Burst Detection in Water Distribution Systems: The Issue of Dataset Collection
Abstract
:1. Introduction
2. Methodology
2.1. Water Request Stochastic Modeling
2.2. Water Consumption Hydraulic Simulation
3. Application
3.1. Apulian
3.2. Egna
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, S.W.; Sarp, S.; Jeon, D.J.; Kim, J.H. Smart water grid: The future water management platform. Desalin. Water Treat. 2015, 55, 339–346. [Google Scholar] [CrossRef]
- Ramos, H.M.; McNabola, A.; López-Jiménez, P.A.; Pérez-Sánchez, M. Smart water management towards future water sustainable networks. Water 2020, 12, 58. [Google Scholar] [CrossRef] [Green Version]
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global water resources: Vulnerability from climate change and population growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mutchek, M.; Williams, E. Moving towards sustainable and resilient smart water grids. Challenges 2014, 5, 123–137. [Google Scholar] [CrossRef] [Green Version]
- Ramos, H.M.; Carravetta, A.; Nabola, A.M. New Challenges in Water Systems. Water 2020, 12, 2340. [Google Scholar] [CrossRef]
- Zaman, D.; Tiwari, M.; Gupta, A.; Sen, D. A review of leakage detection strategies for pressurised pipeline in steady-state. Eng. Fail. Anal. 2020, 109. [Google Scholar] [CrossRef]
- Puust, R.; Kapelan, Z.; Savic, D.A.; Koppel, T. A review of methods for leakage management in pipe networks. Urban Water J. 2010, 7, 25–45. [Google Scholar] [CrossRef]
- Misiunas, D.; Lambert, M.; Simpson, A.; Olsson, G. Burst detection and location in water distribution networks. Water Sci. Technol. Water Supply 2005, 5, 71–80. [Google Scholar] [CrossRef]
- Tan, P.N.; Steinbach, M.; Kumar, V. Introduction to Data Mining, 1st ed.; Pearson Education India: Delhi, India, 2005. [Google Scholar]
- Wu, Y.; Liu, S. A review of data-driven approaches for burst detection in water distribution systems. Urban Water J. 2017, 14, 972–983. [Google Scholar] [CrossRef]
- Mounce, S.R.; Machell, J. Burst detection using hydraulic data from water distribution systems with artificial neural networks. Urban Water J. 2006, 3, 21–31. [Google Scholar] [CrossRef]
- Aksela, K.; Aksela, M.; Vahala, R. Leakage detection in a real distribution network using a SOM. Urban Water J. 2009, 6, 279–289. [Google Scholar] [CrossRef]
- Ye, G.; Fenner, R.A. Kalman filtering of hydraulic measurements for burst detection in water distribution systems. J. Pipeline Syst. Eng. Pract. 2011, 2, 14–22. [Google Scholar] [CrossRef]
- Akkaya, A.; Talu, M. Extended kalman filter based IMU sensor fusion application for leakage position detection in water pipelines. J. Fac. Eng. Archit. Gazi Univ. 2017, 32, 1393–1404. [Google Scholar]
- Mounce, S.R.; Mounce, R.B.; Boxall, J.B. Novelty detection for time series data analysis in water distribution systems using support vector machines. J. Hydroinform. 2011, 13, 672–686. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, Z.; Zhao, M.; Qi, J.; Huang, Y.; Zhao, H. Leakage zone identification in large-scale water distribution systems using multiclass support vector machines. J. Water Resour. Plan. Manag. 2016, 142. [Google Scholar] [CrossRef]
- Arsene, C.; Gabrys, B.; Al-Dabass, D. Decision support system for water distribution systems based on neural networks and graphs theory for leakage detection. Expert Syst. Appl. 2012, 39, 13214–13224. [Google Scholar] [CrossRef]
- Fang, Q.; Zhang, J.; Xie, C.; Yang, Y. Detection of multiple leakage points in water distribution networks based on convolutional neural networks. Water Sci. Technol. Water Supply 2019, 19, 2231–2239. [Google Scholar] [CrossRef]
- Loureiro, D.; Amado, C.; Martins, A.; Vitorino, D.; Mamade, A.; Coelho, S.T. Water distribution systems flow monitoring and anomalous event detection: A practical approach. Urban Water J. 2016, 13, 242–252. [Google Scholar] [CrossRef]
