New System to Determine the Evolution of the Dynamic Young’s Modulus from Early Ages in Masonry Mortars
Abstract
:Featured Application
Abstract
1. Introduction
2. Methodology
2.1. Design and Development of a Measurement System with Arduino
2.2. Experimental Program
2.3. Materials and Dosages Used
2.3.1. Cement
2.3.2. Aggregates
2.3.3. Water
2.3.4. Additive
2.3.5. Dosages Used
3. Results and Discussion
3.1. Evolution of the Dynamic Young’s Modulus over Time
3.2. Evolution of the Dynamic Young’s Modulus and Its Relationship with the Measures of the Designed Equipment
3.3. Evolution of the Dynamic Young’s Modulus and Its Relation to the Physical Properties of the Processed Mortars
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vidales, A. Caracterización Fisicoquímica y Aplicaciones de Yeso con Adición de Residuo Plástico de Cables Mediante Criterios de Economía Circular. Ph.D. Thesis, E.T.S. de Edificación, Universidad Politecnica de Madrid, Madrid, Spain, 2019. [Google Scholar] [CrossRef]
- Siddiqi, A.; Haraguchi, M.; Narayanamurti, V. Urban waste to energy recovery assessment simulations for developing countries. World Dev. 2019, 131. [Google Scholar] [CrossRef]
- Piña, C.; Del Rio, M.; Viñas, C.; Vidales, A.; Kosior, M. Analysis of the mechanical behaviour of the cement mortars with additives of mineral wool fibres from recycling of CDW. Constr. Build. Mater. 2019, 210, 56–62. [Google Scholar] [CrossRef]
- Lam, P.; Yu, A.; Wu, Z.; Su Poon, C. Methodology for upstream estimation of construction waste for new building projects. J. Clean. Prod. 2019, 230, 1003–1012. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Ding, Y.; Colangelo, F.; Tuladhar, R.; Koutamanis, A. Advances in Construction and Demolition Waste Recycling: Management, Processing and Environmental Assessment; Woodhead Publishing: Cambridge, UK, 2020. [Google Scholar]
- Silva, R.V.; De Brito, J.; Dhir, R.K. Use of recycled aggregates arising from construction and demolition waste in new construction applications. J. Clean. Prod. 2019, 236, 117629. [Google Scholar] [CrossRef]
- Mistri, A.; Kumar, S.; Dhami, N.; Mukherjee, A.; Barai, S.V. A review on different treatment methods for enhancing the properties of recycled aggregates for sustainable construction materials. Constr. Build. Mater. 2020, 233, 117894. [Google Scholar] [CrossRef]
- Kox, S.; Vanroelen, G.; Van Herck, J.; De Krem, H.; Vandorem, B. Experimental evaluation of the high-grade properties of recycled concrete aggregates and their application in concrete road pavement construction. Case Stud. Constr. Mater. 2020, 11. [Google Scholar] [CrossRef]
- Etxeberria, M.; Vázquez, E.; Marí, A.; Barra, M. Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cem. Concr. Res. 2007, 37, 735–742. [Google Scholar] [CrossRef]
- Juan-Valdés, A.; Rodríguez, D.; Garciá, J.; Guerra, M.I.; Morán, J.M. Mechanical and microstructural characterization of non-structural precast concrete made with recycled mixed ceramic aggregates from construction and demolition wastes. J. Clean. Prod. 2018, 180, 482–493. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, U.; Lu, Y.; Dong, P.; Guo, B.; Ding, W.; Xing, F.; Liu, T.; Dong, B. In situ crack propagation monitoring in mortar embedded with cement-based piezoelectric ceramic sensors. Constr. Build. Mater. 2016, 126, 361–368. [Google Scholar] [CrossRef]
- Gere, J.M. Timoshenko Resistencia de Materiales, 5th ed.; Editorial Paraninfo: Madrid, Spain, 2002; ISBN 8497320654. [Google Scholar]
- Saiz, P.; Ferrández, D.; Morón, C.; Payán, A. Comparative study of the influence of three types of fibre in the shrinkage of recycled mortar. Mater. Constr. 2018, 68, 332. [Google Scholar] [CrossRef]
- Jiménez, J.R.; Ayuso, J.; López, M.; Fernández, J.M.; De Brito, J. Use of fine recycled aggregates from a ceramic waste in masonry mortar manufacturing. Constr. Build. Mater. 2013, 40, 679–690. [Google Scholar] [CrossRef]
- Morón, C.; García, A.; Ferrández, D. Learning process of the vibration generation by impact on floor uses in building engineering students. In Proceedings of the 9th International Technology, Education and Development Conference INTED 2015 (IATED), Madrid, Spain, 2–4 March 2015; pp. 4469–4475, ISBN 978-84-606-5763-7. [Google Scholar]
- Carrrilo, J.; Ramirez, J.; Lizarazo, J. Modulus of elasticity and Poisson's ratio of fiber-reinforced concrete in Colombia from ultrasonic pulse velocities. J. Build. Eng. 2019, 23, 18–26. [Google Scholar] [CrossRef]
- Ferrández Vega, Daniel Estudio de la Transmisión de Vibraciones por Impacto en Losas de Hormigón y Mortero. Ph.D. Thesis, E.T.S. de Edificación (UPM), Universidad Politecnica de Madrid, Madrid, Spain, 2016. [CrossRef]
- UNE-EN ISO 12680-1:Methods of Test for Refractory Products—Part 1: Determination of Dynamic Young's Modulus (MOE) by Impulse Excitation of Vibration, ISO 12680-1:2005; International Organization for Standardization: Geneva, Switzerland, 2005.
