A Relay Selection Protocol for UAV-Assisted VANETs
Abstract
:1. Introduction
- We formulate the relay selection problem as a multi-objective optimization problem. For the considered problem, we first model and analyze the LQoS from the SN to the neighbor node and the NFC from the neighbor node to the DN. Then, we decompose the primal problem into two subproblems and solve them by the graphical method.
- Considering the high mobility and cooperative data sharing of UAVs, we propose a relay selection protocol named LQFC with the SCF method. Furthermore, we jointly consider the NEF and the message time-to-live (TTL) to define a utility function to delete redundant copies. The simulation results indicate that our proposed protocol achieves significant performance superiority as compared with other schemes in terms of the message delivery ratio, the average end-to-end delay, and the overhead.
2. Related Works
3. System Model and Problem Formulation
3.1. Network Model
3.2. Link Quality of Service (LQoS) Model
3.3. Node Forward Capacity (NFC) Model
3.4. Problem Formulation
4. Description of Proposed Protocol
4.1. Problem Decomposition
4.2. Relay Selection
4.3. Relay Operation
4.4. The Overall Protocol
Algorithm 1: The Proposed LQFC Relay Selection Protocol |
|
4.5. Security Analysis
5. Simulation Results
5.1. Metrics
5.2. Impact of Components
5.3. Network Performance Comparison
5.4. Impact of Buffer
5.5. Impact of Number of UAVs
5.6. Impact of Mobility Model
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, Y.; Tian, F.; Song, B.; Du, X. Social vehicle swarms: A novel perspective on socially aware vehicular communication architecture. IEEE Wirel. Commun. 2016, 23, 82–89. [Google Scholar] [CrossRef]
- Alzahrani, B.; Oubbati, O.S.; Barnawi, A.; Atiquzzaman, M.; Alghazzawi, D. UAV assistance paradigm: State-of-the-art in applications and challenges. J. Netw. Comput. Appl. 2020, 166, 102706. [Google Scholar] [CrossRef]
- Oubbati, O.S.; Chaib, N.; Lakas, A.; Bitam, S.; Lorenz, P. U2RV: UAV-assisted reactive routing protocol for VANETs. Int. J. Commun. Syst. 2020, 33, e4104. [Google Scholar] [CrossRef] [Green Version]
- Fawaz, W.; Atallah, R.; Assi, C.; Khabbaz, M. Unmanned Aerial Vehicles as Store-Carry-Forward Nodes for Vehicular Networks. IEEE Access 2017, 5, 23710–23718. [Google Scholar] [CrossRef]
- Oubbati, O.S.; Chaib, N.; Lakas, A.; Lorenz, P.; Rachedi, A. UAV-Assisted Supporting Services Connectivity in Urban VANETs. IEEE Trans. Veh. Technol. 2019, 68, 3944–3951. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Zhang, R.; Jiang, Y.; Li, B.; Wang, D. An Anti-Collision Protocol Based on UAV for Internet of Things. In Proceedings of the 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP), Xi’an, China, 23–25 October 2019; pp. 1–6. [Google Scholar]
- He, Y.; Tang, X.; Zhang, R.; Du, X.; Zhou, D.; Guizani, M. A Course-Aware Opportunistic Routing Protocol for FANETs. IEEE Access 2019, 7, 144303–144312. [Google Scholar] [CrossRef]
- He, Y.; Zhai, D.; Jiang, Y.; Zhang, R. Relay Selection for UAV-Assisted Urban Vehicular Ad Hoc Networks. IEEE Wirel. Commun. Lett. 2020, 9, 1379–1383. [Google Scholar] [CrossRef]
- Seliem, H.; Shahidi, R.; Ahmed, M.H.; Shehata, M.S. Accurate Probability Distribution Calculation for Drone-Based Highway-VANETs. IEEE Trans. Veh. Technol. 2020, 69, 1127–1130. [Google Scholar] [CrossRef]
- Seliem, H.; Shahidi, R.; Ahmed, M.H.; Shehata, M.S. Drone-Based Highway-VANET and DAS Service. IEEE Access 2018, 6, 20125–20137. [Google Scholar] [CrossRef]
