Modeling of the Minimum Fluidization Velocity and the Incipient Fluidization Pressure Drop in a Conical Fluidized Bed with Negative Pressure
Abstract
:1. Introduction
2. Experimental Section
2.1. Experimental Equipment
2.2. Experimental Design and Procedure
3. Signal Processing Methods
4. Results and Discussion
4.1. Effects of Material Mass and Particle Size on Flow Behavior
4.2. Mathematical Modeling
4.2.1. Ergun Equation Modifying Method
4.2.2. Dimensional Analysis
4.2.3. Discussion of the Two Modeling Methods
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
A, B | alphabetic symbols used to simplify equations, (-) |
Ar | Archimedes number (), (-) |
C1 | coefficient of the viscosity term in the Ergun equation, (-) |
C2 | coefficient of the inertial term in the Ergun equation, (-) |
C3 | multiplicative correction coefficient in Equation (24), (-) |
dp | particle size, (m) |
Fmf | drag force of the incipient fluidized state, (N) |
Fr | Froude number (), (-) |
G | gravity force of particles, (N) |
g | acceleration of gravity, (9.8 m/s2) |
h | height of the specified section of the conical cylinder, (m) |
H | total height of particles, (m) |
N | total number of points in a time-series signal, (-) |
P | pressure drop, (kPa) |
Pn | exponents of the dimensionless groups, (-) |
r0 | radius of the bottom of the conical cylinder, (m) |
rh | sectional radius of the conical cylinder at the height of h, (m) |
r1 | sectional radius of the conical cylinder at the height of H, (m) |
R | Hausner ratio, (-) |
Remf | Reynolds number when U0 = U0mf, (), (-) |
RMSEsum | sum of the RMSE values of U0mf and ΔPmf, (-) |
S0 | sectional area of the conical cylinder at the bottom, (m2) |
Sh | sectional area of the conical cylinder at the height of h, (m2) |
Uh | superficial gas velocity at the h height section of the conical cylinder, (m/s) |
U0 | superficial gas velocity at the bottom section of the conical cylinder, (m/s) |
U0mf | minimum fluidization velocity at the bottom section of the conical cylinder, (m/s) |
W | material mass, (kg) |
x | discrete time-series signal, (-) |
the ith value of x, (-) | |
average value of x, (-) | |
the ith calculated value of x, (-) | |
, | pressure time-series signal at ports P1 and P2, (Pa) |
, | average value of and (Pa) |
flow rate time-series signal, (L/min) | |
average value of , (L/min) | |
Greek letters | |
α | conical angle of the conical cylinder, (°) |
φ | particle sphericity, (-) |
θ | angle of repose, (°) |
ε | voidage of particles, (-) |
ε0 | static voidage of particles, (-) |
εmf | voidage of the incipient fluidized state, (-) |
μ | gas viscosity, (Pa·s) |
ρg | density of gas, (kg/m3) |
ρs | true density of particles, (kg/m3) |
πn | dimensionless groups, (-) |
ΔP | pressure drop between the top and bottom sections of the material, (Pa) |
ΔPmf | ΔP of the incipient fluidized state, (Pa) |
ΔPp | pressure drop at the gas distribution plate, (Pa) |
Appendix A
Material Number | H0 (m) | ||||
---|---|---|---|---|---|
Material Mass 2 kg | Material Mass 2.5 kg | Material Mass 3 kg | Material Mass 3.5 kg | Material Mass 4 kg | |
#1 | 0.0460 | 0.0565 | 0.0667 | 0.0765 | 0.0861 |
#2 | 0.0483 | 0.0593 | 0.0699 | 0.0802 | 0.0902 |
#3 | 0.0483 | 0.0592 | 0.0698 | 0.0801 | 0.0900 |
#4 | 0.0507 | 0.0622 | 0.0733 | 0.0840 | 0.0944 |
#5 | 0.0491 | 0.0603 | 0.0710 | 0.0815 | 0.0916 |
References
- Shi, Y.F.; Yu, Y.S.; Fan, L.T. Incipient fluidization condition for a tapered fluidized bed. Ind. Eng. Chem. Fundam. 1984, 23, 484–489. [Google Scholar] [CrossRef]
