Design Methodology of the Class-E Power Amplifier with Finite Feed Inductance—A Tutorial Approach
Abstract
:1. Introduction
2. PA Model and Design Set
2.1. PA Model
2.2. Design Set of the Ideal Class-E PA
2.3. Maple™ Implementation of the Analytical PA Model and Its Design Set
3. Design Methodology of the Ideal Class-E PA with FDI
3.1. Design Approaches
3.1.1. Approach A: Design Based on a Reported Optimal Point
3.1.2. Approach B: Design under an Optimization Goal
3.2. Maple™ Implementation of Approach A and B
4. Study Cases and Analysis Results
5. Conclusions
6. Future Work
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
PA | Power Amplifier |
RF | Radio-Frequency |
ZVS | Zero Voltage Switching |
ZVDS | Zero Voltage Derivative Switching |
FDI | Finite DC-Feed Inductance |
DC | Direct current |
Appendix A. Analytical Model of Class-E PA with FDI Implemented in Maple™
Appendix A.1. Explicit Functions of the Variables the φ, p, C1/VDD, C2/VDD, and gx Developed in Maple™
Appendix A.1.1. φ Definition
- Phi := (D, q) ->arctan(-q*(4*D*Pi*cos(2*D*Pi)*q - 4*D*Pi*cos(2*q*Pi*(D - 1))*q - 2*q*sin(2*D*Pi) + q*sin(2*Pi*(q*D + D - q)) - q*sin(2*Pi*(q*D - D - q)) + 2*sin(2*q*Pi*(D - 1)) - sin(2*Pi*(q*D + D - q)) - sin(2*Pi*(q*D - D - q)))/(sqrt(-(-24 - 8*D⌃2*Pi⌃2*q⌃2 - 24*D⌃2*Pi⌃2*q⌃4 + 20*q⌃2 + 16*D*Pi*q⌃4*sin(2*Pi*(q*D - D - q)) - 16*D*Pi*q⌃4*sin(2*Pi*(q*D + D - q)) + 16*D⌃2*Pi⌃2*q⌃3*cos(2*Pi*(q*D - D - q)) + 2*q⌃4*cos(2*Pi*(2*q*D - D - 2*q)) + 2*q⌃4*cos(2*Pi*(2*q*D + D - 2*q)) + 12*cos(2*D*Pi)*q⌃4 - 20*q⌃2*cos(2*D*Pi) - 32*cos(2*q*Pi*(D - 1))*q⌃2 + 16*cos(2*q*Pi*(D - 1))*q⌃4 + 16*q⌃2*cos(2*Pi*(q*D + D - q)) + 16*q⌃2*cos(2*Pi*(q*D - D - q)) - 4*q⌃4*cos(4*q*Pi*(D - 1)) + 4*q*cos(2*Pi*(2*q*D + D - 2*q)) - 4*q*cos(2*Pi*(2*q*D - D - 2*q)) - 8*q⌃4*cos(2*Pi*(q*D + D - q)) - 8*q⌃4*cos(2*Pi*(q*D - D - q)) - 6*q⌃2*cos(2*Pi*(2*q*D - D - 2*q)) - 6*q⌃2*cos(2*Pi*(2*q*D + D - 2*q)) + 8*q*cos(2*Pi*(q*D - D - q)) - 8*q*cos(2*Pi*(q*D + D - q)) + 12*q⌃2*cos(4*q*Pi*(D - 1)) - 40*D*Pi*q⌃2*sin(2*D*Pi) + 32*D*Pi*q*sin(2*q*Pi*(D - 1)) + 24*D*Pi*q⌃4*sin(2*D*Pi) - 8*D*Pi*q⌃3*sin(2*Pi*(2*q*D + D - 2*q)) - 8*D*Pi*q⌃3*sin(2*Pi*(2*q*D - D - 2*q)) - 8*D⌃2*Pi⌃2*q⌃4*cos(4*q*Pi*(D - 1)) + 8*D⌃2*Pi⌃2*q⌃2*cos(4*q*Pi*(D - 1)) - 16*D*Pi*q⌃2*sin(2*Pi*(q*D - D - q)) + 16*D*Pi*q⌃2*sin(2*Pi*(q*D + D - q)) + 16*D⌃2*Pi⌃2*q⌃4*cos(2*Pi*(q*D + D - q)) + 16*D⌃2*Pi⌃2*q⌃4*cos(2*Pi*(q*D - D - q)) + 4*D*Pi*q⌃4*sin(2*Pi*(2*q*D + D - 2*q)) - 4*D*Pi*q⌃4*sin(2*Pi*(2*q*D - D - 2*q)) + 16*D*Pi*q⌃3*sin(4*q*Pi*(D - 1)) - 16*D*Pi*q*sin(4*q*Pi*(D - 1)) + 4*D*Pi*q⌃2*sin(2*Pi*(2*q*D + D - 2*q)) - 4*D*Pi*q⌃2*sin(2*Pi*(2*q*D - D - 2*q)) - 16*D⌃2*Pi⌃2*q⌃3*cos(2*Pi*(q*D + D - q)) + 32*cos(2*q*Pi*(D - 1)) - 8*cos(4*q*Pi*(D - 1)) - 12*q⌃4)/((q - 1)⌃2*(q + 1)⌃2))*(q - 1)*(q + 1)), -(4*D*Pi*q⌃2*sin(2*D*Pi) - 4*D*Pi*q*sin(2*q*Pi*(D - 1)) - q⌃2*cos(2*Pi*(q*D + D - q)) + 2*q⌃2*cos(2*D*Pi) + 2*cos(2*q*Pi*(D - 1))*q⌃2 - q⌃2*cos(2*Pi*(q*D - D - q)) + q*cos(2*Pi*(q*D + D - q)) - q*cos(2*Pi*(q*D - D - q)) - 2*q⌃2 - 4*cos(2*q*Pi*(D - 1)) + 4)/(sqrt(-(-24 - 8*D⌃2*Pi⌃2*q⌃2 - 24*D⌃2*Pi⌃2*q⌃4 + 20*q⌃2 + 16*D*Pi*q⌃4*sin(2*Pi*(q*D - D - q)) - 16*D*Pi*q⌃4*sin(2*Pi*(q*D + D - q)) + 16*D⌃2*Pi⌃2*q⌃3*cos(2*Pi*(q*D - D - q)) + 2*q⌃4*cos(2*Pi*(2*q*D - D - 2*q)) + 2*q⌃4*cos(2*Pi*(2*q*D + D - 2*q)) + 12*cos(2*D*Pi)*q⌃4 - 20*q⌃2*cos(2*D*Pi) - 32*cos(2*q*Pi*(D - 1))*q⌃2 + 16*cos(2*q*Pi*(D - 1))*q⌃4 + 16*q⌃2*cos(2*Pi*(q*D + D - q)) + 16*q⌃2*cos(2*Pi*(q*D - D - q)) - 4*q⌃4*cos(4*q*Pi*(D - 1)) + 4*q*cos(2*Pi*(2*q*D + D - 2*q)) - 4*q*cos(2*Pi*(2*q*D - D - 2*q)) - 8*q⌃4*cos(2*Pi*(q*D + D - q)) - 8*q⌃4*cos(2*Pi*(q*D - D - q)) - 6*q⌃2*cos(2*Pi*(2*q*D - D - 2*q)) - 6*q⌃2*cos(2*Pi*(2*q*D + D - 2*q)) + 8*q*cos(2*Pi*(q*D - D - q)) - 8*q*cos(2*Pi*(q*D + D - q)) + 12*q⌃2*cos(4*q*Pi*(D - 1)) - 40*D*Pi*q⌃2*sin(2*D*Pi) + 32*D*Pi*q*sin(2*q*Pi*(D - 1)) + 24*D*Pi*q⌃4*sin(2*D*Pi) - 8*D*Pi*q⌃3*sin(2*Pi*(2*q*D + D - 2*q)) - 8*D*Pi*q⌃3*sin(2*Pi*(2*q*D - D - 2*q)) - 8*D⌃2*Pi⌃2*q⌃4*cos(4*q*Pi*(D - 1)) + 8*D⌃2*Pi⌃2*q⌃2*cos(4*q*Pi*(D - 1)) - 16*D*Pi*q⌃2*sin(2*Pi*(q*D - D - q)) + 16*D*Pi*q⌃2*sin(2*Pi*(q*D + D - q)) + 16*D⌃2*Pi⌃2*q⌃4*cos(2*Pi*(q*D + D - q)) + 16*D⌃2*Pi⌃2*q⌃4*cos(2*Pi*(q*D - D - q)) + 4*D*Pi*q⌃4*sin(2*Pi*(2*q*D + D - 2*q)) - 4*D*Pi*q⌃4*sin(2*Pi*(2*q*D - D - 2*q)) + 16*D*Pi*q⌃3*sin(4*q*Pi*(D - 1)) - 16*D*Pi*q*sin(4*q*Pi*(D - 1)) + 4*D*Pi*q⌃2*sin(2*Pi*(2*q*D + D - 2*q)) - 4*D*Pi*q⌃2*sin(2*Pi*(2*q*D - D - 2*q)) - 16*D⌃2*Pi⌃2*q⌃3*cos(2*Pi*(q*D + D - q)) + 32*cos(2*q*Pi*(D - 1)) - 8*cos(4*q*Pi*(D - 1)) - 12*q⌃4)/((q - 1)⌃2*(q + 1)⌃2))*(q - 1)*(q + 1))):
Appendix A.1.2. p Definition
- p := (D, q) ->-sqrt(-(-24 - 6*q⌃2*cos(2*Pi*(2*q*D + D - 2*q)) + 8*q*cos(2*Pi*(q*D - D - q)) - 8*q*cos(2*Pi*(q*D + D - q)) + 12*q⌃2*cos(4*q*Pi*(D - 1)) + 2*q⌃4*cos(2*Pi*(2*q*D - D - 2*q)) + 2*q⌃4*cos(2*Pi*(2*q*D + D - 2*q)) + 12*cos(2*Pi*D)*q⌃4 - 20*q⌃2*cos(2*Pi*D) - 32*cos(2*q*Pi*(D - 1))*q⌃2 + 16*cos(2*q*Pi*(D - 1))*q⌃4 + 16*q⌃2*cos(2*Pi*(q*D + D - q)) + 16*q⌃2*cos(2*Pi*(q*D - D - q)) - 4*q⌃4*cos(4*q*Pi*(D - 1)) + 4*q*cos(2*Pi*(2*q*D + D - 2*q)) - 4*q*cos(2*Pi*(2*q*D - D - 2*q)) - 8*q⌃4*cos(2*Pi*(q*D + D - q)) - 8*q⌃4*cos(2*Pi*(q*D - D - q)) - 6*q⌃2*cos(2*Pi*(2*q*D - D - 2*q)) + 20*q⌃2 + 16*Pi*D*q⌃3*sin(4*q*Pi*(D - 1)) - 16*Pi*D*q*sin(4*q*Pi*(D - 1)) + 4*Pi*D*q⌃2*sin(2*Pi*(2*q*D + D - 2*q)) - 4*Pi*D*q⌃2*sin(2*Pi*(2*q*D - D - 2*q)) - 16*D⌃2*Pi⌃2*q⌃3*cos(2*Pi*(q*D + D - q)) + 16*D⌃2*Pi⌃2*q⌃3*cos(2*Pi*(q*D - D - q)) + 16*Pi*D*q⌃4*sin(2*Pi*(q*D - D - q)) - 16*Pi*D*q⌃4*sin(2*Pi*(q*D + D - q)) - 40*Pi*D*q⌃2*sin(2*Pi*D) - 8*D⌃2*Pi⌃2*q⌃4*cos(4*q*Pi*(D - 1)) + 8*D⌃2*Pi⌃2*q⌃2*cos(4*q*Pi*(D - 1)) - 16*Pi*D*q⌃2*sin(2*Pi*(q*D - D - q)) + 16*Pi*D*q⌃2*sin(2*Pi*(q*D + D - q)) + 16*D⌃2*Pi⌃2*q⌃4*cos(2*Pi*(q*D + D - q)) + 16*D⌃2*Pi⌃2*q⌃4*cos(2*Pi*(q*D - D - q)) + 4*Pi*D*q⌃4*sin(2*Pi*(2*q*D + D - 2*q)) - 4*Pi*D*q⌃4*sin(2*Pi*(2*q*D - D - 2*q)) + 32*Pi*D*q*sin(2*q*Pi*(D - 1)) + 24*Pi*D*q⌃4*sin(2*Pi*D) - 8*Pi*D*q⌃3*sin(2*Pi*(2*q*D + D - 2*q)) - 8*Pi*D*q⌃3*sin(2*Pi*(2*q*D - D - 2*q)) - 8*D⌃2*Pi⌃2*q⌃2 - 24*D⌃2*Pi⌃2*q⌃4 + 32*cos(2*q*Pi*(D - 1)) - 8*cos(4*q*Pi*(D - 1)) - 12*q⌃4)/((q - 1)⌃2*(q + 1)⌃2))*(q - 1)⌃2*(q + 1)⌃2/(q⌃2*(2*q⌃2*cos(2*Pi*D) + q⌃2*cos(2*Pi*(q*D - D - q)) + q⌃2*cos(2*Pi*(q*D + D - q)) - 2*cos(2*q*Pi*(D - 1))*q⌃2 + 2*q*cos(2*Pi*(q*D - D - q)) - 2*q*cos(2*Pi*(q*D + D - q)) - 2*q⌃2 - 2*cos(2*Pi*D) + cos(2*Pi*(q*D - D - q)) + cos(2*Pi*(q*D + D - q)) + 2*cos(2*q*Pi*(D - 1)) - 2)):
Appendix A.1.3. C1/VDD Definition
- C1_VDD := (D, q) ->-(q - 1)*(q + 1)*cos(2*Pi*q)*(4*Pi*D*q⌃2*sin(2*Pi*D) - 4*Pi*D*q*sin(2*Pi*q*(D - 1)) - q⌃2*cos(2*Pi*(q*D + D - q)) + 2*q⌃2*cos(2*Pi*D) + 2*cos(2*Pi*q*(D - 1))*q⌃2 - q⌃2*cos(2*Pi*(q*D - q - D)) + q*cos(2*Pi*(q*D + D - q)) - q*cos(2*Pi*(q*D - q - D)) - 2*q⌃2 - 4*cos(2*Pi*q*(D - 1)) + 4)/((2*q⌃2*cos(2*Pi*D) + q⌃2*cos(2*Pi*(q*D - q - D)) + q⌃2*cos(2*Pi*(q*D + D - q)) - 2*cos(2*Pi*q*(D - 1))*q⌃2 + 2*q*cos(2*Pi*(q*D - q - D)) - 2*q*cos(2*Pi*(q*D + D - q)) - 2*q⌃2 - 2*cos(2*Pi*D) + cos(2*Pi*(q*D - q - D)) + cos(2*Pi*(q*D + D - q)) + 2*cos(2*Pi*q*(D - 1)) - 2)*sqrt(-q⌃2*(4*Pi*D*cos(2*Pi*D)*q - 4*Pi*D*cos(2*Pi*q*(D - 1))*q - 2*q*sin(2*Pi*D) + q*sin(2*Pi*(q*D + D - q)) - q*sin(2*Pi*(q*D - q - D)) + 2*sin(2*Pi*q*(D - 1)) - sin(2*Pi*(q*D + D - q)) - sin(2*Pi*(q*D - q - D)))⌃2/(-24 - 8*D⌃2*Pi⌃2*q⌃4*cos(4*Pi*q*(D - 1)) + 8*q⌃2*Pi⌃2*D⌃2*cos(4*Pi*q*(D - 1)) - 16*Pi*D*q⌃2*sin(2*Pi*(q*D - q - D)) + 16*Pi*D*q⌃2*sin(2*Pi*(q*D + D - q)) + 16*D⌃2*Pi⌃2*q⌃4*cos(2*Pi*(q*D + D - q)) + 16*D⌃2*Pi⌃2*q⌃4*cos(2*Pi*(q*D - q - D)) + 4*Pi*D*q⌃4*sin(2*Pi*(2*q*D + D - 2*q)) - 4*Pi*D*q⌃4*sin(2*Pi*(2*q*D - D - 2*q)) + 16*Pi*D*q⌃3*sin(4*Pi*q*(D - 1)) - 16*Pi*D*q*sin(4*Pi*q*(D - 1)) + 4*Pi*D*q⌃2*sin(2*Pi*(2*q*D + D - 2*q)) - 4*Pi*D*q⌃2*sin(2*Pi*(2*q*D - D - 2*q)) - 16*D⌃2*Pi⌃2*q⌃3*cos(2*Pi*(q*D + D - q)) + 16*D⌃2*Pi⌃2*q⌃3*cos(2*Pi*(q*D - q - D)) + 16*Pi*D*q⌃4*sin(2*Pi*(q*D - q - D)) - 16*Pi*D*q⌃4*sin(2*Pi*(q*D + D - q)) + 24*Pi*D*q⌃4*sin(2*Pi*D) - 8*Pi*D*q⌃3*sin(2*Pi*(2*q*D + D - 2*q)) - 8*Pi*D*q⌃3*sin(2*Pi*(2*q*D - D - 2*q)) + 32*cos(2*Pi*q*(D - 1)) - 8*cos(4*Pi*q*(D - 1)) - 40*Pi*D*q⌃2*sin(2*Pi*D) + 32*Pi*D*q*sin(2*Pi*q*(D - 1)) + 20*q⌃2 - 6*q⌃2*cos(2*Pi*(2*q*D - D - 2*q)) - 6*q⌃2*cos(2*Pi*(2*q*D + D - 2*q)) + 12*q⌃2*cos(4*Pi*q*(D - 1)) + 2*q⌃4*cos(2*Pi*(2*q*D - D - 2*q)) + 2*q⌃4*cos(2*Pi*(2*q*D + D - 2*q)) + 12*cos(2*Pi*D)*q⌃4 + 16*cos(2*Pi*q*(D - 1))*q⌃4 - 4*q⌃4*cos(4*Pi*q*(D - 1)) + 4*q*cos(2*Pi*(2*q*D + D - 2*q)) - 20*q⌃2*cos(2*Pi*D) - 32*cos(2*Pi*q*(D - 1))*q⌃2 - 4*q*cos(2*Pi*(2*q*D - D - 2*q)) - 8*q⌃4*cos(2*Pi*(q*D + D - q)) - 8*q⌃4*cos(2*Pi*(q*D - q - D)) + 16*q⌃2*cos(2*Pi*(q*D + D - q)) + 16*q⌃2*cos(2*Pi*(q*D - q - D)) - 8*q*cos(2*Pi*(q*D + D - q)) + 8*q*cos(2*Pi*(q*D - q - D)) - 8*q⌃2*Pi⌃2*D⌃2 - 24*D⌃2*Pi⌃2*q⌃4 - 12*q⌃4) - (4*Pi*D*q⌃2*sin(2*Pi*D) - 4*Pi*D*q*sin(2*Pi*q*(D - 1)) - q⌃2*cos(2*Pi*(q*D + D - q)) + 2*q⌃2*cos(2*Pi*D) + 2*cos(2*Pi*q*(D - 1))*q⌃2 - q⌃2*cos(2*Pi*(q*D - q - D)) + q*cos(2*Pi*(q*D + D - q)) - q*cos(2*Pi*(q*D - q - D)) - 2*q⌃2 - 4*cos(2*Pi*q*(D - 1)) + 4)⌃2/(-24 - 8*D⌃2*Pi⌃2*q⌃4*cos(4*Pi*q*(D - 1)) + 8*q⌃2*Pi⌃2*D⌃2*cos(4*Pi*q*(D - 1)) - 16*Pi*D*q⌃2*sin(2*Pi*(q*D - q - D)) + 16*Pi*D*q⌃2*sin(2*Pi*(q*D + D - q)) + 16*D⌃2*Pi⌃2*q⌃4*cos(2*Pi*(q*D + D - q)) + 16*D⌃2*Pi⌃2*q⌃4*cos(2*Pi*(q*D - q - D)) + 4*Pi*D*q⌃4*sin(2*Pi*(2*q*D + D - 2*q)) - 4*Pi*D*q⌃4*sin(2*Pi*(2*q*D - D - 2*q)) + 16*Pi*D*q⌃3*sin(4*Pi*q*(D - 1)) - 16*Pi*D*q*sin(4*Pi*q*(D - 1)) + 4*Pi*D*q⌃2*sin(2*Pi*(2*q*D + D - 2*q)) - 4*Pi*D*q⌃2*sin(2*Pi*(2*q*D - D - 2*q)) - 16*D⌃2*Pi⌃2*q⌃3*cos(2*Pi*(q*D + D - q)) + 16*D⌃2*Pi⌃2*q⌃3*cos(2*Pi*(q*D - q - D)) + 16*Pi*D*q⌃4*sin(2*Pi*(q*D - q - D)) - 16*Pi*D*q⌃4*sin(2*Pi*(q*D + D - q)) + 24*Pi*D*q⌃4*sin(2*Pi*D) - 8*Pi*D*q⌃3*sin(2*Pi*(2*q*D + D - 2*q)) - 8*Pi*D*q⌃3*sin(2*Pi*(2*q*D - D - 2*q)) + 32*cos(2*Pi*q*(D - 1)) - 8*cos(4*Pi*q*(D - 1)) - 40*Pi*D*q⌃2*sin(2*Pi*D) + 32*Pi*D*q*sin(2*Pi*q*(D - 1)) + 20*q⌃2 - 6*q⌃2*cos(2*Pi*(2*q*D - D - 2*q)) - 6*q⌃2*cos(2*Pi*(2*q*D + D - 2*q)) + 12*q⌃2*cos(4*Pi*q*(D - 1)) + 2*q⌃4*cos(2*Pi*(2*q*D - D - 2*q)) + 2*q⌃4*cos(2*Pi*(2*q*D + D - 2*q)) + 12*cos(2*Pi*D)*q⌃4 + 16*cos(2*Pi*q*(D - 1))*q⌃4 - 4*q⌃4*cos(4*Pi*q*(D - 1)) + 4*q*cos(2*Pi*(2*q*D + D - 2*q)) - 20*q⌃2*cos(2*Pi*D) - 32*cos(2*Pi*q*(D - 1))*q⌃2 - 4*q*cos(2*Pi*(2*q*D - D - 2*q)) - 8*q⌃4*cos(2*Pi*(q*D + D - q)) - 8*q⌃4*cos(2*Pi*(q*D - q - D)) + 16*q⌃2*cos(2*Pi*(q*D + D - q)) + 16*q⌃2*cos(2*Pi*(q*D - q - D)) - 8*q*cos(2*Pi*(q*D + D - q)) + 8*q*cos(2*Pi*(q*D - q - D)) - 8*q⌃2*Pi⌃2*D⌃2 - 24*D⌃2*Pi⌃2*q⌃4 - 12*q⌃4))*(q⌃2 - 1)) - (q - 1)*(q + 1)*sin(2*Pi*q)*(4*Pi*D*cos(2*Pi*D)*q - 4*Pi*D*cos(2*Pi*q*(D - 1))*q - 2*q*sin(2*Pi*D) + q*sin(2*Pi*(q*D + D - q)) - q*sin(2*Pi*(q*D - q - D)) + 2*sin(2*Pi*q*(D - 1)) - sin(2*Pi*(q*D + D - q)) - sin(2*Pi*(q*D - q - D)))/((2*q⌃2*cos(2*Pi*D) + q⌃2*cos(2*Pi*(q*D - q - D)) + q⌃2*cos(2*Pi*(q*D + D - q)) - 2*cos(2*Pi*q*(D - 1))*q⌃2 + 2*q*cos(2*Pi*(q*D - q - D)) - 2*q*cos(2*Pi*(q*D + D - q)) - 2*q⌃2 - 2*cos(2*Pi*D) + cos(2*Pi*(q*D - q - D)) + cos(2*Pi*(q*D + D - q)) + 2*cos(2*Pi*q*(D - 1)) - 2)*sqrt(-q⌃2*(4*Pi*D*cos(2*Pi*D)*q - 4*Pi*D*cos(2*Pi*q*(D - 1))*q - 2*q*sin(2*Pi*D) + q*sin(2*Pi*(q*D + D - q)) - q*sin(2*Pi*(q*D - q - D)) + 2*sin(2*Pi*q*(D - 1)) - sin(2*Pi*(q*D + D - q)) - sin(2*Pi*(q*D - q - D)))⌃2/(-24 - 8*D⌃2*Pi⌃2*q⌃4*cos(4*Pi*q*(D - 1)) + 8*q⌃2*Pi⌃2*D⌃2*cos(4*Pi*q*(D - 1)) - 16*Pi*D*q⌃2*sin(2*Pi*(q*D - q - D)) + 16*Pi*D*q⌃2*sin(2*Pi*(q*D + D - q)) + 16*D⌃2*Pi⌃2*q⌃4*cos(2*Pi*(q*D + D - q)) + 16*D⌃2*Pi⌃2*q⌃4*cos(2*Pi*(q*D - q - D)) + 4*Pi*D*q⌃4*sin(2*Pi*(2*q*D + D - 2*q)) - 4*Pi*D*q⌃4*sin(2*Pi*(2*q*D - D - 2*q)) + 16*Pi*D*q⌃3*sin(4*Pi*q*(D - 1)) - 16*Pi*D*q*sin(4*Pi*q*(D - 1)) + 4*Pi*D*q⌃2*sin(2*Pi*(2*q*D + D - 2*q)) - 4*Pi*D*q⌃2*sin(2*Pi*(2*q*D - D - 2*q)) - 16*D⌃2*Pi⌃2*q⌃3*cos(2*Pi*(q*D + D - q)) + 16*D⌃2*Pi⌃2*q⌃3*cos(2*Pi*(q*D - q - D)) + 16*Pi*D*q⌃4*sin(2*Pi*(q*D - q - D)) - 16*Pi*D*q⌃4*sin(2*Pi*(q*D + D - q)) + 24*Pi*D*q⌃4*sin(2*Pi*D) - 8*Pi*D*q⌃3*sin(2*Pi*(2*q*D + D - 2*q)) - 8*Pi*D*q⌃3*sin(2*Pi*(2*q*D - D - 2*q)) + 32*cos(2*Pi*q*(D - 1)) - 8*cos(4*Pi*q*(D - 1)) - 40*Pi*D*q⌃2*sin(2*Pi*D) + 32*Pi*D*q*sin(2*Pi*q*(D - 1)) + 20*q⌃2 - 6*q⌃2*cos(2*Pi*(2*q*D - D - 2*q)) - 6*q⌃2*cos(2*Pi*(2*q*D + D - 2*q)) + 12*q⌃2*cos(4*Pi*q*(D - 1)) + 2*q⌃4*cos(2*Pi*(2*q*D - D - 2*q)) + 2*q⌃4*cos(2*Pi*(2*q*D + D - 2*q)) + 12*cos(2*Pi*D)*q⌃4 + 16*cos(2*Pi*q*(D - 1))*q⌃4 - 4*q⌃4*cos(4*Pi*q*(D - 1)) + 4*q*cos(2*Pi*(2*q*D + D - 2*q)) - 20*q⌃2*cos(2*Pi*D) - 32*cos(2*Pi*q*(D - 1))*q⌃2 - 4*q*cos(2*Pi*(2*q*D - D - 2*q)) - 8*q⌃4*cos(2*Pi*(q*D + D - q)) - 8*q⌃4*cos(2*Pi*(q*D - q - D)) + 16*q⌃2*cos(2*Pi*(q*D + D - q)) + 16*q⌃2*cos(2*Pi*(q*D - q - D)) - 8*q*cos(2*Pi*(q*D + D - q)) + 8*q*cos(2*Pi*(q*D - q - D)) - 8*q⌃2*Pi⌃2*D⌃2 - 24*D⌃2*Pi⌃2*q⌃4 - 12*q⌃4) - (4*Pi*D*q⌃2*sin(2*Pi*D) - 4*Pi*D*q*sin(2*Pi*q*(D - 1)) - q⌃2*cos(2*Pi*(q*D + D - q)) + 2*q⌃2*cos(2*Pi*D) + 2*cos(2*Pi*q*(D - 1))*q⌃2 - q⌃2*cos(2*Pi*(q*D - q - D)) + q*cos(2*Pi*(q*D + D - q)) - q*cos(2*Pi*(q*D - q - D)) - 2*q⌃2 - 4*cos(2*Pi*q*(D - 1)) + 4)⌃2/(-24 - 8*D⌃2*Pi⌃2*q⌃4*cos(4*Pi*q*(D - 1)) + 8*q⌃2*Pi⌃2*D⌃2*cos(4*Pi*q*(D - 1)) - 16*Pi*D*q⌃2*sin(2*Pi*(q*D - q - D)) + 16*Pi*D*q⌃2*sin(2*Pi*(q*D + D - q)) + 16*D⌃2*Pi⌃2*q⌃4*cos(2*Pi*(q*D + D - q)) + 16*D⌃2*Pi⌃2*q⌃4*cos(2*Pi*(q*D - q - D)) + 4*Pi*D*q⌃4*sin(2*Pi*(2*q*D + D - 2*q)) - 4*Pi*D*q⌃4*sin(2*Pi*(2*q*D - D - 2*q)) + 16*Pi*D*q⌃3*sin(4*Pi*q*(D - 1)) - 16*Pi*D*q*sin(4*Pi*q*(D - 1)) + 4*Pi*D*q⌃2*sin(2*Pi*(2*q*D + D - 2*q)) - 4*Pi*D*q⌃2*sin(2*Pi*(2*q*D - D - 2*q)) - 16*D⌃2*Pi⌃2*q⌃3*cos(2*Pi*(q*D + D - q)) + 16*D⌃2*Pi⌃2*q⌃3*cos(2*Pi*(q*D - q - D)) + 16*Pi*D*q⌃4*sin(2*Pi*(q*D - q - D)) - 16*Pi*D*q⌃4*sin(2*Pi*(q*D + D - q)) + 24*Pi*D*q⌃4*sin(2*Pi*D) - 8*Pi*D*q⌃3*sin(2*Pi*(2*q*D + D - 2*q)) - 8*Pi*D*q⌃3*sin(2*Pi*(2*q*D - D - 2*q)) + 32*cos(2*Pi*q*(D - 1)) - 8*cos(4*Pi*q*(D - 1)) - 40*Pi*D*q⌃2*sin(2*Pi*D) + 32*Pi*D*q*sin(2*Pi*q*(D - 1)) + 20*q⌃2 - 6*q⌃2*cos(2*Pi*(2*q*D - D - 2*q)) - 6*q⌃2*cos(2*Pi*(2*q*D + D - 2*q)) + 12*q⌃2*cos(4*Pi*q*(D - 1)) + 2*q⌃4*cos(2*Pi*(2*q*D - D - 2*q)) + 2*q⌃4*cos(2*Pi*(2*q*D + D - 2*q)) + 12*cos(2*Pi*D)*q⌃4 + 16*cos(2*Pi*q*(D - 1))*q⌃4 - 4*q⌃4*cos(4*Pi*q*(D - 1)) + 4*q*cos(2*Pi*(2*q*D + D - 2*q)) - 20*q⌃2*cos(2*Pi*D) - 32*cos(2*Pi*q*(D - 1))*q⌃2 - 4*q*cos(2*Pi*(2*q*D - D - 2*q)) - 8*q⌃4*cos(2*Pi*(q*D + D - q)) - 8*q⌃4*cos(2*Pi*(q*D - q - D)) + 16*q⌃2*cos(2*Pi*(q*D + D - q)) + 16*q⌃2*cos(2*Pi*(q*D - q - D)) - 8*q*cos(2*Pi*(q*D + D - q)) + 8*q*cos(2*Pi*(q*D - q - D)) - 8*q⌃2*Pi⌃2*D⌃2 - 24*D⌃2*Pi⌃2*q⌃4 - 12*q⌃4))*(q⌃2 - 1)) - cos(2*Pi*q):
Appendix A.1.4. C2/VDD Definition
- C2_VDD := (D, q) ->-(q - 1)*(q + 1)*sin(2*Pi*q)*(4*Pi*D*q⌃2*sin(2*Pi*D) - 4*Pi*D*q*sin(2*Pi*q*(D - 1)) - q⌃2*cos(2*Pi*(q*D + D - q)) + 2*q⌃2*cos(2*Pi*D) + 2*cos(2*Pi*q*(D - 1))*q⌃2 - q⌃2*cos(2*Pi*(q*D - q - D)) + q*cos(2*Pi*(q*D + D - q)) - q*cos(2*Pi*(q*D - q - D)) - 2*q⌃2 - 4*cos(2*Pi*q*(D - 1)) + 4)/((2*q⌃2*cos(2*Pi*D) + q⌃2*cos(2*Pi*(q*D - q - D)) + q⌃2*cos(2*Pi*(q*D + D - q)) - 2*cos(2*Pi*q*(D - 1))*q⌃2 + 2*q*cos(2*Pi*(q*D - q - D)) - 2*q*cos(2*Pi*(q*D + D - q)) - 2*q⌃2 - 2*cos(2*Pi*D) + cos(2*Pi*(q*D - q - D)) + cos(2*Pi*(q*D + D - q)) + 2*cos(2*Pi*q*(D - 1)) - 2)*sqrt(-q⌃2*(4*Pi*D*cos(2*Pi*D)*q - 4*Pi*D*cos(2*Pi*q*(D - 