Modeling, Simulation, and Cruise Characteristics of Wingtip-Jointed Composite Aircraft
Abstract
:1. Introduction
2. Dynamic Modeling of Wingtip-Jointed Composite Aircraft
2.1. Wingtip-Jointed Composite Aircraft
2.2. Derivation of Dynamic and Kinematic Equations of the Composite System
2.3. Aerodynamic Database Establishment
3. Multibody Dynamic Equation of the Composite Aircraft System
4. Lift Drag Ratio Analysis of Composite System Cruise Process
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
length of mean aerodynamic chord, m | |
force vector acting on aircraft, N | |
moment vector acting on aircraft, Nm | |
moment of momentum vector, | |
acceleration due to gravity, | |
pitch angular velocity, | |
yaw angular velocity, | |
roll angle, | |
pitch angle, | |
yaw angle, | |
roll angle, | |
roll angle, | |
momentum vector, and roll angular velocity, rad/s | |
static moment vector, and wing area, | |
rotational inertia tensor of multibody | |
aerodynamic lift force and drag force, N | |
damp in pitch, | |
References
- Wright-Patterson Air Force Base. United States Air Force Museum Guidebook; Air Force Museum Foundation: Riverside, OH, USA, 1975. [Google Scholar]
- Miller, J. Project Tom-Tom. Aerophile 1977, 1, 3. [Google Scholar]
- Lockett, B. Flying Aircraft Carriers of the USAF: Project Ficon; LockettBooks: Scottsdale, AZ, USA, 2008; ISBN 978-0-615-25276-6. [Google Scholar]
- Lockett, B. Flying Aircraft Carriers of the USAF: Wing Tip Coupling; LockettBooks: Scottsdale, AZ, USA, 2009; ISBN 978-0-578-03186-6. [Google Scholar]
- Cuji, E.A.; Lukaczyk, T.W.; Garcia, E. Aircraft dynamics, wind tunnel testing, and CFD flow visualization of two linked UAVs flying at close proximity. Proc. SPIE 2010, 7643, 76432C. [Google Scholar]
- Cuji, E.A. Analysis of Linked Aircraft Aerodynamics and Flight Dynamics; Cornell University: Ithaca, NY, USA, 2011; Volume 114, p. 37. [Google Scholar]
- Anderson, C.; Joseph, P.H. To Fly and Fight: Memoirs of a Triple Ace; Pacifica Military History: Pacifica, CA, USA, 1999; ISBN 0-935553-34-7. [Google Scholar]
- Anderson, M.C.E. Aircraft Wingtip Coupling Experiments. Society of Experimental Test Pilots. Available online: web.archive.org (accessed on 6 October 2010).
- Shabana, A.A. Dynamic of Multibody System, 3rd ed.; Cambridge University Press: Cambridge, UK, 2005; ISBN 780521850117. [Google Scholar]
- Baldelli, D.H.; Lee, D.H.; Ricardo, S.; Cannon, B. Modeling and Control of an Aeroelastic Morphing Vehicle. J. Guid. Control Dyn. 2008, 31, 1687–1699. [Google Scholar] [CrossRef]
- Chakravarthy, A. Time-Varying Dynamics of a Micro Air Vehicle with Variable-Sweep Morphing. J. Guid. Control Dyn. 2012, 35, 890–903. [Google Scholar] [CrossRef]
- Yue, T.; Wang, L.; Ai, J. Multibody Dynamic Modeling and Simulation of a Tailless Folding Wing Morphing Aircraft. In Proceedings of the AIAA Atmospheric Flight Mechanics Conference, Chicago, IL, USA, 10–13 August 2009. [Google Scholar]
- Yue, T.; Wang, L.; Ai, J. Longitudinal Linear Parameter Varying Modeling and Simulation of Morphing Aircraft. J. Aircr. 2013, 50, 1673–1681. [Google Scholar] [CrossRef]
- Yue, T.; Wang, L.; Ai, J. Gain self-scheduled H1 control for morphing aircraft in the wing transition process based on an LPV model. Chin. J. Aeronaut. 2013, 26, 909–917. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Xu, Z.; Yue, T. Dynamic characteristics analysis and flight control design for oblique wing aircraft. Chin. J. Aeronaut. 2016, 29, 1664–1672. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Yue, T.; Wang, L. Unconventional roll axis response-type Nonlinear Dynamic Inversion flight control law design. In Proceedings of the Guidance, Navigation & Control Conference, Grapevine, TX, USA, 9–13 January 2017. [Google Scholar]