- Jung, D.; Kang, D.; Liu, J.; Lansey, K. Improving the rapidity of responses to pipe burst in water distribution systems: A comparison of statistical process control methods. J. Hydroinform. 2015, 17, 307–328. [Google Scholar] [CrossRef]
- Chan, T.K.; Chin, C.S.; Zhong, X. Review of Current Technologies and Proposed Intelligent Methodologies for Water Distributed Network Leakage Detection. IEEE Access 2018, 6, 78846–78867. [Google Scholar] [CrossRef]
- Romano, M.; Kapelan, Z.; Savić, D.A. Automated Detection of Pipe Bursts and Other Events in Water Distribution Systems. J. Water Resour. Plan. Manag. 2014, 140, 457–467. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Park, Y.J.; Lee, J.; Wang, S.H.; Eom, D.S. Novel Leakage Detection by Ensemble CNN-SVM and Graph-Based Localization in Water Distribution Systems. IEEE Trans. Ind. Electron. 2018, 65, 4279–4289. [Google Scholar] [CrossRef]
- Bakker, M.; Trietsch, E.A.; Vreeburg, J.H.G.; Rietveld, L.C. Analysis of historic bursts and burst detection in water supply areas of different size. Water Supply 2014, 14, 1035–1044. [Google Scholar] [CrossRef]
- Eliades, D.G.; Polycarpou, M.M. Leakage fault detection in district metered areas of water distribution systems. J. Hydroinform. 2012, 14, 992–1005. [Google Scholar] [CrossRef] [Green Version]
- Jung, D.; Lansey, K. Water Distribution System Burst Detection Using a Nonlinear Kalman Filter. J. Water Resour. Plan. Manag. 2015, 141, 04014070. [Google Scholar] [CrossRef]
- Gargano, R.; Pianese, D. Influence of hydraulic and mechanical reliability on the overall reliability of water networks. In Proceedings of the 26th Convegno di Idraulica e Costruzioni Idrauliche, Catania, Italy, 9–12 September 1998. [Google Scholar]
- Paez, D.; Filion, Y. Water Distribution Systems Reliability under Extended-Period Simulations. J. Water Resour. Plan. Manag. 2020, 146, 04020062. [Google Scholar] [CrossRef]
- Gargano, R.; Tricarico, C.; del Giudice, G.; Granata, F. A stochastic model for daily residential water demand. Water Supply 2016, 16, 1753–1767. [Google Scholar] [CrossRef] [Green Version]
- Gargano, R.; Tricarico, C.; Granata, F.; Santopietro, S.; de Marinis, G. Probabilistic models for the peak residential water demand. Water 2017, 9, 417. [Google Scholar] [CrossRef] [Green Version]
- Giustolisi, O.; Todini, E. On the approximation of distributed demands as nodal demands in WDN analysis. In Proceedings of the XXXI National Hydraulics and Hydraulic Construction Conference, Perugia, Italy, 9–12 September 2008; pp. 9–12. [Google Scholar]
- Menapace, A.; Avesani, D.; Righetti, M.; Bellin, A.; Pisaturo, G. Uniformly Distributed Demand EPANET Extension. Water Resour. Manag. 2018, 32, 2165–2180. [Google Scholar] [CrossRef]
- Siew, C.; Tanyimboh, T.T. Pressure-Dependent EPANET Extension. Water Resour. Manag. 2012, 26, 1477–1498. [Google Scholar] [CrossRef] [Green Version]
- Menapace, A.; Avesani, D. Global Gradient Algorithm extension to distributed pressure driven pipe demand model. Water Resour. Manag. 2019, 33, 1717–1736. [Google Scholar] [CrossRef] [Green Version]
- Todini, E.; Pilati, S. A gradient method for the solution of looped pipe networks. Comput. Appl. Water Supply 1988, 1, 1–20. [Google Scholar]
- Menapace, A.; Righetti, M.; Avesani, D. Application of distributed pressure driven modeling in water supply system. In Proceedings of the 1st International WDSA/CCWI Joint Conference, Kingston, ON, Canada, 23–25 July 2018; pp. 1–8. [Google Scholar]
- Zanfei, A.; Menapace, A.; Santopietro, S.; Righetti, M. Calibration Procedure for Water Distribution Systems: Comparison among Hydraulic Models. Water 2020, 12, 1421. [Google Scholar] [CrossRef]
- Cassa, A.M.; van Zyl, J.E.; Laubscher, R.F. A numerical investigation into the effect of pressure on holes and cracks in water supply pipes. Urban Water J. 2010, 7, 109–120. [Google Scholar] [CrossRef]
- Cassa, A.M.; van Zyl, J.E. Predicting the head-leakage slope of cracks in pipes subject to elastic deformations. J. Water Supply Res. Technol. Aqua 2013, 62, 214–223. [Google Scholar] [CrossRef]