1))*q - 2*q*sin(2*Pi*D) + q*sin(2*Pi*(q*D + D - q)) - q*sin(2*Pi*(q*D - q - D)) + 2*sin(2*Pi*q*(D - 1)) - sin(2*Pi*(q*D + D - q)) - sin(2*Pi*(q*D - q - D)))⌃2/(-24 - 40*Pi*D*q⌃2*sin(2*Pi*D) + 32*Pi*D*q*sin(2*Pi*q*(D - 1)) - 8*D⌃2*Pi⌃2*q⌃4*cos(4*Pi*q*(D - 1)) + 8*q⌃2*Pi⌃2*D⌃2*cos(4*Pi*q*(D - 1)) - 16*Pi*D*q⌃2*sin(2*Pi*(q*D - q - D)) + 16*Pi*D*q⌃2*sin(2*Pi*(q*D + D - q)) + 16*D⌃2*Pi⌃2*q⌃4*cos(2*Pi*(q*D + D - q)) + 16*D⌃2*Pi⌃2*q⌃4*cos(2*Pi*(q*D - q - D)) + 4*Pi*D*q⌃4*sin(2*Pi*(2*q*D + D - 2*q)) - 4*Pi*D*q⌃4*sin(2*Pi*(2*q*D - D - 2*q)) + 16*Pi*D*q⌃3*sin(4*Pi*q*(D - 1)) - 16*Pi*D*q*sin(4*Pi*q*(D - 1)) + 4*Pi*D*q⌃2*sin(2*Pi*(2*q*D + D - 2*q)) - 4*Pi*D*q⌃2*sin(2*Pi*(2*q*D - D - 2*q)) - 16*D⌃2*Pi⌃2*q⌃3*cos(2*Pi*(q*D + D - q)) + 16*D⌃2*Pi⌃2*q⌃3*cos(2*Pi*(q*D - q - D)) + 16*Pi*D*q⌃4*sin(2*Pi*(q*D - q - D)) - 16*Pi*D*q⌃4*sin(2*Pi*(q*D + D - q)) + 24*Pi*D*q⌃4*sin(2*Pi*D) - 8*Pi*D*q⌃3*sin(2*Pi*(2*q*D + D - 2*q)) - 8*Pi*D*q⌃3*sin(2*Pi*(2*q*D - D - 2*q)) - 12*q⌃4 - 4*q*cos(2*Pi*(2*q*D - D - 2*q)) - 8*q⌃4*cos(2*Pi*(q*D + D - q)) - 8*q⌃4*cos(2*Pi*(q*D - q - D)) - 6*q⌃2*cos(2*Pi*(2*q*D - D - 2*q)) - 6*q⌃2*cos(2*Pi*(2*q*D + D - 2*q)) + 12*q⌃2*cos(4*Pi*q*(D - 1)) + 2*q⌃4*cos(2*Pi*(2*q*D - D - 2*q)) + 2*q⌃4*cos(2*Pi*(2*q*D + D - 2*q)) + 12*cos(2*Pi*D)*q⌃4 + 16*cos(2*Pi*q*(D - 1))*q⌃4 - 4*q⌃4*cos(4*Pi*q*(D - 1)) + 4*q*cos(2*Pi*(2*q*D + D - 2*q)) - 20*q⌃2*cos(2*Pi*D) - 32*cos(2*Pi*q*(D - 1))*q⌃2 + 16*q⌃2*cos(2*Pi*(q*D + D - q)) + 16*q⌃2*cos(2*Pi*(q*D - q - D)) - 8*q*cos(2*Pi*(q*D + D - q)) + 8*q*cos(2*Pi*(q*D - q - D)) + 20*q⌃2 + 32*cos(2*Pi*q*(D - 1)) - 8*cos(4*Pi*q*(D - 1)) - 8*q⌃2*Pi⌃2*D⌃2 - 24*D⌃2*Pi⌃2*q⌃4) - (4*Pi*D*q⌃2*sin(2*Pi*D) - 4*Pi*D*q*sin(2*Pi*q*(D - 1)) - q⌃2*cos(2*Pi*(q*D + D - q)) + 2*q⌃2*cos(2*Pi*D) + 2*cos(2*Pi*q*(D - 1))*q⌃2 - q⌃2*cos(2*Pi*(q*D - q - D)) + q*cos(2*Pi*(q*D + D - q)) - q*cos(2*Pi*(q*D - q - D)) - 2*q⌃2 - 4*cos(2*Pi*q*(D - 1)) + 4)⌃2/(-24 - 40*Pi*D*q⌃2*sin(2*Pi*D) + 32*Pi*D*q*sin(2*Pi*q*(D - 1)) - 8*D⌃2*Pi⌃2*q⌃4*cos(4*Pi*q*(D - 1)) + 8*q⌃2*Pi⌃2*D⌃2*cos(4*Pi*q*(D - 1)) - 16*Pi*D*q⌃2*sin(2*Pi*(q*D - q - D)) + 16*Pi*D*q⌃2*sin(2*Pi*(q*D + D - q)) + 16*D⌃2*Pi⌃2*q⌃4*cos(2*Pi*(q*D + D - q)) + 16*D⌃2*Pi⌃2*q⌃4*cos(2*Pi*(q*D - q - D)) + 4*Pi*D*q⌃4*sin(2*Pi*(2*q*D + D - 2*q)) - 4*Pi*D*q⌃4*sin(2*Pi*(2*q*D - D - 2*q)) + 16*Pi*D*q⌃3*sin(4*Pi*q*(D - 1)) - 16*Pi*D*q*sin(4*Pi*q*(D - 1)) + 4*Pi*D*q⌃2*sin(2*Pi*(2*q*D + D - 2*q)) - 4*Pi*D*q⌃2*sin(2*Pi*(2*q*D - D - 2*q)) - 16*D⌃2*Pi⌃2*q⌃3*cos(2*Pi*(q*D + D - q)) + 16*D⌃2*Pi⌃2*q⌃3*cos(2*Pi*(q*D - q - D)) + 16*Pi*D*q⌃4*sin(2*Pi*(q*D - q - D)) - 16*Pi*D*q⌃4*sin(2*Pi*(q*D + D - q)) + 24*Pi*D*q⌃4*sin(2*Pi*D) - 8*Pi*D*q⌃3*sin(2*Pi*(2*q*D + D - 2*q)) - 8*Pi*D*q⌃3*sin(2*Pi*(2*q*D - D - 2*q)) - 12*q⌃4 - 4*q*cos(2*Pi*(2*q*D - D - 2*q)) - 8*q⌃4*cos(2*Pi*(q*D + D - q)) - 8*q⌃4*cos(2*Pi*(q*D - q - D)) - 6*q⌃2*cos(2*Pi*(2*q*D - D - 2*q)) - 6*q⌃2*cos(2*Pi*(2*q*D + D - 2*q)) + 12*q⌃2*cos(4*Pi*q*(D - 1)) + 2*q⌃4*cos(2*Pi*(2*q*D - D - 2*q)) + 2*q⌃4*cos(2*Pi*(2*q*D + D - 2*q)) + 12*cos(2*Pi*D)*q⌃4 + 16*cos(2*Pi*q*(D - 1))*q⌃4 - 4*q⌃4*cos(4*Pi*q*(D - 1)) + 4*q*cos(2*Pi*(2*q*D + D - 2*q)) - 20*q⌃2*cos(2*Pi*D) - 32*cos(2*Pi*q*(D - 1))*q⌃2 + 16*q⌃2*cos(2*Pi*(q*D + D - q)) + 16*q⌃2*cos(2*Pi*(q*D - q - D)) - 8*q*cos(2*Pi*(q*D + D - q)) + 8*q*cos(2*Pi*(q*D - q - D)) + 20*q⌃2 + 32*cos(2*Pi*q*(D - 1)) - 8*cos(4*Pi*q*(D - 1)) - 8*q⌃2*Pi⌃2*D⌃2 - 24*D⌃2*Pi⌃2*q⌃4))*(q⌃2 - 1)) + (q - 1)*(q + 1)*cos(2*Pi*q)*(4*Pi*D*cos(2*Pi*D)*q - 4*Pi*D*cos(2*Pi*q*(D - 1))*q - 2*q*sin(2*Pi*D) + q*sin(2*Pi*(q*D + D - q)) - q*sin(2*Pi*(q*D - q - D)) + 2*sin(2*Pi*q*(D - 1)) - sin(2*Pi*(q*D + D - q)) - sin(2*Pi*(q*D - q - D)))/((2*q⌃2*cos(2*Pi*D) + q⌃2*cos(2*Pi*(q*D - q - D)) + q⌃2*cos(2*Pi*(q*D + D - q)) - 2*cos(2*Pi*q*(D - 1))*q⌃2 + 2*q*cos(2*Pi*(q*D - q - D)) - 2*q*cos(2*Pi*(q*D + D - q)) - 2*q⌃2 - 2*cos(2*Pi*D) + cos(2*Pi*(q*D - q - D)) + cos(2*Pi*(q*D + D - q)) + 2*cos(2*Pi*q*(D - 1)) - 2)*sqrt(-q⌃2*(4*Pi*D*cos(2*Pi*D)*q - 4*Pi*D*cos(2*Pi*q*(D - 1))*q - 2*q*sin(2*Pi*D) + q*sin(2*Pi*(q*D + D - q)) - q*sin(2*Pi*(q*D - q - D)) + 2*sin(2*Pi*q*(D - 1)) - sin(2*Pi*(q*D + D - q)) - sin(2*Pi*(q*D - q - D)))⌃2/(-24 - 40*Pi*D*q⌃2*sin(2*Pi*D) + 32*Pi*D*q*sin(2*Pi*q*(D - 1)) - 8*D⌃2*Pi⌃2*q⌃4*cos(4*Pi*q*(D - 1)) + 8*q⌃2*Pi⌃2*D⌃2*cos(4*Pi*q*(D - 1)) - 16*Pi*D*q⌃2*sin(2*Pi*(q*D - q - D)) + 16*Pi*D*q⌃2*sin(2*Pi*(q*D + D - q)) + 16*D⌃2*Pi⌃2*q⌃4*cos(2*Pi*(q*D + D - q)) + 16*D⌃2*Pi⌃2*q⌃4*cos(2*Pi*(q*D - q - D)) + 4*Pi*D*q⌃4*sin(2*Pi*(2*q*D + D - 2*q)) - 4*Pi*D*q⌃4*sin(2*Pi*(2*q*D - D - 2*q)) + 16*Pi*D*q⌃3*sin(4*Pi*q*(D - 1)) - 16*Pi*D*q*sin(4*Pi*q*(D - 1)) + 4*Pi*D*q⌃2*sin(2*Pi*(2*q*D + D - 2*q)) - 4*Pi*D*q⌃2*sin(2*Pi*(2*q*D - D - 2*q)) - 16*D⌃2*Pi⌃2*q⌃3*cos(2*Pi*(q*D + D - q)) + 16*D⌃2*Pi⌃2*q⌃3*cos(2*Pi*(q*D - q - D)) + 16*Pi*D*q⌃4*sin(2*Pi*(q*D - q - D)) - 16*Pi*D*q⌃4*sin(2*Pi*(q*D + D - q)) + 24*Pi*D*q⌃4*sin(2*Pi*D) - 8*Pi*D*q⌃3*sin(2*Pi*(2*q*D + D - 2*q)) - 8*Pi*D*q⌃3*sin(2*Pi*(2*q*D - D - 2*q)) - 12*q⌃4 - 4*q*cos(2*Pi*(2*q*D - D - 2*q)) - 8*q⌃4*cos(2*Pi*(q*D + D - q)) - 8*q⌃4*cos(2*Pi*(q*D - q - D)) - 6*q⌃2*cos(2*Pi*(2*q*D - D - 2*q)) - 6*q⌃2*cos(2*Pi*(2*q*D + D - 2*q)) + 12*q⌃2*cos(4*Pi*q*(D - 1)) + 2*q⌃4*cos(2*Pi*(2*q*D - D - 2*q)) + 2*q⌃4*cos(2*Pi*(2*q*D + D - 2*q)) + 12*cos(2*Pi*D)*q⌃4 + 16*cos(2*Pi*q*(D - 1))*q⌃4 - 4*q⌃4*cos(4*Pi*q*(D - 1)) + 4*q*cos(2*Pi*(2*q*D + D - 2*q)) - 20*q⌃2*cos(2*Pi*D) - 32*cos(2*Pi*q*(D - 1))*q⌃2 + 16*q⌃2*cos(2*Pi*(q*D + D - q)) + 16*q⌃2*cos(2*Pi*(q*D - q - D)) - 8*q*cos(2*Pi*(q*D + D - q)) + 8*q*cos(2*Pi*(q*D - q - D)) + 20*q⌃2 + 32*cos(2*Pi*q*(D - 1)) - 8*cos(4*Pi*q*(D - 1)) - 8*q⌃2*Pi⌃2*D⌃2 - 24*D⌃2*Pi⌃2*q⌃4) - (4*Pi*D*q⌃2*sin(2*Pi*D) - 4*Pi*D*q*sin(2*Pi*q*(D - 1)) - q⌃2*cos(2*Pi*(q*D + D - q)) + 2*q⌃2*cos(2*Pi*D) + 2*cos(2*Pi*q*(D - 1))*q⌃2 - q⌃2*cos(2*Pi*(q*D - q - D)) + q*cos(2*Pi*(q*D + D - q)) - q*cos(2*Pi*(q*D - q - D)) - 2*q⌃2 - 4*cos(2*Pi*q*(D - 1)) + 4)⌃2/(-24 - 40*Pi*D*q⌃2*sin(2*Pi*D) + 32*Pi*D*q*sin(2*Pi*q*(D - 1)) - 8*D⌃2*Pi⌃2*q⌃4*cos(4*Pi*q*(D - 1)) + 8*q⌃2*Pi⌃2*D⌃2*cos(4*Pi*q*(D - 1)) - 16*Pi*D*q⌃2*sin(2*Pi*(q*D - q - D)) + 16*Pi*D*q⌃2*sin(2*Pi*(q*D + D - q)) + 16*D⌃2*Pi⌃2*q⌃4*cos(2*Pi*(q*D + D - q)) + 16*D⌃2*Pi⌃2*q⌃4*cos(2*Pi*(q*D - q - D)) + 4*Pi*D*q⌃4*sin(2*Pi*(2*q*D + D - 2*q)) - 4*Pi*D*q⌃4*sin(2*Pi*(2*q*D - D - 2*q)) + 16*Pi*D*q⌃3*sin(4*Pi*q*(D - 1)) - 16*Pi*D*q*sin(4*Pi*q*(D - 1)) + 4*Pi*D*q⌃2*sin(2*Pi*(2*q*D + D - 2*q)) - 4*Pi*D*q⌃2*sin(2*Pi*(2*q*D - D - 2*q)) - 16*D⌃2*Pi⌃2*q⌃3*cos(2*Pi*(q*D + D - q)) + 16*D⌃2*Pi⌃2*q⌃3*cos(2*Pi*(q*D - q - D)) + 16*Pi*D*q⌃4*sin(2*Pi*(q*D - q - D)) - 16*Pi*D*q⌃4*sin(2*Pi*(q*D + D - q)) + 24*Pi*D*q⌃4*sin(2*Pi*D) - 8*Pi*D*q⌃3*sin(2*Pi*(2*q*D + D - 2*q)) - 8*Pi*D*q⌃3*sin(2*Pi*(2*q*D - D - 2*q)) - 12*q⌃4 - 4*q*cos(2*Pi*(2*q*D - D - 2*q)) - 8*q⌃4*cos(2*Pi*(q*D + D - q)) - 8*q⌃4*cos(2*Pi*(q*D - q - D)) - 6*q⌃2*cos(2*Pi*(2*q*D - D - 2*q)) - 6*q⌃2*cos(2*Pi*(2*q*D + D - 2*q)) + 12*q⌃2*cos(4*Pi*q*(D - 1)) + 2*q⌃4*cos(2*Pi*(2*q*D - D - 2*q)) + 2*q⌃4*cos(2*Pi*(2*q*D + D - 2*q)) + 12*cos(2*Pi*D)*q⌃4 + 16*cos(2*Pi*q*(D - 1))*q⌃4 - 4*q⌃4*cos(4*Pi*q*(D - 1)) + 4*q*cos(2*Pi*(2*q*D + D - 2*q)) - 20*q⌃2*cos(2*Pi*D) - 32*cos(2*Pi*q*(D - 1))*q⌃2 + 16*q⌃2*cos(2*Pi*(q*D + D - q)) + 16*q⌃2*cos(2*Pi*(q*D - q - D)) - 8*q*cos(2*Pi*(q*D + D - q)) + 8*q*cos(2*Pi*(q*D - q - D)) + 20*q⌃2 + 32*cos(2*Pi*q*(D - 1)) - 8*cos(4*Pi*q*(D - 1)) - 8*q⌃2*Pi⌃2*D⌃2 - 24*D⌃2*Pi⌃2*q⌃4))*(q⌃2 - 1)) - sin(2*Pi*q):
Appendix A.1.5. gx Definition
- I0_IP := (D, q, p, ϕ) ->-D*sin(ϕ) + sin(ϕ)*sin(Pi*D)*cos(Pi*D)/Pi - cos(ϕ)*cos(Pi*D)⌃2/Pi + Pi*D⌃2/p + cos(ϕ)/Pi:
- gx := (D, q) ->I0_IP(D, q, p(D, q), Phi(D, q)):
Appendix A.1.6.
