin and feather b | Leucine a Glycine a p-nitroaniline a Benzyl alcohol a Alanine b Arginine b Aspartic acid b Proline b Hydroxy Proline b | |
ApAAP | Aeropyrum pernix [84] | Abz-GFEPF(NO2)RA b Abz-GFRPF(NO2)RA b Abz-SAVLQSGF(NO2)A b Abz-EALFQGPF(NO2)A b Ac-Phe-Nap b Gly-Phe-Nap b Ac-Phe-Nan b | SpAAP | Sporosarcina psychrophila [85] | N-acetyl-L-leucine-p-nitroanilide a Butyl-p-nitrophenyl esters b | N-acetyl-L-leucine a p-nitroaniline a Butyric acid b p-nitrophenol | ||
Glucanase | ENG16A | Coprinopsis cinerea [86] | β-glucan a Laminarin a | Short chain carbohydrates | GaEbG | Glaciozyma antarctica PI12 [87] | Laminarin a Lichenin b glucan polysaccharides b | Short chain carbohydrates |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nandanwar, S.K.; Borkar, S.B.; Lee, J.H.; Kim, H.J. Taking Advantage of Promiscuity of Cold-Active Enzymes. Appl. Sci. 2020, 10, 8128. https://doi.org/10.3390/app10228128
Nandanwar SK, Borkar SB, Lee JH, Kim HJ. Taking Advantage of Promiscuity of Cold-Active Enzymes. Applied Sciences. 2020; 10(22):8128. https://doi.org/10.3390/app10228128
Chicago/Turabian StyleNandanwar, Sondavid K., Shweta Bharat Borkar, Jun Hyuck Lee, and Hak Jun Kim. 2020. "Taking Advantage of Promiscuity of Cold-Active Enzymes" Applied Sciences 10, no. 22: 8128. https://doi.org/10.3390/app10228128
APA StyleNandanwar, S. K., Borkar, S. B., Lee, J. H., & Kim, H. J. (2020). Taking Advantage of Promiscuity of Cold-Active Enzymes. Applied Sciences, 10(22), 8128. https://doi.org/10.3390/app10228128