- Wormsbecker, M.; van Ommen, R.; Nijenhuis, J.; Tanfara, H.; Pugsley, T. The influence of vessel geometry on fluidized bed dryer hydrodynamics. Powder Technol. 2009, 194, 115–125. [Google Scholar] [CrossRef]
- Biswal, K.C.; Sahu, S.; Roy, G.K. Prediction of the fluctuation ratio for gas-solid fluidization of regular particles in a conical vessel. Chem. Eng. J. 1982, 23, 97–99. [Google Scholar] [CrossRef]
- Yang, W.C. Handbook of fluidization and fluid-particle systems. China Particuol. 2003, 1, 137. [Google Scholar] [CrossRef]
- Bi, H.T. A critical review of the complex pressure fluctuation phenomenon in gas-solids fluidized beds. Chem. Eng. Sci. 2007, 62, 3473–3493. [Google Scholar] [CrossRef]
- Biswal, K.C.; Bhowmik, T.; Roy, G.K. Prediction of minimum fluidization velocity for gas-solid fluidization of regular particles in conical vessels. Chem. Eng. J. 1985, 30, 57–62. [Google Scholar] [CrossRef]
- Win, K.K.; Nowak, W.; Matsuda, H.; Hasatani, M.; Bis, Z.; Krzywanski, J.; Gajewski, W. Transport Velocity of Coarse Particles in Multi-Solid Fluidized Bed. J. Chem. Eng. Jpn. 2005, 28, 535–540. [Google Scholar] [CrossRef] [Green Version]
- Rasteh, M.; Farhadi, F.; Bahramian, A. Hydrodynamic characteristics of gas-solid tapered fluidized beds: Experimental studies and empirical models. Powder Technol. 2015, 283, 355–367. [Google Scholar] [CrossRef]
- Ergun, S. Fluid flow through packed columns. Chem. Eng. Prog. 1952, 48, 89–94. [Google Scholar]
- Amiri, L.; Ghoreishi-Madiseh, S.A.; Hassani, F.P.; Sasmito, A.P. Estimating pressure drop and Ergun/Forchheimer parameters of flow through packed bed of spheres with large particle diameters. Powder Technol. 2019, 356, 310–324. [Google Scholar] [CrossRef]
- Allen, K.G.; von Backström, T.W.; Kröger, D.G. Packed bed pressure drop dependence on particle shape, size distribution, packing arrangement and roughness. Powder Technol. 2013, 246, 590–600. [Google Scholar] [CrossRef]
- Wen, C.Y.; Yu, Y.H. A generalized method for predicting the minimum fluidization velocity. Aiche J. 1966, 12, 610–612. [Google Scholar] [CrossRef]
- Grace, J.R. Handbook of Multiphase Systems; 1982; Chapter 8. [Google Scholar]
- Gibson, I.A.; Slim, C.J.; Zheng, Y.; Scott, S.A.; Davidson, J.F.; Hayhurst, A.N. An examination of Wen and Yu’s formula for predicting the onset of fluidisation. Chem. Eng. Res. Des. 2018, 135, 103–111. [Google Scholar] [CrossRef]
- Peng, Y.; Fan, L.T. Hydrodynamic characteristics of fluidization in liquid-solid tapered beds. Chem. Eng. Sci. 1997, 52, 2277–2290. [Google Scholar] [CrossRef]
- Jing, S.; Hu, Q.Y.; Wang, J.F.; Jin, Y. Fluidization of coarse particles in gas-solid conical beds. Chem. Eng. Process. 2000, 39, 379–387. [Google Scholar] [CrossRef]
- Jing, S.; Cai, G.B.; Mei, F.; Bian, Y.; Wang, J.F.; Jin, Y. Fluidization of fine particles in conical beds. Powder Technol. 2001, 118, 271–274. [Google Scholar] [CrossRef]
- Kaewklum, R.; Kuprianov, V.I. Theoretical and experimental study on hydrodynamic characteristics of fluidization in air-sand conical beds. Chem. Eng. Sci. 2008, 63, 1471–1479. [Google Scholar] [CrossRef]
- Koekemoer, A.; Luckos, A. Effect of material type and particle size distribution on pressure drop in packed beds of large particles: Extending the Ergun equation. Fuel 2015, 158, 232–238. [Google Scholar] [CrossRef]
- Sau, D.C.; Mohanty, S.; Biswal, K.C. Minimum fluidization velocities and maximum bed pressure drops for gas-solid tapered fluidized beds. Chem. Eng. J. 2007, 132, 151–157. [Google Scholar] [CrossRef]
