Changes in the Kinematic and Kinetic Characteristics of Lunge Footwork during the Fatiguing Process
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Protocol
2.3. Data Analysis
2.4. Statistical Analysis
3. Results
3.1. Fatigue Protocol
3.2. Kinematics of Lower Extremity Joints
3.3. Five Sub-Phases of the Stance Phase
3.4. Kinetics of Lower Extremity Joints
3.5. SPM (1D) of Kinematics of Lower Extremity Joints
3.6. SPM (1D) of Kinetics of Lower Extremity Joints
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Krøner, K.; Schmidt, S.A.; Nielsen, A.; Yde, J.; Jakobsen, B.W.; Møller-Madsen, B.; Jensen, J. Badminton injuries. Br. J. Sports Med. 1990, 24, 169–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fahlstrom, M.; Bjornstig, U.; Lorentzon, R. Acute badminton injuries. Scand. J. Med. Sci. Sports 1998, 8, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Yung, P.S.; Chan, R.H.; Wong, F.C.; Cheuk, P.W.; Fong, D.T. Epidemiology of injuries in Hongkong elite badminton athletes. Res. Sports Med. 2007, 15, 133–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badminton World Federation. Players Worldwide. In Badminton World Federation [Online]. Available online: http://smj.sma.org.sg/5011/5011a10.pdf (accessed on 25 June 2009).
- Weir, M.A.; Watson, A.W. A twelve month study of sports injuries in one Irish school. Irish J. Med. Sci. 1996, 165, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Herbaut, A.; Delannoy, J.; Foissac, M. Injuries in French and Chinese regular badminton players. Sci. Sport 2018, 33, 145–151. [Google Scholar] [CrossRef]
- Shariff, A.H.; George, J.; Ramlan, A.A. Musculoskeletal injuries among Malaysian badminton players. Singap. Med. J. 2009, 50, 1095–1097. [Google Scholar]
- Goh, S.L.; Mokhtar, A.H.; Mohamad Ali, M.R. Badminton injuries in youth competitive players. J. Sports Med. Phys. Fit. 2013, 53, 65–70. [Google Scholar]
- Hensley, L.D.; Paup, D.C. A survey of badminton injuries. Brit. J. Sports Med. 1979, 13, 156–160. [Google Scholar] [CrossRef] [Green Version]
- Kuntze, G.; Mansfield, N.; Sellers, W. A biomechanical analysis of common lunge tasks in badminton. J. Sports Sci. 2010, 28, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Phomsoupha, M.; Laffaye, G. The science of badminton: Game characteristics, anthropometry, physiology, visual fitness and biomechanics. Sports Med. 2015, 45, 473–495. [Google Scholar] [CrossRef]
- Muttalib, A.; Zaidi, M.; Khoo, C. A survey on common injuries in recreational badminton players. Malays. Orthop. J. 2009, 3, 8–11. [Google Scholar] [CrossRef]
- Kondric, M.; Matković, B.R.; Furjan-Mandić, G.; Hadzić, V.; Dervisević, E. Injuries in racket sports among Slovenian players. Coll Antropol. 2011, 35, 413–417. [Google Scholar] [PubMed]
- Jørgensen, U.J.; Winge, S.J. Injuries in Badminton. Sports Med. 1990, 10, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Pincivero, D.M.; Aldworth, C.; Dickerson, T.; Petry, C.; Shultz, T. Quadriceps-hamstring EMG activity during functional, closed kinetic chain exercise to fatigue. Eur. J. Appl. Physiol. 2000, 81, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Valldecabres, R.; De Benito, A.M.; Littler, G.; Richards, J. An exploration of the effect of proprioceptive knee bracing on biomechanics during a badminton lunge to the net, and the implications to injury mechanisms. Peer J. 2018, 6, e6033. [Google Scholar] [CrossRef]
- Hong, Y.; Wang, S.J.; Lam, W.K.; Cheung, J.T.M. Kinetics of badminton lunges in four directions. J. Appl. Biomech. 2014, 30, 113–118. [Google Scholar] [CrossRef] [Green Version]
- Mei, Q.; Gu, Y.; Fu, F.; Fernandez, J. A biomechanical investigation of right-forward lunging step among badminton players. J. Sports Sci. 2017, 35, 457–462. [Google Scholar] [CrossRef]
- Fu, L.; Ren, F.; Baker, J.S. Comparison of joint loading in badminton lunging between professional and amateur badminton players. Appl. Bionics Biomech. 2017, 2017, 5397656. [Google Scholar] [CrossRef] [Green Version]
- Lees, A.; Hurley, C. Forces in a badminton lunge movement. In Science and Racket Sports; Reilly, T., Hughes, M., Lees, A., Eds.; E & FN Spon: London, UK, 1994; pp. 249–256. [Google Scholar]
