Discretely Tunable Multiwavelength Visible Laser Based on Cascaded Frequency Conversion Processes
Abstract
:1. Introduction
2. Experimental Setup
3. Experimental Results and Discussion
3.1. Stokes Lasers Generation
3.2. Multiwavelength Visible Lasers Generation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Guo, H.-B.; Mai, X.; Qi, G.; Zhang, F.; Wu, G.-S.; Sun, F.; Pu, S. Multi-Wavelength Optical Storage of Diarylethene Pmma Film. Opt. Mater. 2003, 22, 269–274. [Google Scholar] [CrossRef]
- Tan, S.; Narayanan, R.M. Design and Performance of A Multiwavelength Airborne Polarimetric Lidar for Vegetation Remote Sensing. Appl. Opt. 2004, 43, 2360–2368. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Li, H.; Liu, X. Studies on Different Primaries for a Nearly-Ultimate Gamut in a Laser Display. Opt. Express 2018, 26, 23436–23448. [Google Scholar] [CrossRef] [PubMed]
- Fu, R.; Deng, L.; Guan, Z.; Chang, S.; Tao, J.; Zheng, G.; Zheng, G. Zero-Order-Free Meta-Holograms in a Broadband Visible Range. Photon. Res. 2020, 8, 723. [Google Scholar] [CrossRef]
- Stauffer, H.U.; Rahman, K.A.; Slipchenko, M.N.; Roy, S.; Gord, J.R.; Meyer, T.R. Interference-Free Hybrid Fs/Ps Vibrational Cars Thermometry in High-Pressure Flames. Opt. Lett. 2018, 43, 4911–4914. [Google Scholar] [CrossRef] [PubMed]
- Su, W.-H.; Sun, D. Multispectral Imaging for Plant Food Quality Analysis and Visualization. Compr. Rev. Food Sci. Food Saf. 2018, 17, 220–239. [Google Scholar] [CrossRef] [Green Version]
- Debord, B.; Maurel, M.; Gerome, F.; Vincetti, L.; Husakou, A.; Benabid, F. Strong Nonlinear Optical Effects in Micro-Confined Atmospheric Air. Photon. Res. 2019, 7, 1134–1141. [Google Scholar] [CrossRef]
- Ardhendu, S.; Ray, A.; Mukhopadhyay, S.; Sinha, N.; Datta, P.K.; Dutta, P.K. Simultaneous Multi-Wavelength Oscillation of Nd Laser around 1.3 µm: A Potential Source for Coherent Terahertz Generation. Opt. Express 2006, 14, 4721–4726. [Google Scholar]
- Zhang, Y.; Xu, J.; Ye, J.; Song, J.; Yao, T.; Zhou, P.; Jiangming, X. Ultralow-Quantum-Defect Raman Laser Based on the Boson Peak in Phosphosilicate Fiber. Photon. Res. 2020, 8, 1155. [Google Scholar] [CrossRef]
- Zhou, S.; Gu, P.; Li, X.; Liu, S. Continuous Wave Dual-Wavelength Nd: Yvo 4 Laser Working at 1064 and 1066 Nm. Chin. Opt. Lett. 2017, 15, 071401. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Xia, J.; Liu, H.; Pu, X. Simultaneous Triple 914 Nm, 1084 Nm, and 1086 Nm Operation of a Diode-Pumped Nd: YVO4 Laser. J. Appl. Phys. 2014, 116, 163107. [Google Scholar]
- Hou, Y.-E.; Fan, Y.-X.; He, J.-L.; Wang, H. High-Efficiency Continuous-Wave and Q-Switched Diode-End-Pumped Multi-Wavelength Nd: YAG Lasers. Opt. Commun. 2006, 265, 301–305. [Google Scholar] [CrossRef]