- Xiao, L.; Lu, X.; Xu, D.; Tang, Y.; Wang, L.; Zhuang, W. UAV Relay in VANETs Against Smart Jamming with Reinforcement Learning. IEEE Trans. Veh. Technol. 2018, 67, 4087–4097. [Google Scholar] [CrossRef]
- Seliem, H.; Ahmed, M.H.; Shahidi, R.; Shehata, M.S. Delay analysis for drone-based vehicular Ad-Hoc Networks. In Proceedings of the 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC, Canada, 8–13 October 2017; pp. 1–7. [Google Scholar]
- Alotaibi, M.M.; Moufta, H.T. Relay Selection for Heterogeneous Transmission Powers in VANETs. IEEE Access 2017, 5, 4870–4886. [Google Scholar] [CrossRef]
- Al-Kharasani, N.M.; Zukarnain, Z.A.; Subramaniam, S.K.; Hanapi, Z.M. An Adaptive Relay Selection Scheme for Enhancing Network Stability in VANETs. IEEE Access 2020, 5, 128757–128765. [Google Scholar] [CrossRef]
- Wu, L.B.; Liu, B.Y.; Nie, L.; Fan, J.; Xie, Y. Research on Selection of Safety Message Broadcast Relay in VANET-Cellular. Chin. J. Comput. 2017, 40, 1004–1016. [Google Scholar]
- Ma, R.; Chang, Y.; Chen, H.; Chiu, C. On Relay Selection Schemes for Relay-Assisted D2D Communications in LTE-A Systems. IEEE Trans. Veh. Technol. 2017, 66, 8303–8314. [Google Scholar] [CrossRef]
- Jeong, J.; Guo, S.; Gu, Y.; He, T.; Du, D.H.C. Trajectory-based data forwarding for light-traffic vehicular ad hoc networks. IEEE Trans. Parallel Distrib. Syst. 2011, 22, 743–757. [Google Scholar] [CrossRef]
- He, J.; Cai, L.; Pan, J.; Cheng, P. Delay analysis and routing for two-dimensional vanets using carry-and-forward mechanism. IEEE Trans. Mobile Comput. 2017, 16, 1830–1841. [Google Scholar] [CrossRef]
- Fan, X.Y.; Huang, H.C.; Zhu, J.Y.; Wen, S.J. Interference-aware node access scheme in UAV-aided VANET. J. Commun. 2019, 40, 90–101. [Google Scholar]
- Bor-Yaliniz, I.; Yanikomeroglu, H. The new frontier in RAN heterogeneity: Multi-tier drone-cells. IEEE Commun. Mag. 2016, 54, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Qiu, M.; Wang, X.; Liu, W.; Cai, K. Energy Optimization of Air-Based Information Network with Guaranteed Security Protection. In Proceedings of the 2015 IEEE 2nd International Conference on Cyber Security and Cloud Computing (CSCC), New York, NY, USA, 3–5 November 2015; pp. 218–223. [Google Scholar]
- Zhou, Y.; Cheng, N.; Lu, N.; Shen, X.S. Multi-UAV-Aided Networks: Aerial-Ground Cooperative Vehicular Networking Architecture. IEEE Veh. Technol. Mag. 2015, 10, 36–44. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, S.; Yang, P.; Alhussein, O.; Zhuang, W.; Shen, X.S. Software Defined Space-Air-Ground Integrated Vehicular Networks: Challenges and Solutions. IEEE Commun. Mag. 2017, 55, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Oubbati, O.S.; Lakas, A.; Lagraa, N.; Yagoubi, M.B. CRUV: Connectivity-based traffic density aware routing using UAVs for VANets. In Proceedings of the 2015 International Conference on Connected Vehicles and Expo (ICCVE), Shenzhen, China, 19–23 October 2015; pp. 68–73. [Google Scholar]
- Lyu, J.; Zeng, Y.; Zhang, R. Cyclical Multiple Access in UAV-Aided Communications: A Throughput-Delay Tradeoff. IEEE Wirel. Commun. Lett. 2016, 5, 600–603. [Google Scholar] [CrossRef] [Green Version]
- Shahidi, R.; Ahmed, M.H. Probability distribution of end-to-end delay in a highway VANET. IEEE Commun. Lett. 2014, 18, 443–446. [Google Scholar] [CrossRef]
- Cheng, C.; Hsiao, P.; Kung, H.T.; Vlah, D. Maximizing Throughput of UAV-Relaying Networks with the Load-Carry-and-Deliver Paradigm. In Proceedings of the 2007 IEEE Wireless Communications and Networking Conference (WCNC), Kowloon, China, 11–15 March 2007; pp. 4417–4424. [Google Scholar]