Appendix A.2. Design Set Gains KL, KC, KP, and KX Developed in Maple™
Appendix A.2.1. Definition of the Design Set Gains
- KX2 := (D, q, p, ϕ, C1_VDD, C2_VDD) ->-(-C2_VDD*q*cos(ϕ)*cos(Pi*q)⌃2 - C2_VDD*sin(ϕ)*sin(Pi*q)*cos(Pi*q) + 2*C1_VDD*q*sin(D*Pi*q)*cos(D*Pi*q)*sin(ϕ)*sin(D*Pi)*cos(D*Pi) - C1_VDD*cos(D*Pi*q)⌃2*sin(ϕ) - q⌃2*sin(ϕ)*cos(D*Pi)⌃2 - C1_VDD*sin(ϕ)*cos(D*Pi)⌃2 + C2_VDD*q*cos(ϕ) + 1/2*Pi*p*q⌃2 - C1_VDD*sin(ϕ)*cos(Pi*q)⌃2 + cos(ϕ)*sin(D*Pi)*cos(D*Pi) + C1_VDD*sin(ϕ) + q⌃2*sin(ϕ) + sin(ϕ)*cos(D*Pi)⌃2 + 2*C2_VDD*sin(D*Pi*q)*cos(D*Pi*q)*cos(ϕ)*sin(D*Pi)*cos(D*Pi) - 2*C1_VDD*q*sin(D*Pi*q)*cos(D*Pi*q)*cos(ϕ)*cos(D*Pi)⌃2 - 2*C2_VDD*q*cos(D*Pi*q)⌃2*sin(ϕ)*sin(D*Pi)*cos(D*Pi) - q⌃2*cos(ϕ)*sin(D*Pi)*cos(D*Pi) + 2*C1_VDD*cos(D*Pi*q)⌃2*sin(ϕ)*cos(D*Pi)⌃2 - C1_VDD*cos(ϕ)*sin(D*Pi)*cos(D*Pi) - C2_VDD*q*cos(D*Pi*q)⌃2*cos(ϕ) - C2_VDD*sin(D*Pi*q)*cos(D*Pi*q)*sin(ϕ) + p*q⌃2*sin(D*Pi)*cos(D*Pi)⌃3 - 1/2*p*q⌃2*sin(D*Pi)*cos(D*Pi) - C2_VDD*q*cos(ϕ)*cos(D*Pi)⌃2 - 1/2*D*Pi*p*q⌃2 - 2*p*q⌃2*cos(D*Pi)⌃4*sin(ϕ)*cos(ϕ) + 2*p*q⌃2*cos(D*Pi)⌃2*sin(ϕ)*cos(ϕ) + 2*C2_VDD*q*cos(D*Pi*q)⌃2*cos(ϕ)*cos(D*Pi)⌃2 + C2_VDD*q*sin(ϕ)*sin(D*Pi)*cos(D*Pi) + 2*C1_VDD*cos(D*Pi*q)⌃2*cos(ϕ)*sin(D*Pi)*cos(D*Pi) + 2*C2_VDD*sin(D*Pi*q)*cos(D*Pi*q)*sin(ϕ)*cos(D*Pi)⌃2 - 2*p*q⌃2*sin(D*Pi)*cos(D*Pi)⌃3*cos(ϕ)⌃2 + C1_VDD*q*cos(ϕ)*sin(Pi*q)*cos(Pi*q) + C1_VDD*q*sin(D*Pi*q)*cos(D*Pi*q)*cos(ϕ) + p*q⌃2*sin(D*Pi)*cos(D*Pi)*cos(ϕ)⌃2 - sin(ϕ))*(q - 1)*(q + 1)/((q⌃2 - 1)*(-C1_VDD*cos(D*Pi*q)⌃2*cos(ϕ) + 2*C1_VDD*q*sin(D*Pi*q)*cos(D*Pi*q)*cos(ϕ)*sin(D*Pi)*cos(D*Pi) - 2*C1_VDD*cos(D*Pi*q)⌃2*sin(ϕ)*sin(D*Pi)*cos(D*Pi) + 2*C2_VDD*sin(D*Pi*q)*cos(D*Pi*q)*cos(ϕ)*cos(D*Pi)⌃2 - 2*C2_VDD*q*cos(D*Pi*q)⌃2*sin(ϕ)*cos(D*Pi)⌃2 + C2_VDD*q*cos(ϕ)*sin(D*Pi)*cos(D*Pi) - C1_VDD*q*sin(ϕ)*sin(Pi*q)*cos(Pi*q) + p*q⌃2*cos(D*Pi)⌃4 - p*q⌃2*cos(D*Pi)⌃2 - C2_VDD*q*sin(ϕ) + q⌃2*cos(ϕ) + C1_VDD*cos(ϕ) + cos(ϕ)*cos(D*Pi)⌃2 - q⌃2*cos(ϕ)*cos(D*Pi)⌃2 - C1_VDD*cos(ϕ)*cos(D*Pi)⌃2 - sin(ϕ)*sin(D*Pi)*cos(D*Pi) - C1_VDD*cos(ϕ)*cos(Pi*q)⌃2 - 2*C2_VDD*q*cos(D*Pi*q)⌃2*cos(ϕ)*sin(D*Pi)*cos(D*Pi) - 2*C2_VDD*sin(D*Pi*q)*cos(D*Pi*q)*sin(ϕ)*sin(D*Pi)*cos(D*Pi) + 2*p*q⌃2*sin(D*Pi)*cos(D*Pi)⌃3*sin(ϕ)*cos(ϕ) - p*q⌃2*sin(D*Pi)*cos(D*Pi)*sin(ϕ)*cos(ϕ) + 2*C1_VDD*q*sin(D*Pi*q)*cos(D*Pi*q)*sin(ϕ)*cos(D*Pi)⌃2 - C2_VDD*sin(D*Pi*q)*cos(D*Pi*q)*cos(ϕ) + C2_VDD*q*cos(D*Pi*q)⌃2*sin(ϕ) - 2*p*q⌃2*cos(D*Pi)⌃4*cos(ϕ)⌃2 + 2*p*q⌃2*cos(D*Pi)⌃2*cos(ϕ)⌃2 + C2_VDD*q*sin(ϕ)*cos(D*Pi)⌃2 - C1_VDD*q*sin(D*Pi*q)*cos(D*Pi*q)*sin(ϕ) - cos(ϕ) + q⌃2*sin(ϕ)*sin(D*Pi)*cos(D*Pi) + 2*C1_VDD*cos(D*Pi*q)⌃2*cos(ϕ)*cos(D*Pi)⌃2 + C1_VDD*sin(ϕ)*sin(D*Pi)*cos(D*Pi) + C2_VDD*q*sin(ϕ)*cos(Pi*q)⌃2 - C2_VDD*cos(ϕ)*sin(Pi*q)*cos(Pi*q))):
- KX := (D, q) ->KX2(D, q, p(D, q), Phi(D, q), C1_VDD(D, q), C2_VDD(D, q)):
- KL := (D, q) ->1/2*p(D, q)/gx(D, q):
- KC := (D, q) ->2*gx(D, q)/(q⌃2*p(D, q)):
- KP := (D, q) ->2*gx(D, q)⌃2:
Appendix A.2.2.
Appendix A.3. Waveforms of the Analytical Model with Maple™
Appendix A.3.1.