- Cassa, A.; van Zyl, J. Predicting the Leakage Exponents of Elastically Deforming Cracks in Pipes. Procedia Eng. 2014, 70, 302–310. [Google Scholar] [CrossRef] [Green Version]
- van Zyl, J.E.; Cassa, A.M. Modeling Elastically Deforming Leaks in Water Distribution Pipes. J. Hydraul. Eng. 2014, 140, 182–189. [Google Scholar] [CrossRef]
- Su, Y.C.; Mays, L.W.; Duan, N.; Lansey, K.E. Reliability-based optimization model for water distribution systems. J. Hydraul. Eng. 1987, 113, 1539–1556. [Google Scholar] [CrossRef]
- Walski, T.M.; Pelliccia, A. Economic analysis of water main breaks. J. Am. Water Work. Assoc. 1982, 74, 140–147. [Google Scholar] [CrossRef]
- Mazzolani, G.; Berardi, L.; Laucelli, D.; Simone, A.; Martino, R.; Giustolisi, O. Estimating leakages in water distribution networks based only on inlet flow data. J. Water Resour. Plan. Manag. 2017, 143, 04017014. [Google Scholar] [CrossRef]
- Di Nardo, A.; Di Natale, M.; Gargano, R.; Giudicianni, C.; Greco, R.; Santonastaso, G.F. Performance of partitioned water distribution networks under spatial-temporal variability of water demand. Environ. Model. Softw. 2018, 101, 128–136. [Google Scholar] [CrossRef]
- Zanfei, A.; Menapace, A.; Pisaturo, G.R.; Righetti, M. Calibration of Water Leakages and Valve Setting in a Real Water Supply System. In Environmental Sciences Proceedings; Multidisciplinary Digital Publishing Institute: Basel, Switzerland, 2020; Volume 2, p. 41. [Google Scholar]
- Moritz, S.; Bartz-Beielstein, T. imputeTS: Time Series Missing Value Imputation in R. R J. 2017, 9, 207. [Google Scholar] [CrossRef] [Green Version]
- Lambert, A. What do we know about pressure-leakage relationships in distribution systems. In Proceedings of the IWA Systems Approach to Leakage Control and Water Distribution System Management, Brno, Czech Republic, 16–18 May 2001. [Google Scholar]
Hour | March Request | March Consumption | April Request | April Consumption |
---|---|---|---|---|
0:00 | 0.538 | 0.007 | 0.016 | 0.177 |
1:00 | 0.093 | 3.42 × 10 | 0.019 | 0.172 |
2:00 | 0.038 | 4.20 × 10 | 4.9 × 10 | 0.078 |
3:00 | 0.269 | 0.033 | 0.001 | 0.188 |
4:00 | 0.197 | 0.002 | 6.0 × 10 | 0.050 |
5:00 | 0.099 | 0.032 | 3.1 × 10 | 0.010 |
6:00 | 0.813 | 0.634 | 0.156 | 0.208 |
7:00 | 0.626 | 0.290 | 0.063 | 0.635 |
8:00 | 0.688 | 0.043 | 0.763 | 0.959 |
9:00 | 0.793 | 0.055 | 0.740 | 0.766 |
10:00 | 0.665 | 0.238 | 0.646 | 0.995 |
11:00 | 0.771 | 0.033 | 0.001 | 0.201 |
12:00 | 0.175 | 0.012 | 1.9 × 10 | 0.096 |
13:00 | 0.757 | 0.044 | 0.311 | 0.906 |
14:00 | 0.940 | 0.165 | 0.970 | 0.755 |
15:00 | 0.909 | 0.254 | 0.059 | 0.433 |
16:00 | 0.990 | 0.181 | 0.172 | 0.466 |
17:00 | 0.181 | 0.005 | 0.002 | 0.031 |
18:00 | 0.113 | 0.015 | 3.0 × 10 | 0.028 |
19:00 | 0.181 | 0.116 | 0.134 | 0.821 |
20:00 | 0.309 | 0.846 | 0.076 | 0.041 |
21:00 | 0.477 | 0.972 | 0.005 | 0.052 |
22:00 | 0.759 | 0.111 | 5.3 × 10 | 1.52 × 10 |
23:00 | 0.353 | 1.11 × 10 | 2.9 × 10 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menapace, A.; Zanfei, A.; Felicetti, M.; Avesani, D.; Righetti, M.; Gargano, R. Burst Detection in Water Distribution Systems: The Issue of Dataset Collection. Appl. Sci. 2020, 10, 8219. https://doi.org/10.3390/app10228219
Menapace A, Zanfei A, Felicetti M, Avesani D, Righetti M, Gargano R. Burst Detection in Water Distribution Systems: The Issue of Dataset Collection. Applied Sciences. 2020; 10(22):8219. https://doi.org/10.3390/app10228219
Chicago/Turabian StyleMenapace, Andrea, Ariele Zanfei, Manuel Felicetti, Diego Avesani, Maurizio Righetti, and Rudy Gargano. 2020. "Burst Detection in Water Distribution Systems: The Issue of Dataset Collection" Applied Sciences 10, no. 22: 8219. https://doi.org/10.3390/app10228219
APA StyleMenapace, A., Zanfei, A., Felicetti, M., Avesani, D., Righetti, M., & Gargano, R. (2020). Burst Detection in Water Distribution Systems: The Issue of Dataset Collection. Applied Sciences, 10(22), 8219. https://doi.org/10.3390/app10228219