- Rosell, J.R.; Cantalapiedra, I.R. Simple method of dynamic Young’s modulus determination in lime and cement mortars. Mater. Constr. 2011, 61301, 39–48. [Google Scholar] [CrossRef]
- Bauer, E.; Pavón, E.; Barreira, E.; Kraus, E. Analysis of building facade defects using infrared thermography: Laboratory studies. J. Build. Eng. 2016, 6, 93–104. [Google Scholar] [CrossRef]
- Guadagnuolo, M.; Aurilio, A.; Basile, A.; Faella, G. Modulus of Elasticity and Compressive Strength of Tuff Masonry: Results of a Wide Set of Flat-Jack Tests. Buildings 2020, 10, 84. [Google Scholar] [CrossRef]
- Boulay, C.; Staquet, S.; Azenha, M.; Deraemaeker, A.; Crespini, M.; Carette, J.; Granja, J.; Delsaute, B.; Dumoulin, C.; Karaiskos, G. Monitoring elastic properties of concrete since very early age by means of cyclic loadings 2020, ultrasonic measurements, natural resonant frequency of componant frequency of composite beam (EMM-ARM) and with smart aggregates. In Proceedings of the VIII International Conference on Fracture Mechanics of Concrete and Concrete Structures (FraMCos 8), Toledo, Spain, 10–14 March 2013. [Google Scholar]
- Lourenço, T.; Matías, L.; Faira, P. Anomalies detection in adhesive wall tiling systems by infrared thermography. Constr. Build. Mater. 2017, 148, 419–428. [Google Scholar] [CrossRef]
- Mustafa, A.; Mahmoud, M.A.; Abdulraheem, A.; Furquan, S.A.; Al-Nakhli, A.; BaTaweel, M. Comparative Analysis of Static and Dynamic Mechanical Behavior for Dry and Saturated Cement Mortar. Materials 2019, 12, 3299. [Google Scholar] [CrossRef] [Green Version]
- Yedra, E.; Ferrández, D.; Saiz, P.; Morón, C. Low cost system for measuring the evolution of mechanical properties in cement mortars as a function of mixing water. Constr. Build. Mater. 2020, 244, 118–127. [Google Scholar] [CrossRef]
- Barroca, N.; Borges, L.M.; Velez, F.J.; Monteiro, F.; Gorski, M.; Castro-Gomes, J. Wireless sensor networks for temperature and humidity monitoring within concrete structures. Constr. Build. Mater. 2013, 40, 1156–1166. [Google Scholar] [CrossRef] [Green Version]
- Ferrández, D.; Yedra, E.; Morón, C.; Morón, A. Alternative tests for the determination of the setting time. Capacitive and resistive methods. DYNA 2020, 953, 294–298. [Google Scholar] [CrossRef]
- Craveiro, F.; Nazarian, S.; Bartolo, P.J.; Pinto, J. An automated system for 3D printing functionally graded concrete-based materials. Addit. Manuf. 2020, 33. [Google Scholar] [CrossRef]
- Panda, B.; Hui, J.; Jen, M. Mechanical properties and deformation behaviour of early age concrete in the context of digital construction. Compos. Part B Eng. 2019, 165, 563–571. [Google Scholar] [CrossRef]
- Ausweger, M.; Binder, E.; Lahayne, O.; Reihsner, R.; Maier, G.; Peyerl, M.; Pichler, B. Early-Age Evolution of Strength, Stiffness, and Non-Aging Creep of Concretes: Experimental Characterization and Correlation Analysis. Materials 2019, 12, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morón, C.; Diaz, J.P.; Ferrández, D.; Ramos, M.P. Mechatronic Prototype of Parabolic Solar Tracker. Sensors 2016, 16, 882. [Google Scholar] [CrossRef]
- Morón, C.; Ferrández, D.; Saiz, P.; Morón, A. Automatic System for Detection and Positioning of Impacts in Metals Based on Arduino. Shock Vib. 2019, 2019, 9675898. [Google Scholar] [CrossRef]
