Influence of Rotational Stiffness Modeling on the Joint Behavior of Quasi-Rectangular Shield Tunnel Linings
Abstract
:Featured Application
Abstract
1. Introduction
2. Model Setup
2.1. Introduction of the Quasi-Rectangular Tunnel Concept
2.2. Model Establishment
2.2.1. General Concept
2.2.2. Spring Elements
2.2.3. Rigid Zones
2.2.4. Full-Ring Model Calculation
2.3. Joint Parameters: Establishment of Joint Parameter Database
2.3.1. Introduction
2.3.2. Rotational Stiffness
2.3.3. Shear Stiffness
3. Comparison between Proposed Full-Ring Model and Experiments
3.1. Full-Scale Ring Experiment
3.2. Comparison of Internal Forces and Deformations
4. Discussion of the Results
4.1. Comparison between Variable and Constant Rotational Stiffness
4.2. Effect of the Circumferential Joint
4.2.1. Effect of the Circumferential Shear Stiffness
4.2.2. Coefficient of Bending Moment Transmission
4.3. Parametric Study
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Zhu, Y.; Zhu, Y.; Huang, D.; Li, P. Development and application of the technical system for quasi-rectangular shield tunnelling. Mod. Tunn. Technol. 2016, 53, 1–12. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Z.; Yuan, Y.; Zhu, Y. Quasi-Rectangular Shield Tunneling Technology in the Ningbo Rail Transit Project. High Tech. Concrete Where Technol. Eng. Meet 2018, 2765–2773. [Google Scholar] [CrossRef]
- Liu, X.; Ye, Y.; Liu, Z.; Huang, D. Mechanical behavior of Quasi-rectangular segmental tunnel linings: First results from full-scale ring tests. Tunn. Undergr. Space Technol. 2018, 71, 440–453. [Google Scholar] [CrossRef]
- Chow, B. Double-O-tube shield tunneling technology in the Shanghai Rail Transit Project. Tunn. Undergr. Space Technol. 2006, 21, 594–601. [Google Scholar] [CrossRef]
- Ye, G.; Hashimoto, T.; Shen, S.; Zhu, H.; Bai, T. Lessons learnt from unusual ground settlement during Double-O-Tube tunnelling in soft ground. Tunn. Undergr. Space Technol. 2015, 49, 79–91. [Google Scholar] [CrossRef]
- Nakamura, H.; Kubota, T.; Furukawa, M.; Nakao, T. Unified construction of running track tunnel and crossover tunnel for subway by rectangular shape double track cross-section shield machine. Tunn. Undergr. Space Technol. 2003, 18, 253–262. [Google Scholar] [CrossRef]
- Sun, W.; Guan, L.; Wen, Z. Mechanical analysis and application of large rectangular cross-section shield tunnel. Tunn. Construct. 2015, 35, 1028. [Google Scholar]
- Morgan, H. A contribution to the analysis of stress in a circular tunnel. Geotechnique 1961, 11, 37–46. [Google Scholar] [CrossRef]
- Tang, Y. The Mechanism Study of the Staggering Assembly of Shield-Driven Tunnel. Master’s Thesis, Tongji University, Shanghai, China, 1988. [Google Scholar]
- Peck, R.B.; Hendron, A.; Mohraz, B. State of the art of soft-ground tunneling. In Proceedings of the North American Rapid Excavation and Tunneling Conference, Chicago, IL, USA, 5–7 June 1972; pp. 259–286. [Google Scholar]
- Wood, A.M. The circular tunnel in elastic ground. Geotechnique 1975, 25, 115–127. [Google Scholar] [CrossRef]
- Liu, J.; Hou, X. Shield Driven Tunnel; China Railway Publishing House: Bejing, China, 1991. [Google Scholar]