- Lam, W.K.; Ding, R.; Qu, Y. Ground reaction forces and knee kinetics during single and repeated badminton lunges. J. Sports Sci. 2017, 35, 587–592. [Google Scholar] [CrossRef]
- Pataky, T.C. Generalized n-dimensional biomechanical field analysis using statistical parametric mappin. J. Biomech. 2010, 43, 1976–1982. [Google Scholar] [CrossRef]
- Barber-Westin, S.D.; Noyes, F.R. Effect of fatigue protocols on lower limb neuromuscular function and implications for anterior cruciate ligament injury prevention training: A systematic review. Am. J. Sports Med. 2017, 45, 3388–3396. [Google Scholar] [CrossRef] [PubMed]
- Roth, R.; Donath, L.; Zahner, L.; Faude, O. Acute leg and trunk muscle fatigue differentially affect strength, sprint, agility, and balance in young adults. J. Strength Cond. Res. 2019. [Google Scholar] [CrossRef] [PubMed]
- Borg, G.A.V. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Cappozzo, A.; Catani, F.; Della Croce, U.; Leardini, A. Position and orientation in space of bones during movement: Anatomical frame definition and determination. Clin. Biomech. 1995, 10, 171–178. [Google Scholar] [CrossRef]
- Herbaut, A.; Delannoy, J. Fatigue increases ankle sprain risk in badminton players: A biomechanical study. J. Sports Sci. 2020, 38, 1560–1565. [Google Scholar] [CrossRef]
- Peers, K.H.; Lysens, R.J. Patellar tendinopathy in athletes: Current diagnostic and therapeutic recommendations. Sports Med. 2005, 35, 71–87. [Google Scholar] [CrossRef]
Mean ± SD | 95% CI of the Difference | ||||||
---|---|---|---|---|---|---|---|
Pre | Post | ηp2 | Lower | Upper | t | p | |
HR (beats/min) | 78.2 ± 9.4 | 185.8 ± 9.1 | 0.99 | −115.013 | −100.32 | −32.256 | <0.001 |
BL (mmol/L) | 3 ± 2.4 | 14.3 ± 3.1 | 0.876 | −14.241 | −8.543 | −8.801 | <0.001 |
RPE | 6 ± 0 | 18.4 ± 1 | 0.994 | −13.05 | −11.784 | −43.176 | <0.001 |
P1 | P2 | P3 | P4 | p | |
---|---|---|---|---|---|
Joint angle at initial contact (°) | |||||
CAH | 46.08 ± 12.7 | 46.12 ± 10.32 | 42.2 ± 11.77 | 42.17 ± 11.77 | c, d*, e* |
CAK | 13.11 ± 7.43 | 9.65 ± 7.55 | 7.82 ± 6.78 | 7.87 ± 6.09 | a, b, c* |
CAA | 10.35 ± 8.05 | 6.81 ± 8.25 | 8 ± 8.47 | 6.42 ± 9.11 | |
Peak joint angle (°) | |||||
PAH | 74.08 ± 11.94 | 73.3 ± 9.93 | 67.34 ± 11.74 | 67.84 ± 12.78 | |
PAK | 69.46 ± 8.77 | 65.43 ± 9.44 | 64.17 ± 10.26 | 62.46 ± 8.84 | a*, b, c* |
PAA | −20.84 ± 5.7 | −18.74 ± 5.2 | −18.4 ± 4.9 | −18.19 ± 6.55 | |
Time to peak joint angle (%) | |||||
PAH | 41.63 ± 6.59 | 42.13 ± 8.79 | 38.88 ± 7.55 | 36.75 ± 6.94 | |
PAK | 45.88 ± 6.51 | 38.63 ± 9.12 | 37.25 ± 10.44 | 33.63 ± 9.43 | c*, f |
PAA | 14.13 ± 2.95 | 12.75 ± 2.82 | 12.38 ± 3.42 | 11.25 ± 2.71 | a, b, c |
Range of Motion (°) | |||||
Hip joint | 44.57 ± 10.44 | 39.16 ± 5.09 | 34.54 ± 6.85 | 38.67 ± 10.8 | |
Knee joint | 59.32 ± 7.31 | 56.63 ± 6.84 | 56.74 ± 7.95 | 55.07 ± 6.28 | a, c |
Ankle joint | 34.11 ± 8.09 | 29.82 ± 9.46 | 34.92 ± 9.68 | 31.98 ± 8.23 |
P1 | P2 | P3 | P4 | p | |
---|---|---|---|---|---|
Duration of Five Sub-Phases (%) | |||||
I (0-PF1) | 3.88 ± 0.64 | 4 ± 0.93 | 4 ± 0.76 | 3.75 ± 0.71 | |
II (PF1-PF2) | 11.13 ± 2.75 | 8.63 ± 4.44 | 8 ± 3.55 | 8.88 ± 3.31 | b |
III (PF2-PAK) | 30.88 ± 6.03 | 26 ± 7.11 | 25.25 ± 9.25 | 21 ± 9.3 | c, f* |
IV (PAK-PF3) | 27.25 ± 10.69 | 36.5 ± 14.32 | 39.25 ± 17.17 | 43.38 ± 15.24 | a, b, c*, e*, f |
V (PF3-FO) | 26.88 ± 5.57 | 24.88 ± 7.24 | 23.5 ± 7.23 | 23 ± 6.68 | b, c* |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Y.; Fan, Y. Changes in the Kinematic and Kinetic Characteristics of Lunge Footwork during the Fatiguing Process. Appl. Sci. 2020, 10, 8703. https://doi.org/10.3390/app10238703
Du Y, Fan Y. Changes in the Kinematic and Kinetic Characteristics of Lunge Footwork during the Fatiguing Process. Applied Sciences. 2020; 10(23):8703. https://doi.org/10.3390/app10238703
Chicago/Turabian StyleDu, Yanyan, and Yubo Fan. 2020. "Changes in the Kinematic and Kinetic Characteristics of Lunge Footwork during the Fatiguing Process" Applied Sciences 10, no. 23: 8703. https://doi.org/10.3390/app10238703
APA StyleDu, Y., & Fan, Y. (2020). Changes in the Kinematic and Kinetic Characteristics of Lunge Footwork during the Fatiguing Process. Applied Sciences, 10(23), 8703. https://doi.org/10.3390/app10238703