- García Meseguer, A.; Morán Cabré, F.; Arroyo Portero, J.C. Jiménez Montoya: Hormigón Armado, 15th ed.; Editorial Gustavo Gili: Barcelona, Spain, 2011. [Google Scholar]
- Wolfs, R.J.M.; Bos, F.P.; Salet, T.A.M. Early age mechanical behaviour of 3D printed concrete: Numerical modelling and experimental testing. Cem. Concr. Res. 2018, 106, 103–116. [Google Scholar] [CrossRef]
- Gil, L.; Bernat, E.; Cañavate, J. Changes in Properties of Cement and Lime Mortars When Incorporating Fibers from End-of-Life Tires. Fibers 2016, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Methods of Test for Mortar for Masonry—Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar; UNE-EN 1015-11:2000/A1; European Committee for Standardization: Brussels, Belgium, 2000.
- Methods of Test for Mortar for Masonry—Part 12: Determination of Adhesive Strength of Hardened Rendering and Plastering Mortars on Substrates; UNE-EN 1015-12:2016; European Committee for Standardization: Brussels, Belgium, 2016.
- Methods of Test for Mortar for Masonry—Part 18: Determination of Water Absorption Coefficient due to Capillary Action of Hardened Mortar; UNE-EN 1015-18:2003; European Committee for Standardization: Brussels, Belgium, 2003.
- Métodos de Ensayo de Cementos: Ensayos Físicos: Determinación de la Retracción de Secado y del Hinchamiento en Agua; UNE 80-112-89; AENOR: Madrid, Spain, 1989.
- Spanish Ministry of Public Works. Instrucción de Hormigón Estructural EHE-08 (Spanish Structural Concrete Code); BOE: Madird, Spain, 2008; Volume 203, p. 258e66. [Google Scholar]
- Cement Permanent Commission. Instruction for the Receipt of Cement; RC-08; Ministry of Public Works and Transport: Madrid, Spain, 2009.
- Piña, C.; Atanes Sánchez, E.; Del Río, M.; Viñas, C.; Vidales, A. Feasibility of the use of mineral wool fibres recovered from CDW for the reinforcement of conglomerates by study of their porosity. Constr. Build. Mater. 2018, 191, 460–468. [Google Scholar] [CrossRef] [Green Version]
- Aggregates for Mortar; UNE-EN 13139:2002; European Committee for Standardization: Brussels, Belgium, 2002.
- Tests for Geometrical Properties of Aggregates—Part 1: Determination of Particle Size Distribution—Sieving Method; UNE-EN 933-1:2012; European Committee for Standardization: Brussels, Belgium, 2012.
- Aggregates for Concrete: Determination of the Coefficient of Friability of the Sands; UNE-EN 146404:2018; European Committee for Standardization: Brussels, Belgium, 2018.
- Tests for Mechanical and Physical Properties of Aggregates—Part 3: Determination of Loose Bulk Density and Voids; UNE-EN 1097-3:1999; European Committee for Standardization: Brussels, Belgium, 1999.
- Tests for Mechanical and Physical Properties of Aggregates—Part 6: Determination of Particle Density and Water Absorption; UNE-EN 1097-6:2014; European Committee for Standardization: Brussels, Belgium, 2014.
- Test for Geometrical Properties of Aggregates: Part 2: Determination of Particle Size Distribution: Test Sieves 2003, Nominal Size of Apertures; UNE-EN 933-2:1996; European Committee for Standardization: Brussels, Belgium, 1996.
- Norma Básica de Edificación: Muros Resistentes de Fábrica de Ladrillo; NBE FL-90; Ministerio de Obras Públicas y Urbanismo: Madrid, Spain, 1990.