- Koyama, Y. Present status and technology of shield tunneling method in Japan. Tunn. Undergr. Space Technol. 2003, 18, 145–159. [Google Scholar] [CrossRef]
- Lee, K.; Hou, X.; Ge, X.; Tang, Y. An analytical solution for a jointed shield-driven tunnel lining. Int. J. Numer. Anal. Methods Geomech. 2001, 25, 365–390. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, Z.; Teng, L. An analytical method for internal forces in DOT shield-driven tunnel. Tunn. Undergr. Space Technol. 2009, 24, 675–688. [Google Scholar] [CrossRef]
- Li, Z.; Soga, K.; Wang, F.; Wright, P.; Tsuno, K. Behaviour of cast-iron tunnel segmental joint from the 3D FE analyses and development of a new bolt-spring model. Tunn. Undergr. Space Technol. 2014, 41, 176–192. [Google Scholar] [CrossRef]
- Li, Z.; Soga, K.; Wright, P. Behaviour of cast-iron bolted tunnels and their modelling. Tunn. Undergr. Space Technol. 2015, 50, 250–269. [Google Scholar] [CrossRef]
- Lei, M.; Lin, D.; Shi, C.; Ma, J.; Yang, W. A Structural Calculation Model of Shield Tunnel Segment: Heterogeneous Equivalent Beam Model. Adv. Civ. Eng. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Ge, X. The equivalence of a jointed shield-driven tunnel lining to a continuous ring structure. Can. Geotech. J. 2001, 38, 461–483. [Google Scholar] [CrossRef]
- Klappers, C.; Grübl, F.; Ostermeier, B. Structural analyses of segmental lining–coupled beam and spring analyses versus 3D-FEM calculations with shell elements. Tunn. Undergr. Space Technol. 2006, 21, 254–255. [Google Scholar] [CrossRef]
- Teachavorasinskun, S.; Chub-uppakarn, T. Influence of segmental joints on tunnel lining. Tunn. Undergr. Space Technol. 2010, 25, 490–494. [Google Scholar] [CrossRef]
- International Tunnelling Association. Guidelines for the design of shield tunnel lining. Tunn. Undergr. Space Technol. 2000, 303–331. [Google Scholar] [CrossRef]
- Ding, W.; Yue, Z.; Tham, L.; Zhu, H.; Lee, C.; Hashimoto, T. Analysis of shield tunnel. Int. J. Numer. Anal. Methods Geomech. 2004, 28, 57–91. [Google Scholar] [CrossRef]
- Ye, F.; Gou, C.-f.; Sun, H.-d.; Liu, Y.-p.; Xia, Y.-x.; Zhou, Z. Model test study on effective ratio of segment transverse bending rigidity of shield tunnel. Tunn. Undergr. Space Technol. 2014, 41, 193–205. [Google Scholar] [CrossRef]
- Li, X.; Yan, Z.; Wang, Z.; Zhu, H. Experimental and analytical study on longitudinal joint opening of concrete segmental lining. Tunn. Undergr. Space Technol. 2015, 46, 52–63. [Google Scholar] [CrossRef]
- Majdi, A.; Ajamzadeh, H.; Nadimi, S. Investigation of moment-rotation relation in different joint types and evaluation of their effects on segmental tunnel lining. Arab. J. Geosci. 2016, 9, 512. [Google Scholar] [CrossRef]
- Jin, Y.; Ding, W.; Yan, Z.; Soga, K.; Li, Z. Experimental investigation of the nonlinear behavior of segmental joints in a water-conveyance tunnel. Tunn. Undergr. Space Technol. 2017, 68, 153–166. [Google Scholar] [CrossRef]
- Blom, C.B.M. Design Philosophy of Concrete Linings for Tunnels in Soft Soils. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2004. [Google Scholar]
- Zhong, X.; Zhu, W.; Huang, Z.; Han, Y. Effect of joint structure on joint stiffness for shield tunnel lining. Tunn. Undergr. Space Technol. 2006, 21, 406–407. [Google Scholar] [CrossRef]