- Saha, A.; Debnath, R.; Hada, D.S.; Beda, S.K. Simultaneous Oscillations of Twelve Wavelengths around 1.3 μm in Quasi-CW Nd: YAG Laser. Opt. Laser Technol. 2017, 94, 112–118. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, F.; Xie, S.; Xu, Y.; Xu, J.; Bo, Y.; Peng, Q.; Zhang, J.; Cui, D.; Xu, Z. Multiwavelength Green-Yellow Laser Based on a Nd: YAG Laser with Nonlinear Frequency Conversion in a LBO Crystal. Appl. Opt. 2012, 51, 4196–4200. [Google Scholar] [CrossRef]
- Liao, J.; He, J.; Liu, H.; Du, J.; Xu, F.; Wang, H.; Zhu, S.; Zhu, Y.; Ming, N. Red, Yellow, Green and Blue–Four-Color Light from a Single, Aperiodically Poled LiTaO3 Crystal. Appl. Phys. A 2004, 78, 265–267. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, M.; Chen, W. Electro-Optically Q-Switched High-Repetition-Rate 1.73 Mm Optical Parametric Oscillator. Chin. Opt. Lett. 2015, 13, 081406. [Google Scholar]
- Pask, H. The Design and Operation of Solid-State Raman Lasers. Prog. Quantum Electron. 2003, 27, 3–56. [Google Scholar] [CrossRef]
- Granados, E.; Pask, H.M.; Esposito, E.; McConnell, G.; Spence, D.J. Multi-Wavelength, All-Solid-State, Continuous Wave Mode Locked Picosecond Raman Laser. Opt. Express 2010, 18, 5289–5294. [Google Scholar] [CrossRef]
- Wang, X.; Kang, W.; Song, X.; Xie, P.; Zong, N.; Tu, W. Theoretical and Experimental Research on High-Order Stimulated Raman Scattering in KGd(WO4)2. Opt. Commun. 2017, 385, 9–14. [Google Scholar] [CrossRef]
- Mildren, R.P.; Butler, J.E.; Rabeau, J.R. CVD-Diamond External Cavity Raman Laser at 573 nm. Opt. Express 2008, 16, 18950–18955. [Google Scholar] [CrossRef]
- Antipov, S.; Sabella, A.; Williams, R.J.; Kitzler, O.; Spence, D.J.; Mildren, R.P. 12 kW Quasi-Steady-State Diamond Raman Laser Pumped by an M2 = 15 Beam. Opt. Lett. 2019, 44, 2506–2509. [Google Scholar] [CrossRef] [PubMed]
- Heinzig, M.; Vega, G.P.; Walbaum, T.; Schreiber, T.; Eberhardt, R.; Tünnermann, A. Diamond Raman Oscillator Operating at 1178 nm. Opt. Lett. 2020, 45, 2898–2901. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Cheng, W.; Xiong, Z.; Lu, J.; Xu, L.; Sun, G.; Zhao, Z. Efficient CW Laser at 559 nm by Intracavity Sum-Frequency Mixing in a Self-Raman Nd:YVO4 Laser under Direct 880 nm Diode Laser Pumping. Laser Phys. Lett. 2010, 7, 787–789. [Google Scholar] [CrossRef]
- Duan, Y.; Sun, Y.; Zhu, H.; Mao, T.; Zhang, L.; Chen, X. YVO4 Cascaded Raman Laser for Five-Visible-Wavelength Switchable Emission. Opt. Lett. 2020, 45, 2564–2567. [Google Scholar] [CrossRef]
- Basiev, T.T.; Sobol, A.A.; Zverev, P.G.; Osiko, V.V.; Powell, R.C. Comparative Spontaneous Raman Spectroscopy of Crystals for Raman Lasers. Appl. Opt. 1999, 38, 594–598. [Google Scholar] [CrossRef]