- Ulsen, C.; Kahn, H.; Hawlitscschek, G.; Masini, E.A.; Angulo, S.C.; John, V.M. Production of recycled sand from construction and demolition waste. Constr. Build. Mater. 2013, 40, 1168–1173. [Google Scholar] [CrossRef]
- Saiz, P.; Ferrández, D.; Morón, C.; Fernández, F. Behaviour of masonry mortars fabricated with recycled aggregate towards moisture. DYNA 2019, 94, 442–446. [Google Scholar] [CrossRef]
- Bustos García, A. Morteros con Propiedades Mejoradas de Ductilidad por Adición de Fibras de Vidrio, Carbono y Basalto. Ph.D. Thesis, E.T.S. de Edificación. Universidad Politécnica de Madrid, Madrid, Spain, 2018. [Google Scholar]
- Methods of Testing Cement—Part 1: Determination of Strength; UNE-EN 196-1:2018; European Committee for Standardization: Brussels, Belgium, 2018.
- Methods of Test for Mortar for Masonry—Part 2: Bulk Sampling of Mortars and Preparation of Test Mortars; UNE-EN 1015-2:1999/A1:2007; European Committee for Standardization: Brussels, Belgium, 2007.
- Vidya, R.; Raghu, B.K.; Shantha, S. An experimental study on cracking evolution in concrete and cement mortar by the b-value analysis of acoustic emission technique. Cem. Concr. Res. 2012, 428, 1094–1104. [Google Scholar] [CrossRef]
- Kumar, G. Influence of fluidity on mechanical and permeation performances of recycled aggregate mortar. Constr. Build. Mater. 2019, 213, 404–412. [Google Scholar] [CrossRef]
- Specification for Mortar for Masonry—Part 1: Rendering and Plastering Mortar; UNE-EN 998-1:2016; European Committee for Standardization: Brussels, Belgium, 2016.
- Deniz, S.; Erdoğan, S. Prediction of Elastic Moduli Development of Cement Mortars Using Early Age Measurements. J. Mater. Civil. Eng. 2015, 27. [Google Scholar] [CrossRef]
- Garbalińska, H.; Wygocka, A. Microstructure modification of cement mortars: Effect on capillarity and frost-resistance. Constr. Build. Mater. 2014, 51, 258–266. [Google Scholar] [CrossRef]
- Gorospe, K.; Booya, E.; Ghaednia, H.; Das, S. Effect of various glass aggregates on the shrinkage and expansion of cement mortar. Constr. Build. Mater. 2019, 210, 301–311. [Google Scholar] [CrossRef]
- Tian, X.; Zhou, Z.; Xin, Y.; Jiang, L.; Zhao, X.; An, Y. A novel sulfate removal process by ettringite precipitation with aluminum recovery: Kinetics and a pilot-scale study. J. Hazard. Mater. 2019, 365, 572–580. [Google Scholar] [CrossRef]
- Zhao, H.; Huang, D.; Wang, X.; Chen, X. Dynamic elastic modulus of cement paste at early age based on nondestructive test and multiscale prediction model. J. Wuhan Univ. Technol. Mat. Sci. 2014, 29, 321–328. [Google Scholar] [CrossRef]
Normative | Description |
---|---|
UNE-EN 1015-11:2000/A1:2007 [36] | Determination of flexural and compressive strength in mortar specimens. Measured at 7, 14, 28, 56 and 72 days. |
UNE-EN 1015-12:2016 [37] | Determination of the adherence of the mortar to a previously moistened brick factory. |
UNE-EN 1015-18:2003 [38] | Determination of the water absorption coefficient by the capillarity in mortars. |
UNE 80-112-89 [39] | Determination of the retraction by drying in 25 × 25 × 287 mm3 specimens by measuring changes in length. |
Chemical Composition | ||||||||||||
Al2O3 | CaO | Fe2O3 | K2O | MgO | SiO2 | TiO2 | MnO | P2O5 | SO3 | BaO | SrO | Others |