- Arnau, O.; Molins, C.; Blom, C.; Walraven, J. Longitudinal time-dependent response of segmental tunnel linings. Tunn. Undergr. Space Technol. 2012, 28, 98–108. [Google Scholar] [CrossRef] [Green Version]
- International Tunnelling Association. Twenty Years of FRC Tunnel Segment Practice: Lessons Learned and Proposed Design Principles; I.T.A. Working Group NO.2: Avignon, France, 2016. [Google Scholar]
- Liu, X.; Liu, Z.; Ye, Y.; Bai, Y.; Zhu, Y. Mechanical behavior of quasi-rectangular segmental tunnel linings: Further insights from full-scale ring tests. Tunn. Undergr. Space Technol. 2018, 79, 304–318. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, X.; De Corte, W.; Taerwe, L. Investigation of the rotational stiffness of longitudinal joints in quasi-rectangular segmental tunnel linings. In Proceedings of the Fib Symposium 2019: Concrete—Innovations in Materials, Design and Structures, Krakow, Poland, 27–29 May 2019. [Google Scholar]
- Zhu, Y.; Zhang, Z.; Huang, X.; Zhu, Y. Numerical Investigation on the Mechanical Characteristics of a Special-Shaped Shield Lining with a Large Cross-Section. In Proceedings of the GeoShanghai International Conference, Shanghai, China, 27–30 May 2018. [Google Scholar]
- Code for Design of Concrete Structures [GB50010]; Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD): Beijing, China, 2011. (In Chinese)
- Technical Specification for Concrete Structure of Tall Building [JGJ3-2010]; Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD): Beijing, China, 2011. (In Chinese)
- Code for Design of Metro [GB50157]; Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD): Beijing, China, 2013. (In Chinese)
- Blom, C.; Van der Horst, E.; Jovanovic, P. Three-dimensional structural analyses of the shield-driven “Green Heart” tunnel of the high-speed line south. Tunn. Undergr. Space Technol. 1999, 14, 217–224. [Google Scholar] [CrossRef]
- Schreyer, J.; Winselmann, D. Suitability tests for the lining for the 4th Elbe tunnel tube–Results of large-scale tests. Tunnel 2000, 1, 34–44. [Google Scholar]
- Lu, L.; Lu, X.; Fan, P. Full-ring experimental study of the lining structure of Shanghai Changjiang tunnel. In Proceedings of the 4th International Conference on Earthquake Engineering, Thessaloniki, Greece, 25–28 June 2007. [Google Scholar]
- Huang, X.; Liu, W.; Zhang, Z.; Wang, Q.; Wang, S.; Zhuang, Q.; Zhu, Y.; Zhang, C. Exploring the three-dimensional response of a water storage and sewage tunnel based on full-scale loading tests. Tunn. Undergr. Space Technol. 2019, 88, 156–168. [Google Scholar] [CrossRef]
- Moriya, Y. Special shield tunneling methods in Japan. In Proceedings of the International Conference on Tunnels and Underground Structures, Singapore, 26–29 November 2000; pp. 225–249. [Google Scholar]
- Liu, X.; Dong, Z.; Bai, Y.; Zhu, Y. Investigation of the structural effect induced by stagger joints in segmental tunnel linings: First results from full-scale ring tests. Tunn. Undergr. Space Technol. 2017, 66, 1–18. [Google Scholar] [CrossRef]