- Findeisen, J.; Eichler, H.J.; Peuser, P.; Kaminskii, A.; Hulliger, J. Diode-Pumped Ba(No3) 2 and NaBrO3 Raman Lasers. Appl. Phys. A 2000, 70, 159–162. [Google Scholar] [CrossRef]
- Murray, J.T.; Smith, D.; Stolzenberger, R.A.; Austin, W.; Powell, R.C.; Peyghambarian, N. Generation of 1.5-Μm Radiation through Intracavity Solid-State Raman Shifting in Ba (No 3) 2 Nonlinear Crystals. Opt. Lett. 1995, 20, 1017–1019. [Google Scholar] [CrossRef]
- Grasiuk, A.Z.; Kurbasov, S.V.; Losev, L.L. Picosecond Parametric Raman Laser Based on KGd(WO4)2 Crystal. Opt. Commun. 2004, 240, 239–244. [Google Scholar] [CrossRef]
- Lee, A.; Spence, D.J.; Piper, J.A.; Pask, H.M. A Wavelength-Versatile, Continuous-Wave, Self-Raman Solid-State Laser Operating in the Visible. Opt. Express 2010, 18, 20013–20018. [Google Scholar] [CrossRef]
- Li, X. Multiwavelength Visible Laser Based on the Stimulated Raman Scattering Effect and Beta Barium Borate Angle Tuning. Chin. Opt. Lett. 2016, 14, 21404–21407. [Google Scholar]
- Jakutis-Neto, J.; Lin, J.; Wetter, N.U.; Pask, H. Continuous-Wave Watt-Level Nd: YLF/KGW Raman Laser Operating at near-Ir, Yellow and Lime-Green Wavelengths. Opt. Express 2012, 20, 9841–9850. [Google Scholar] [CrossRef] [PubMed]
- Mildren, R.P.; Convery, M.; Pask, H.M.; Piper, J.A.; McKay, T. Efficient, All-Solid-State, Raman Laser in the Yellow, Orange and Red. Opt. Express 2004, 12, 785–790. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.X.; Flood, C.J.; Walker, D.R.; Van Driel, H.M. Kerr Lens Mode Locking of a Diode-Pumped Nd: YAG Laser. Opt. Lett. 1992, 17, 1361–1363. [Google Scholar] [CrossRef] [PubMed]
- Pask, H.; Blows, J.L.; Piper, J.; Revermann, M.; Omatsu, T. Thermal lensing in a barium nitrate raman laser. In Proceedings of the Paper presented at the Advanced Solid-State Lasers, Seattle, WA, USA, 28–31 January 2001. [Google Scholar]
- Von Der Linde, D.; Maier, M.; Kaiser, W. Quantitative Investigations of the Stimulated Raman Effect Using Subnanosecond Light Pulses. Phys. Rev. 1969, 178, 11–17. [Google Scholar] [CrossRef]
- Ding, S.; Zhang, X.; Wang, Q.; Su, F.; Li, S.; Fan, S.; Liu, Z.; Chang, J.; Zhang, S.; Wang, S.; et al. Theoretical and Experimental Research on the Multi-Frequency Raman Converter with KGd(WO4)2 Crystal. Opt. Express 2005, 13, 10120–10128. [Google Scholar] [CrossRef]
- Ding, S.; Zhang, X.; Wang, Q.; Jia, P.; Zhang, C.; Liu, B. Numerical Optimization of the Extracavity Raman Laser with Barium Nitrate Crystal. Opt. Commun. 2006, 267, 480–486. [Google Scholar] [CrossRef]
- Ding, S.; Zhang, X.; Wang, Q.; Su, F.; Li, S.; Fan, S.; Liu, Z.; Chang, J.; Zhang, S.; Wang, S.; et al. Highly Efficient Raman Frequency Converter With Strontium Tungstate Crystal. IEEE J. Quantum Electron. 2005, 42, 78–84. [Google Scholar] [CrossRef]