4.02 | 67.30 | 3.39 | 0.65 | 1.23 | 18.33 | 0.19 | 0.06 | 0.12 | 4.31 | 0.06 | 0.07 | 0.27 |
Thermogravimetric Analysis | ||||||||||||
Sample | (%) Total mass loss | (%) Partial mass loss | Range of Temperatures (°C) * | Compound associated to the event | ||||||||
CEM II B/L-32.5 N | 8.55 | 0.44 | <200 | Gypsum | ||||||||
0.21 | 400–450 (441) | Ca(OH)2 | ||||||||||
7.71 | 450–800 (742) | Ca(CO)3 |
Test | Fine Content (%) | Particle Form | Fineness Modulus (%) | Friability (%) | Bulk. Dens, (kg/m3) | Dry Dens. (kg/m3) | Water Absorption (%) |
---|---|---|---|---|---|---|---|
Standard | UNE EN 933-1 [44] | UNE-EN 13139 [43] | UNE-EN 13139 [43] | UNE-EN 146404 [45] | UNE-EN 1097-3 [46] | UNE-EN 1097-6 [47] | UNE-EN 1097-6 [47] |
NA | 2.45 | - | 4.26 | 21.33 | 1542 | 2503 | 0.96 |
RA-Cer | 4.53 | Not relevant | 5.56 | 25.11 | 1254 | 2124 | 7.58 |
RA-Con | 3.91 | Not relevant | 4.12 | 23.98 | 1321 | 2204 | 5.87 |
Origen | Hardness | pH | Content in Cl | ||||
Low salt granite ground | Soft 25 mg CaCO3/L | Min. | Max. | 1–1.5 mg/L | |||
7 | 8.5 | ||||||
Nitrates | Nitrites | Calcium | Iron | Fluorides | Sulfates | Copper | |
0.6 mg/L | <0.05 mg/L | 17.8 mg/L | 0.01 mg/L | <0.1 mg/L | 5.3 mg/L | <0.005 mg/L |
Denomination | Cement/Aggregate Ratio | Water/Cement Ratio | (%) Plasticizer in Relation to the Weight of Cement |
---|---|---|---|
MY–NA—1:3 | 1:3 | 0.61 | - |
MY–NA—1:4 | 1:4 | 0.65 | - |
MY–RA-Cer—1:3 | 1:3 | 0.76 | 1 |
MY–RA-Cer—1:4 | 1:4 | 0.89 | 1 |
MY–RA-Con—1:3 | 1:3 | 0.73 | 1 |
MY–RA-Con—1:4 | 1:4 | 0.84 | 1 |
Type | Equation | R2 | Type | Equation | R2 |
---|---|---|---|---|---|
MY–NA—1:3 | y = 0.9131x + 228.47 | 0.9758 | MY–NA—1:4 | y = 0.8710x + 426.61 | 0.9925 |
MY–ARH—1:3 | y = 0.8515x + 441.91 | 0.9836 | MY–ARH—1:4 | y = 0.7360x + 808.94 | 0.9952 |
MY–ARC—1:3 | y = 0.8255x + 527.14 | 0.9976 | MY–ARC—1:4 | y = 0.7738x + 694.43 | 0.9819 |
Property | Adherence (N/mm2) | Hardness (Shore D) | Absorption (kg/mm2 min0.5) | Real Density (kg/m3) | ||||
---|---|---|---|---|---|---|---|---|
Mortar | 1:3 | 1:4 | 1:3 | 1:4 | 1:3 | 1:4 | 1:3 | 1:4 |
MY–NA | 0.53 | 0.49 | 81 | 77 | 0.53 | 0.55 | 2439 | 2286 |
MY–ARH | 0.41 | 0.37 | 74 | 72 | 0.61 | 0.67 | 2322 | 2270 |
MY–ARC | 0.42 | 0.39 | 73 | 70 | 0.65 | 0.69 | 2231 | 2197 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yedra, E.; Ferrández, D.; Morón, C.; Gómez, E. New System to Determine the Evolution of the Dynamic Young’s Modulus from Early Ages in Masonry Mortars. Appl. Sci. 2020, 10, 8129. https://doi.org/10.3390/app10228129
Yedra E, Ferrández D, Morón C, Gómez E. New System to Determine the Evolution of the Dynamic Young’s Modulus from Early Ages in Masonry Mortars. Applied Sciences. 2020; 10(22):8129. https://doi.org/10.3390/app10228129
Chicago/Turabian StyleYedra, Engerst, Daniel Ferrández, Carlos Morón, and Edmundo Gómez. 2020. "New System to Determine the Evolution of the Dynamic Young’s Modulus from Early Ages in Masonry Mortars" Applied Sciences 10, no. 22: 8129. https://doi.org/10.3390/app10228129
APA StyleYedra, E., Ferrández, D., Morón, C., & Gómez, E. (2020). New System to Determine the Evolution of the Dynamic Young’s Modulus from Early Ages in Masonry Mortars. Applied Sciences, 10(22), 8129. https://doi.org/10.3390/app10228129