- Seigler, T.M.; Neal, D.A.; Bae, J.S.; Inman, D.J. Modeling and Flight Control of Large-Scale Morphing Aircraft. J. Aircr. 2007, 44, 1077–1087. [Google Scholar] [CrossRef]
- Bae, J.S.; Seigler, T.M.; Inman, D.J. Aerodynamic and Static Aeroelastic Characteristics of a Variable-Span Morphing Wing. J. Aircr. 2005, 42, 528–534. [Google Scholar] [CrossRef]
- Lampton, A.; Niksch, A.; Valasek, J. Reinforcement Learning of a Morphing Airfoil-Policy and Discrete Learning Analysis. J. Aerosp. Comput. Inf. Commun. 2010, 7, 2008–7281. [Google Scholar] [CrossRef]
- Li, S.; Tao, Z.; Song, X. Unsteady Lift Model for Morphing Airfoil Based on Potential Flow Theory. J. Aerosp. Eng. 2018, 31, 04018006. [Google Scholar] [CrossRef]
- Yan, B.; Li, Y.; Dai, P.; Liu, S. Aerodynamic Analysis, Dynamic Modeling, and Control of a Morphing Aircraft. J. Aerosp. Eng. 2019, 32, 04019058. [Google Scholar] [CrossRef]
- Troub, B.; Montalvo, C.J. Meta Aircraft Controllability. In Proceedings of the AIAA Atmospheric Flight Mechanics Conference, San Diego, CA, USA, 4–8 January 2016; Volume 6, pp. 2016–3395. [Google Scholar]
- Etkins, B. Dynamics of Atmospheric Flight; Courier Corporation: Dover, NY, USA, 2000. [Google Scholar]
- Quarteroni, A.; Sacco, R.; Saleri, F. Numerical Mathematics; Springer: New York, NY, USA, 2000. [Google Scholar]
Case | Single Aircraft | Double Composite Aircraft | ||||||
---|---|---|---|---|---|---|---|---|
Number | ||||||||
Parameters | = 20° | |||||||
1500 | 3000 | |||||||
1420 | 72,840 | |||||||
4060 | 10,920 | 9680 | 8130 | 9680 | 10,920 | |||
478 | 11,780 | 10,840 | 9570 | 10,840 | 11,780 | |||
0 | 2390 | 1210 | 0 | −1210 | −2390 |
Aerodynamic Parameters | Symbol | Data Acquisition Method |
---|---|---|
Aerodynamic derivatives of relative roll motion | , , , etc. | Solver: Pressure-based Turbulence model: Spalart–Allmaras Solution algorithm: simple Spatial discretization flow formation: second order upwind method |
Aerodynamic derivatives of composite control surface deflection | , , , , , , , , etc. | |
General aerodynamic parameters | Basic data , , | |
Static derivative , , , etc. | ||
Dynamic derivatives , , , , , , , etc. | Nastran MSC program calculation |
Motion Parameters | Number | Rudder Surface Parameters | Single-Trimming Strategy | Composite-Trimming Strategy | ||
---|---|---|---|---|---|---|
Right Aircraft | Left Aircraft | Right Aircraft | Left Aircraft | |||
Height | 5000 m | Throttle angular displacement | 58.03% | 58.03% | 58.70% | 58.70% |
Speed | 95.91 m/s | Elevator deflection angle | 3.68° | 3.68° | 4.07° | 4.07° |
Attack angle | 2.27° | Aileron deflection angle | 0° | 0° | −3.80° | 3.80° |
Relative roll angle | 0° | Rudder surface angle | 0° | 0° | 0° | 0° |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Xie, C.; Hong, G.; An, C. Modeling, Simulation, and Cruise Characteristics of Wingtip-Jointed Composite Aircraft. Appl. Sci. 2020, 10, 8763. https://doi.org/10.3390/app10238763
Liu D, Xie C, Hong G, An C. Modeling, Simulation, and Cruise Characteristics of Wingtip-Jointed Composite Aircraft. Applied Sciences. 2020; 10(23):8763. https://doi.org/10.3390/app10238763
Chicago/Turabian StyleLiu, Dongxu, Changchuan Xie, Guanxin Hong, and Chao An. 2020. "Modeling, Simulation, and Cruise Characteristics of Wingtip-Jointed Composite Aircraft" Applied Sciences 10, no. 23: 8763. https://doi.org/10.3390/app10238763
APA StyleLiu, D., Xie, C., Hong, G., & An, C. (2020). Modeling, Simulation, and Cruise Characteristics of Wingtip-Jointed Composite Aircraft. Applied Sciences, 10(23), 8763. https://doi.org/10.3390/app10238763