- Sau, D.C.; Mohanty, S.; Biswal, K.C. Experimental studies and empirical models for the prediction of bed expansion in gas-solid tapered fluidized beds. Chem. Eng. Process. Process. Intensif. 2010, 49, 418–424. [Google Scholar] [CrossRef]
- Sau, D.C.; Mohanty, S.; Biswal, K.C. Critical fluidization velocities and maximum bed pressure drops of homogeneous binary mixture of irregular particles in gas-solid tapered fluidized beds. Powder Technol. 2008, 186, 241–246. [Google Scholar] [CrossRef]
- Khani, M.H. Models for prediction of hydrodynamic characteristics of gas-solid tapered and mini-tapered fluidized beds. Powder Technol. 2011, 205, 224–230. [Google Scholar] [CrossRef]
- Rasteh, M.; Farhadi, F.; Ahmadi, G. Empirical models for minimum fluidization velocity of particles with different size distribution in tapered fluidized beds. Powder Technol. 2018, 338, 563–575. [Google Scholar] [CrossRef]
- Singh, R.K.; Roy, G.K. Prediction of minimum bubbling velocity, fluidization index and range of particulate fluidization for gas-solid fluidization in cylindrical and non-cylindrical beds. Powder Technol. 2005, 159, 168–172. [Google Scholar] [CrossRef]
- Hosseini, S.H.; Rezaei, M.J.; Bag-Mohammadi, M.; Karami, M.; Moradkhani, M.A.; Panahi, M.; Olazar, M. Estimation of the minimum spouting velocity in shallow spouted beds by intelligent approaches: Study of fine and coarse particles. Powder Technol. 2019, 354, 456–465. [Google Scholar] [CrossRef]
- Hosseini, S.H.; Karami, M.; Olazar, M.; Safabakhsh, R.; Rahmati, M. Prediction of the Minimum Spouting Velocity by Genetic Programming Approach. Ind. Eng. Chem. Res. 2014, 53, 12639–12643. [Google Scholar] [CrossRef]
- Gan, L.; Lu, X.; Wang, Q. Experimental and theoretical study on hydrodynamic characteristics of tapered fluidized beds. Adv. Powder Technol. 2014, 25, 824–831. [Google Scholar] [CrossRef]
- Golshan, S.; Yaman, O.; Koksal, M.; Kulah, G.; Zarghami, R.; Mostoufi, N. A new correlation for minimum spouting velocity for conical spouted beds operating with high density particles. Exp. Therm. Fluid Sci. 2018, 96, 358–370. [Google Scholar] [CrossRef]
- Hosseini, S.H.; Rezaei, M.J.; Bag-Mohammadi, M.; Altzibar, H.; Olazar, M. Smart models to predict the minimum spouting velocity of conical spouted beds with non-porous draft tub. Chem. Eng. Res. Des. 2018, 138, 331–340. [Google Scholar] [CrossRef]
- Murthy, J.S.N.; Reddy, V.S.; Tasleem, S.; Kumar, D.V.; Krishna, C.S.; Sankarshana, T. Hydrodynamics of gas-solid fluidization in tapered beds. Can. J. Chem. Eng. 2009, 87, 359–374. [Google Scholar] [CrossRef]
- Van Ommen, J.R.; Schouten, J.C.; Vander Stappen, M.L.M.; Bleek, C.M.V.D. Response characteristics of probe-transducer systems for pressure measurements in gas-solid fluidized beds: How to prevent pitfalls in dynamic pressure measurements. Powder Technol. 1999, 106, 199–218. [Google Scholar] [CrossRef]
- Geldart, D. Types of gas fluidization. Powder Technol. 1973, 7, 285–292. [Google Scholar] [CrossRef]
- Schaafsma, S.H.; Marx, T.; Hoffmann, A.C. Investigation of the particle flowpattern and segregation in tapered fluidized bed granulators. Chem. Eng. Sci. 2006, 61, 4467–4475. [Google Scholar] [CrossRef]
- Gernon, T.M.; Gilbertson, M.A. Segregation of particles in a tapered fluidized bed. Powder Technol. 2012, 231, 88–101. [Google Scholar] [CrossRef]
Material Number | #1 | #2 | #3 | #4 | #5 |
---|---|---|---|---|---|
Screen size range (mm) | 0.653–0.855 | 0.527–0.653 | 0.377–0.527 | 0.177–0.265 | 0.140–0.177 |