- Wang, X.; Fu, L.Y.; Zhang, Y.; Gan, X.Y.; Wang, X.B. VDNet: An Infrastructure-less UAV-assisted Sparse VANET System With Vehicle Location Prediction. Wirel. Commun. Mobile Comput. 2016, 16, 2991–3003. [Google Scholar] [CrossRef]
- Khabbaz, M.; Antoun, J.; Assi, C. Modeling and Performance Analysis of UAV-Assisted Vehicular Networks. IEEE Trans. Veh. Technol. 2019, 68, 8384–8396. [Google Scholar] [CrossRef]
- He, Y.; Zhai, D.; Zhang, R.; Du, X.; Zhou, D.; Guizani, M. An Anti-Interference Scheme for UAV Information Link in Air-Ground Integrated Vehicular Networks. Sensors 2019, 19, 4742. [Google Scholar] [CrossRef] [Green Version]
- Nelson, S.C.; Bakht, M.; Kravets, R. Encounter-Based Routing in DTNs. In Proceedings of the IEEE INFOCOM 2009, Rio de Janeiro, Brazil, 19–25 April 2009; pp. 846–854. [Google Scholar]
- Zhai, D.; Du, J. Spectrum Efficient Resource Management for Multi-Carrier-Based NOMA Networks: A Graph-Based Method. IEEE Wirel. Commun. Lett. 2018, 7, 388–391. [Google Scholar] [CrossRef]
- Han, S.; Chung, Y. An improved PRoPHET routing protocol in delay tolerant network. Sci. World J. 2015, 1, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Jindal, A.; Psounis, K. Performance analysis of epidemic routing under contention. In Proceedings of the 2006 International Conference on Wireless Communications and Mobile Computing, Vancouver, BC, Canada, 3–6 July 2006. [Google Scholar]
- Conti, M.; Kumar, M. Opportunities in opportunistic computing. Computer 2010, 43, 42–50. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, X.; Hao, F.; Wang, L.; Zhang, L.; Zhao, R. An on-demand coverage based self-deployment algorithm for big data perception in mobile sensing networks. Future Gener. Comput. Syst. 2018, 82, 220–234. [Google Scholar] [CrossRef]
- Huang, T. PRoPHET+: An adaptive PRoPHET-based routing protocol for opportunistic network. In Proceedings of the 2010 24th IEEE International Conference on Advanced Information Networking and Applications, Perth, WA, USA, 20–23 April 2010; pp. 112–119. [Google Scholar]
- Saif, A.; Moath, M.; Ali, H.; Hussien, Z. Comprehensive survey on vehicular ad hoc network. J. Net. Comput. Appl. 2013, 4, 61–65. [Google Scholar]
Category | Parameter | Value |
---|---|---|
Node | Transmission mode | Wi-Fi |
Mobility model | SPMBM | |
Vehicle transmission range | 200 m | |
UAV transmission range | 1000 m | |
Vehicle speed | 0–50 km/h | |
UAV speed | 0–70 km/h | |
UAV flight height | 0–200 m | |
Number of UAVs | 20 | |
Message | Hello message interval | 0.1 s |
Message interval | 25 s–35 s | |
Message size | 1 MB–5 MB | |
Buffer | 30 MB | |
Time to Live (TTL) | 5 h | |
Scenario | Longitude | [33.42° N−34.45° N] |
Latitude | [107.40° E−109.49° E] | |
Simulation area size | 45 km × 45 km | |
Simulation times | 1000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Zhai, D.; Wang, D.; Tang, X.; Zhang, R. A Relay Selection Protocol for UAV-Assisted VANETs. Appl. Sci. 2020, 10, 8762. https://doi.org/10.3390/app10238762
He Y, Zhai D, Wang D, Tang X, Zhang R. A Relay Selection Protocol for UAV-Assisted VANETs. Applied Sciences. 2020; 10(23):8762. https://doi.org/10.3390/app10238762
Chicago/Turabian StyleHe, Yixin, Daosen Zhai, Dawei Wang, Xiao Tang, and Ruonan Zhang. 2020. "A Relay Selection Protocol for UAV-Assisted VANETs" Applied Sciences 10, no. 23: 8762. https://doi.org/10.3390/app10238762
APA StyleHe, Y., Zhai, D., Wang, D., Tang, X., & Zhang, R. (2020). A Relay Selection Protocol for UAV-Assisted VANETs. Applied Sciences, 10(23), 8762. https://doi.org/10.3390/app10238762