- Liu, X.; Bai, Y.; Yuan, Y.; Mang, H.A. Experimental investigation of the ultimate bearing capacity of continuously jointed segmental tunnel linings. Struct. Infrastruct. Eng. 2016, 12, 1364–1379. [Google Scholar] [CrossRef]
- Gil Lorenzo, S. Structural Behaviour of Concrete Segmental Lining Tunnels: Towards Design Optimisation; University of Cambridge: Cambridge, UK, 2018. [Google Scholar]
- Arnau Delgado, O. Structural response of precast concrete segmental tunnel linings. Ph.D. Thesis, Universitat Politècnica de Catalunya, Catalunya, Spain, 2012. [Google Scholar]
- Galván, A.; Peña, F.; Moreno-Martínez, J.Y. Effect of TBM advance in the structural response of segmental tunnel lining. Int. J. Geomech. 2017, 17, 04017056. [Google Scholar] [CrossRef]
- Mo, H.; Chen, J. Study on inner force and dislocation of segments caused by shield machine attitude. Tunn. Undergr. Space Technol. 2008, 23, 281–291. [Google Scholar] [CrossRef]
- JSCE. Japanese Standard for Shield Tunneling; Zhu, W., Translator; Japan Society of Civil Engineers, China Construction Industry Press: Beijing, China, 2001. (In Chinese) [Google Scholar]
- Liu, X.; Zhang, C.; Zhang, C.; Yuan, Y. Ultimate load-carrying capacity of the longitudinal joints in segmental tunnel linings. Struct. Concr. 2017, 18, 693–709. [Google Scholar] [CrossRef]
- Liu, X.; Dong, Z.; Song, W.; Bai, Y. Investigation of the structural effect induced by stagger joints in segmental tunnel linings: Direct insight from mechanical behaviors of longitudinal and circumferential joints. Tunn. Undergr. Space Technol. 2018, 71, 271–291. [Google Scholar] [CrossRef]
- Yan, Z.; Peng, Y.; Ding, W.; Zhu, H.; Huang, F. Load tests on segment joints of single lining structure of shield tunnel in Qingcaosha water conveyance project. Chin. J. Geotech. Eng. 2011, 33, 1385–1390. [Google Scholar]
- Caratelli, A.; Meda, A.; Rinaldi, Z.; Giuliani-Leonardi, S.; Renault, F. On the behavior of radial joints in segmental tunnel linings. Tunn. Undergr. Space Technol. 2018, 71, 180–192. [Google Scholar] [CrossRef]
- Zhang, J.L.; Mang, H.A.; Liu, X.; Yuan, Y.; Pichler, B. On a nonlinear hybrid method for multiscale analysis of a bearing-capacity test of a real-scale segmental tunnel ring. Int. J. Numer. Anal. Methods Geomech. 2019. [Google Scholar] [CrossRef] [Green Version]
- Gruebl, F. Segmental Ring Design: New Challenges with High Tunnel Diameters. TAI J. 2012, 1, 4–9. [Google Scholar]
- Koyoma, Y.; Nishimura, T. The Design of Lining Segment of Shield Tunnel Using a Beam-Spring Model; Railway Technical Research Institute: Kokubunji-shi, Tokyo, Japan, 1998; p. 39. [Google Scholar]
- Li, X.; Yan, Z.; Wang, Z.; Zhu, H. A progressive model to simulate the full mechanical behavior of concrete segmental lining longitudinal joints. Eng. Struct. 2015, 93, 97–113. [Google Scholar] [CrossRef]
- Zhang, H.; Fu, D.; Guo, C. Study on load test of segment joint in shield driven tunnel. Mod. Tunn. Technol. 2002, 39, 28–34. [Google Scholar]
Coefficient | Positive | Negative |
---|---|---|
a | 9.33 × 10−11 | 6.58 × 10−10 |
b | −1.18 × 10−11 | −2.03 × 10−10 |
c | 8.34 × 10−12 | 2.40 × 10−11 |
d | 1.30 × 10−7 | 9.17 × 10−8 |
e | −4.80 × 10−8 | −3.29 × 10−8 |
f | 3.79 × 10−5 | 2.36 × 10−5 |
SSE | 5.116 × 10−6 | 1.092 × 10−4 |
Adjusted R-square | 0.999 | 0.998 |