Particle diameter (mm) | 0.744 ± 0.061 | 0.632 ± 0.046 | 0.454 ± 0.046 | 0.235 ± 0.025 | 0.164 ± 0.015 |
Bulk density (kg/m3) | 1579 ± 2.1 | 1498 ± 2.7 | 1500 ± 2.3 | 1420 ± 0.5 | 1471 ± 3.3 |
Static voidage (-) | 0.344 ± 1.7 × 10−3 | 0.378 ± 2.0 × 10−3 | 0.377 ± 1.9 × 10−3 | 0.410 ± 1.6 × 10−3 | 0.389 ± 2.2 × 10−3 |
Sphericity (-) | 0.979 ± 0.031 | 0.966 ± 0.055 | 0.970 ± 0.058 | 0.903 ± 0.162 | 0.992 ± 0.037 |
Angle of repose (°) | 24.1 ± 0.23 | 23.3 ± 0.15 | 26.2 ± 0.11 | 24.3 ± 0.30 | 23.8 ± 0.12 |
Hausner ratio (-) | 1.011 ± 0.8 × 10−3 | 1.039 ± 1.1 × 10−3 | 1.035 ± 0.3 × 10−3 | 1.077 ± 0.8 × 10−3 | 1.058 ± 0.3 × 10−3 |
Material mass (kg) | 2/2.5/3/3.5/4 | 2/2.5/3/3.5/4 | 2/2.5/3/3.5/4 | 2/2.5/3/3.5/4 | 2/2.5/3/3.5/4 |
Geldart particle type (-) | D | B | B | B | B |
Material Number | Experimental Number | ||||
---|---|---|---|---|---|
Material Mass 2 kg | Material Mass 2.5 kg | Material Mass 3 kg | Material Mass 3.5 kg | Material Mass 4 kg | |
#1 | 01 | 02 | 03 | 04 | 05 |
#2 | 06 | 07 | 08 | 09 | 10 |
#3 | 11 | 12 | 13 | 14 | 15 |
#4 | 16 | 17 | 18 | 19 | 20 |
#5 | 21 | 22 | 23 | 24 | 25 |
Material Number | U0mf (m/s) ΔPmf (kPa) | ||||
---|---|---|---|---|---|
Material Mass 2 kg | Material Mass 2.5 kg | Material Mass 3 kg | Material Mass 3.5 kg | Material Mass 4 kg | |
#1 | 0.403 0.650 | 0.408 0.810 | 0.413 0.964 | 0.419 1.064 | 0.433 1.213 |
#2 | 0.302 0.640 | 0.328 0.793 | 0.344 0.933 | 0.361 1.093 | 0.375 1.213 |
#3 | 0.232 0.615 | 0.245 0.756 | 0.249 0.903 | 0.255 1.043 | 0.258 1.170 |
#4 | 0.106 0.643 | 0.125 0.771 | 0.136 0.899 | 0.149 1.020 | 0.157 1.116 |
#5 | 0.113 0.665 | 0.116 0.829 | 0.125 0.966 | 0.134 1.117 | 0.143 1.189 |
C1 | C2 | C3 | U0mf | ΔPmf | |||
---|---|---|---|---|---|---|---|
RMSE (m/s) | R2 (-) | RMSE (kPa) | R2 (-) | ||||
Original | 150 | 1.75 | 1 | 0.0872 | 0.4209 | 0.1076 | 0.6908 |
Modified | 46.61 | 3.25 | 0.8995 | 0.0402 | 0.8771 | 0.0291 | 0.9774 |
a1 | b1 | c1 | d1 | e1 | f1 | RMSE (m/s) | R2 (-) | |
---|---|---|---|---|---|---|---|---|
Linear regression | 1 | 0.504 | −1.355 | 0.326 | 0.236 | −0.635 | 0.011 | 0.991 |
Nonlinear regression | 1.033 | 0.509 | −1.142 | 0.186 | 0.232 | −0.645 | 0.009 | 0.994 |
a2 | b2 | c2 | d2 | e2 | f2 | RMSE (kPa) | R2 (-) | |
---|---|---|---|---|---|---|---|---|
Linear regression | 1 | −0.003 | −0.642 | 0.020 | 0.010 | −0.354 | 0.015 | 0.994 |
Nonlinear regression | 0.997 | −0.003 | −0.648 | 0.017 | 0.010 | −0.352 | 0.015 | 0.994 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, S.; Wei, Y.; Fu, L.; Tian, G.; Qu, H. Modeling of the Minimum Fluidization Velocity and the Incipient Fluidization Pressure Drop in a Conical Fluidized Bed with Negative Pressure. Appl. Sci. 2020, 10, 8764. https://doi.org/10.3390/app10248764
Fang S, Wei Y, Fu L, Tian G, Qu H. Modeling of the Minimum Fluidization Velocity and the Incipient Fluidization Pressure Drop in a Conical Fluidized Bed with Negative Pressure. Applied Sciences. 2020; 10(24):8764. https://doi.org/10.3390/app10248764
Chicago/Turabian StyleFang, Sheng, Yanding Wei, Lei Fu, Geng Tian, and Haibin Qu. 2020. "Modeling of the Minimum Fluidization Velocity and the Incipient Fluidization Pressure Drop in a Conical Fluidized Bed with Negative Pressure" Applied Sciences 10, no. 24: 8764. https://doi.org/10.3390/app10248764
APA StyleFang, S., Wei, Y., Fu, L., Tian, G., & Qu, H. (2020). Modeling of the Minimum Fluidization Velocity and the Incipient Fluidization Pressure Drop in a Conical Fluidized Bed with Negative Pressure. Applied Sciences, 10(24), 8764. https://doi.org/10.3390/app10248764