- Pask, H.; Dekker, P.; Mildren, R.; Spence, D.; Piper, J. Wavelength-Versatile Visible and UV Sources Based on Crystalline Raman Lasers. Prog. Quantum Electron. 2008, 32, 121–158. [Google Scholar] [CrossRef]
λ1 (nm) | λ2 (nm) | Nonlinear Process | λcal (nm) | λexp (nm) | θ (°) |
---|---|---|---|---|---|
1177.1 | 1177.1 | SHG | 588.6 | 588.62 | 42.0 |
1177.1 | 1158.9 | SFG | 584 | 583.89 | 41.9 |
1177.1 | 1197.7 | SFG | 593.7 | 593.74 | 42.2 |
1177.1 | 1272.1 | SFG | 611.4 | 611.59 | 42.8 |
1177.1 | 1316.7 | SFG | 621.5 | 621.92 | 43.2 |
1177.1 | 1369.5 | SFG | 633 | 633.01 | 43.7 |
1177.1 | 1493.9 | SFG | 658.4 | Not Detected | 45.1 |
1158.9 | 1158.9 | SHG | 579.5 | 579.48 | 41.8 |
1158.9 | 1197.7 | SFG | 589 | 589.07 | 42.1 |
1158.9 | 1272.1 | SFG | 606.4 | 606.16 | 42.6 |
1158.9 | 1316.7 | SFG | 616.4 | 616.5 | 43 |
1158.9 | 1369.5 | SFG | 627.7 | 627.59 | 43.5 |
1158.9 | 1493.9 | SFG | 652.6 | 652.57 | 44.9 |
1197.7 | 1197.7 | SHG | 598.9 | 598.74 | 42.3 |
1197.7 | 1272.1 | SFG | 616.9 | Not Detected | 43 |
1197.7 | 1316.7 | SFG | 627.2 | Not Detected | 43.4 |
1197.7 | 1369.5 | SFG | 638.9 | 638.93 | 43.9 |
1197.7 | 1493.9 | SFG | 664.8 | Not Detected | 45.4 |
1272.1 | 1272.1 | SHG | 636.1 | Not Detected | 43.7 |
1272.1 | 1316.7 | SFG | 647 | 646.97 | 44.2 |
1272.1 | 1369.5 | SFG | 659.5 | Not Detected | 44.8 |
1272.1 | 1493.9 | SFG | 687.1 | Not Detected | 46.5 |
1316.7 | 1316.7 | SFG | 658.4 | 658.48 | 44.7 |
1316.7 | 1369.5 | SFG | 671.3 | Not Detected | 45.4 |
1316.7 | 1493.9 | SFG | 699.9 | Not Detected | 47.2 |
1369.5 | 1369.5 | SHG | 684.8 | Not Detected | 46.1 |
1369.5 | 1493.9 | SFG | 714.5 | Not Detected | 48 |
1493.9 | 1493.9 | SHG | 747 | Not Detected | 50.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, X.; Chen, J.; Peng, Y.; Huang, Z.; Long, Y.; Wang, X.; Liu, G.; Leng, Y. Discretely Tunable Multiwavelength Visible Laser Based on Cascaded Frequency Conversion Processes. Appl. Sci. 2020, 10, 8608. https://doi.org/10.3390/app10238608
Lv X, Chen J, Peng Y, Huang Z, Long Y, Wang X, Liu G, Leng Y. Discretely Tunable Multiwavelength Visible Laser Based on Cascaded Frequency Conversion Processes. Applied Sciences. 2020; 10(23):8608. https://doi.org/10.3390/app10238608
Chicago/Turabian StyleLv, Xinlin, Junchi Chen, Yujie Peng, Zhiyuan Huang, Yingbin Long, Xinliang Wang, Guanting Liu, and Yuxin Leng. 2020. "Discretely Tunable Multiwavelength Visible Laser Based on Cascaded Frequency Conversion Processes" Applied Sciences 10, no. 23: 8608. https://doi.org/10.3390/app10238608
APA StyleLv, X., Chen, J., Peng, Y., Huang, Z., Long, Y., Wang, X., Liu, G., & Leng, Y. (2020). Discretely Tunable Multiwavelength Visible Laser Based on Cascaded Frequency Conversion Processes. Applied Sciences, 10(23), 8608. https://doi.org/10.3390/app10238608