Experimental Case | Soil Overburden (m) | Coefficient of Lateral Pressure | Ground Overload (kPa) | Experimental Load (kN) |
---|---|---|---|---|
1 | 8 | 0.7 (soil-water together) | 20 kPa | P1 = 300, P2 = 170, P3 = 212 |
2 | 17 | 0.4 (soil-water separately) | 20 kPa | P1 = 450, P2 = 250, P3 = 355 |
3 | 17 | 0.7 (soil-water together) | 20 kPa and partial offset load of 30 kPa on left half | P1 = 481, P2 = 227, P3 = 503, P4 = 458, P5 = 344, P6 = 599 P7 = 400, P8 = 486, P9 = 406 P10 = 239, P11 = 255, P12 = 388 P13 = 489, P14 = 40, P15 = 387 P16 = 258 |
Experimental Case | Key Section | Experiment | Model | Ratio (Model/Experiment) | |||
---|---|---|---|---|---|---|---|
Bending Moment (kNm) | Axial Force (kN) | Bending Moment (kNm) | Axial Force (kN) | Bending Moment | Axial Force | ||
1 | JM1 | −289 | −631 | −269 | −635 | 0.93 | 1.01 |
JM2 | 237 | −628 | 231 | −602 | 0.97 | 0.96 | |
JM3 | −121 | −719 | −118 | −708 | 0.97 | 0.99 | |
JM4 | 247 | −592 | 234 | −601 | 0.95 | 1.02 | |
JM5 | −283 | −648 | −277 | −634 | 0.98 | 0.98 | |
JM6 | −287 | −635 | −276 | −633 | 0.96 | 1.00 | |
JM7 | 260 | −596 | 217 | −600 | 0.83 | 1.01 | |
JM8 | −135 | −741 | −147 | −711 | 1.09 | 0.96 | |
JM9 | 210 | −598 | 204 | −604 | 0.97 | 1.01 | |
JM10 | −298 | −636 | −300 | −637 | 1.01 | 1.00 | |
JM11 | −9 | −1191 | −12 | −1232 | - | 1.03 | |
2 | JM1 | −376 | −1024 | −357 | −972 | 0.95 | 0.95 |
JM2 | 364 | −929 | 385 | −923 | 1.06 | 0.99 | |
JM3 | −230 | −1064 | −220 | −1114 | 0.95 | 1.05 | |
JM4 | 356 | −961 | 382 | −922 | 1.07 | 0.96 | |
JM5 | −355 | −1044 | −369 | −971 | 1.04 | 0.93 | |
JM6 | −350 | −1025 | −382 | −970 | 1.09 | 0.95 | |
JM7 | 340 | −959 | 356 | −921 | 1.05 | 0.96 | |
JM8 | −270 | −1003 | −261 | −1118 | 0.97 | 1.11 | |
JM9 | 364 | −936 | 354 | −926 | 0.97 | 0.99 | |
JM10 | −354 | −1081 | −382 | −974 | 1.08 | 0.90 | |
JM11 | −63 | −2077 | −11 | −1944 | - | 0.94 | |
3 | JM1 | −436 | −1140 | −401 | −1092 | 0.92 | 0.96 |
JM2 | 255 | −1016 | 273 | −1047 | 1.07 | 1.03 | |
JM3 | −103 | −1226 | −109 | −1159 | 1.06 | 0.95 | |
JM4 | 213 | −1088 | 207 | −1053 | 0.97 | 0.97 | |
JM5 | −419 | −1127 | −435 | −1095 | 1.04 | 0.97 | |
JM6 | −275 | −1027 | −288 | −1088 | 1.05 | 1.06 | |
JM7 | 417 | −1048 | 396 | −1043 | 0.95 | 0.99 | |
JM8 | −316 | −1251 | −331 | −1275 | 1.05 | 1.02 | |
JM9 | 437 | −1056 | 412 | −1032 | 0.94 | 0.98 | |
JM10 | −352 | −1153 | −390 | −1084 | 1.11 | 0.94 | |
JM11 | −79 | −1908 | −41 | −1977 | - | 1.04 |
Experimental Case | Convergence Displacement | Experiment (mm) | Model (mm) | Ratio (Model/Experiment) |
---|---|---|---|---|
1 | D1 | −4.74 | −4.43 | 0.93 |
D2 | 4.68 | 4.51 | 0.96 | |
D3 | −6.92 | −7.06 | 1.02 | |
2 | D1 | −6.37 | −7.00 | 1.10 |
D2 | 8.44 | 8.72 | 1.03 | |
D3 | −12.61 | −12.34 | 0.98 | |
3 | D1 | −1.87 | −2.21 | 1.18 |
D2 | 9.24 | 9.01 | 0.98 | |
D3 | −19.68 | −18.41 | 0.94 |
Calculation Case | Soil Overburden (m) | Coefficient of Lateral Pressure | Vertical Soil and Water Pressure q1 (kPa) | Ground Overload q2 (kPa) | Bottom Counter Force q3 (kPa) | Top Value of Lateral Pressure e1 (kPa) | Bottom Value of Lateral Pressure e2 (kPa) |
---|---|---|---|---|---|---|---|
1 | 8 | 0.7 | 144.0 | 20 | 208.9 | 114.8 | 202.7 |
2 | 17 | 0.6 | 306.0 | 20 | 370.9 | 195.6 | 271.0 |
Case | Joint | Incremental Method | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Moment (kNm) | |||||||||||
Middle | NEIGHBORING | 100 | 150 | 200 | 250 | 300 | 350 | 400 | |||
1 | JF1 | 18 | −29 | - | - | - | - | - | - | - | - |
JF2 | −52 | −61 | 0.09 | 0.34 | 0.23 | 0.17 | 0.12 | 0.08 | 0.05 | 0.02 | |
JF3 | −67 | −72 | 0.03 | 0.13 | 0.09 | 0.07 | 0.06 | 0.05 | 0.05 | 0.04 | |
JF4 | 60 | 71 | 0.08 | 0.24 | 0.16 | 0.11 | 0.08 | 0.06 | 0.04 | 0.03 | |
JF5 | −53 | −82 | 0.22 | 0.50 | 0.38 | 0.29 | 0.22 | 0.16 | 0.12 | 0.07 | |
JF6 | 86 | 107 | 0.11 | 0.38 | 0.25 | 0.16 | 0.10 | 0.06 | 0.02 | 0.00 | |
JF7 | 38 | 44 | 0.07 | 0.19 | 0.12 | 0.09 | 0.07 | 0.05 | 0.05 | 0.04 | |
JF8 | −106 | −136 | 0.12 | 0.25 | 0.17 | 0.12 | 0.09 | 0.06 | 0.05 | 0.03 | |
JF9 | 26 | 65 | 0.43 | 0.64 | 0.51 | 0.41 | 0.33 | 0.28 | 0.23 | 0.19 | |
JF10 | 97 | 173 | 0.28 | 0.35 | 0.25 | 0.18 | 0.14 | 0.11 | 0.08 | 0.06 | |
2 | JF1 | 20 | −88 | - | - | - | - | - | - | - | - |
JF2 | −57 | −70 | 0.10 | 0.45 | 0.33 | 0.25 | 0.19 | 0.15 | 0.11 | 0.08 | |
JF3 | −182 | −189 | 0.02 | 0.18 | 0.12 | 0.09 | 0.07 | 0.06 | 0.05 | 0.04 | |
JF4 | 162 | 210 | 0.13 | 0.28 | 0.20 | 0.15 | 0.11 | 0.09 | 0.07 | 0.05 | |
JF5 | −112 | −180 | 0.23 | 0.51 | 0.39 | 0.31 | 0.25 | 0.20 | 0.16 | 0.12 | |
JF6 | 176 | 230 | 0.13 | 0.42 | 0.29 | 0.20 | 0.15 | 0.11 | 0.07 | 0.05 | |
JF7 | 99 | 87 | - | - | - | - | - | - | - | - | |
JF8 | −223 | −316 | 0.17 | 0.26 | 0.18 | 0.13 | 0.10 | 0.08 | 0.06 | 0.05 | |
JF9 | 108 | 196 | 0.29 | 0.53 | 0.42 | 0.34 | 0.28 | 0.24 | 0.20 | 0.18 | |
JF10 | 190 | 361 | 0.31 | 0.39 | 0.28 | 0.22 | 0.17 | 0.14 | 0.11 | 0.09 |
Parameter | Range of the Magnification Factors | Value of x |
---|---|---|
Rotational stiffness | 2x | ±4, ±3, ±2, ±1, 0 |
Shear stiffness | 2x | ±4, ±3, ±2, ±1, 0 |
Size of rigid zone | 0 and 2x | ±2, ±1, 0 |
Width of interior column | 2x | −2, −1, 0, 1 |
Target Object | D3 (Max of Deformation) | JM2 (Max of Positive Moment) | JM8 (Max1 of Negative Moment) | JM10 (Max2 of Negative Moment) |
---|---|---|---|---|
Rotation | ↓↓ | ↑ | ↑ | ↓↓ |
Shear | ↓↓ | ↓ | ↓↓ | ↑↑ |
Rigid zone | ↓ | ↓ | ↓ | ↑ |
Column | ↓ | ↑↑ | ↓↓ | ↑↑ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; De Corte, W.; Liu, X.; Taerwe, L. Influence of Rotational Stiffness Modeling on the Joint Behavior of Quasi-Rectangular Shield Tunnel Linings. Appl. Sci. 2020, 10, 8396. https://doi.org/10.3390/app10238396
Zhang W, De Corte W, Liu X, Taerwe L. Influence of Rotational Stiffness Modeling on the Joint Behavior of Quasi-Rectangular Shield Tunnel Linings. Applied Sciences. 2020; 10(23):8396. https://doi.org/10.3390/app10238396
Chicago/Turabian StyleZhang, Weixi, Wouter De Corte, Xian Liu, and Luc Taerwe. 2020. "Influence of Rotational Stiffness Modeling on the Joint Behavior of Quasi-Rectangular Shield Tunnel Linings" Applied Sciences 10, no. 23: 8396. https://doi.org/10.3390/app10238396
APA StyleZhang, W., De Corte, W., Liu, X., & Taerwe, L. (2020). Influence of Rotational Stiffness Modeling on the Joint Behavior of Quasi-Rectangular Shield Tunnel Linings. Applied Sciences, 10(23), 8396. https://doi.org/10.3390/app10238396