- Dsp := "Duty cycle value":
- fsp := "operation frequency in Hzh":
- VDD := "VDD value":
- Lsh := "Lsh value":
- Csh := "Csh value":
- RL := "RL value":
- qsp := 1/(2*Pi*fsp*sqrt(Lsh*Csh)):
Appendix A.3.2. vg Plot
- vg := t ->piecewise(t <= Dsp*aux, 1, Dsp*aux <t, 0):
- aux := 1/fsp: axeX := 0 .. 1*aux: Tit := typeset("Swith driver waveform"): Labx := "Time [s]": Laby := "Amplitude [V]": sSize := 12: dfont := "Times": titSize := 15: axeSize := 15:
- plot(vg(x), x = axeX, font = [title, dfont, titSize], font = [axes, dfont, axeSize], ’labels’ = [Labx, Laby], labeldirections = ["horizontal", "vertical"], ’title’ = [Tit], color = "black", style = line, thickness = 2.6, size = [0.5, 0.5]);
Appendix A.3.3. Plot
- vCsh := t ->piecewise(x <= Dsp*aux, 0, Dsp*aux <x, VDD*(1 + C1_VDD(Dsp, qsp)*cos(2*Pi*fsp*qsp*t) + C2_VDD(Dsp, qsp)*sin(2*Pi*fsp*qsp*t) - qsp⌃2*p(Dsp, qsp)*cos(2*Pi*fsp*t + Phi(Dsp, qsp))/(-qsp⌃2 + 1))):
- aux = 1/fsp: axeX := 0 .. 1*aux: Tit := typeset(Switch*voltage*waveform): Labx := "Time [s]": Laby := "Amplitude [V]": sSize := 10: dfont := "Times": titSize := 15: axeSize := 15:
- plot(vCsh(x), x = axeX, font = [title, dfont, titSize], font = [axes, dfont, axeSize], ’labels’ = [Labx, Laby], labeldirections = ["horizontal", "vertical"], ’title’ = [Tit], color = "black", style = line, thickness = 2.6, size = [0.5, 0.5]);
Appendix A.3.4. is Plot
- Is := t ->piecewise(x <= Dsp*aux, VDD*t/Lsh - 2*gx(Dsp, qsp)*VDD*sin(Phi(Dsp, qsp))/RL + 2*gx(Dsp, qsp)*VDD*sin(2*Pi*fsp*t + Phi(Dsp, qsp))/RL, Dsp*aux <x, 0):
- aux = 1/fsp: axeX := 0 .. 1*aux: Tit := typeset(Switch*current*waveform): Labx := "Time [s]": Laby := "Amplitude [A]": sSize := 10: dfont := "Times": titSize := 15: axeSize := 15:
- plot(Is(x), x = axeX, font = [title, dfont, titSize], font = [axes, dfont, axeSize], ’labels’ = [Labx, Laby], labeldirections = ["horizontal", "vertical"], ’title’ = [Tit], color = "black", style = line, thickness = 2.6, size = [0.5, 0.5]);
Appendix A.3.5. Plot
- iCsh := t ->piecewise(x <= Dsp*aux, 0, Dsp*aux <x, VDD*t/Lsh - int(vCsh(tt), tt = Dsp/fsp .. t)/Lsh + 2*gx(Dsp, qsp)*VDD*(sin(2*Pi*fsp*t + Phi(Dsp, qsp)) - sin(Phi(Dsp, qsp)))/RL):
- aux = 1/fsp: axeX := 0 .. 1*aux: Tit := typeset(C[SH]*current*waveform): Labx := "Time [s]": Laby := "Amplitude [A]": sSize := 12: dfont := "Times": titSize := 15: axeSize := 15:
- plot(iCsh(x), x = axeX, font = [title, dfont, titSize], font = [axes, dfont, axeSize], ’labels’ = [Labx, Laby], labeldirections = ["horizontal", "vertical"], ’title’ = [Tit], color = "black", style = line, thickness = 2.6, size = [0.5, 0.5]);
Appendix A.3.6. Plot
- iLsh := t ->piecewise(x <= Dsp*aux, VDD*t/Lsh - 2*gx(Dsp, qsp)*VDD*sin(Phi(Dsp, qsp))/RL, Dsp*aux <x, VDD*t/Lsh - 2*gx(Dsp, qsp)*VDD*sin(Phi(Dsp, qsp))/RL - int(vCsh(tt), tt = Dsp/fsp .. t)/Lsh):
- aux = 1/fsp: axeX := 0 .. 1*aux: Tit := typeset(L[SH]*Current*waveform): Labx := "Time [s]": Laby := "Amplitude [A]": sSize := 12: dfont := "Times": titSize := 15: axeSize := 15:
- plot(iLsh(x), x = axeX, font = [title, dfont, titSize], font = [axes, dfont, axeSize], ’labels’ = [Labx, Laby], labeldirections = ["horizontal", "vertical"], ’title’ = [Tit], color = "black", style = line, thickness = 2.6, size = [0.5, 0.5]);
Appendix A.3.7. Plot
- iRL := t ->2*gx(Dsp, qsp)*VDD*sin(2*Pi*fsp*t + Phi(Dsp, qsp))/RL:
- aux = 1/fsp: axeX := 0 .. 1*aux: Tit := typeset(R[L]*Current*waveform): Labx := "Time [s]": Laby := "Amplitude [A]": sSize := 12: dfont := "Times": titSize := 15: axeSize := 15:
- plot(iRL(x), x = axeX, font = [title, dfont, titSize], font = [axes, dfont, axeSize], ’labels’ = [Labx, Laby], labeldirections = ["horizontal", "vertical"], ’title’ = [Tit], color = "black", style = line, thickness = 2.6, size = [0.5, 0.5]);
Appendix B. Maple™ Implementation of the Proposed Methodology Following the Approaches A and B
Appendix B.1. Maple™ Process of Approach A
Appendix B.1.1. Define the Input Parameters and the Extended Design Set
Input Parameters
- fsp := 100000.:
- ωsp := evalf(2*Pi*fsp):
- VDDsp := 5:
- Losp := 0.000024:
- Pinsp := 10:
- effsp := 1:
- Dsp:=0.5:
- qsp:=1.412:
Extended Design Set
- RL := (D, q) ->KP(D, q)*VDDsp⌃2/(Pinsp*effsp):
- Lsh := (D, q) ->KL(D, q)*RL(D, q)/ωsp:
- Csh := (D, q) ->KC(D, q)/(ωsp*RL(D, q)):
- KQL := (D, q) ->ωsp*Losp/RL(D, q):
- Xs := (D, q) ->RL(D, q)*KX(D, q):
- Co := (D, q) ->1/(ωsp*RL(D, q)*KQL(D, q)):
- Ce := (D, q) ->1/(1/Co(D, q) - ωsp*Xs(D, q)):
- VCshm := (D, q) ->VDDsp*(1.7613 + 0.0500*q)/(1 - D):
Appendix B.1.2. Plot the Search Space (Only for D and/or q Unknown)
Appendix B.1.3. Calculate the Circuit Values
Circuit Values
- evalf(RL(Dsp, qsp));
- evalf(Lsh(Dsp, qsp));
- evalf(Csh(Dsp, qsp));
- evalf(Ce(Dsp, qsp));
- evalf(VCshm(Dsp, qsp));
Verify the Following Values:
Appendix B.1.4. Plot the Circuit Waveforms
Plot
- vg := t ->piecewise(t <= Dsp*aux, 1, Dsp*aux <t, 0):
- aux := 1/fsp: axeX := 0 .. 1*aux: Tit := typeset(Swith*driver*waveform): Labx := "Time [s]": Laby := "Amplitude [V]": sSize := 12: dfont := "Times": titSize := 15: axeSize := 15:
- plot(vg(x), x = axeX, font = [title, dfont, titSize], font = [axes, dfont, axeSize], ’labels’ = [Labx, Laby], labeldirections = ["horizontal", "vertical"], ’title’ = [Tit], color = "black", style = line, thickness = 2.6, size = [0.5, 0.5]);
Plot
- vCsh := t ->piecewise(x <= Dsp*aux, 0, Dsp*aux <x, VDDsp*(1 + C1_VDD(Dsp, qsp)*cos(ωsp*qsp*t) + C2_VDD(Dsp, qsp)*sin(ωsp*qsp*t) - qsp⌃2*p(Dsp, qsp)*cos(ωsp*t + Phi(Dsp, qsp))/(-qsp⌃2 + 1))):
- aux = 1/fsp: axeX := 0 .. 1*aux: Tit := typeset(Switch*voltage*waveform): Labx := "Time [s]": Laby := "Amplitude [V]": sSize := 10: dfont := "Times": titSize := 15: axeSize := 15:
- plot(vCsh(x), x = axeX, font = [title, dfont, titSize], font = [axes, dfont, axeSize], ’labels’ = [Labx, Laby], labeldirections = ["horizontal", "vertical"], ’title’ = [Tit], color = "black", style = line, thickness = 2.6, size = [0.5, 0.5]);
Plot
- Ip := (D, q) ->2*gx(D, q)*VDDsp/RL(D, q):
- Is := t ->piecewise(x <= Dsp*aux, VDDsp*t/Lsh(Dsp, qsp) - Ip(Dsp, qsp)*sin(Phi(Dsp, qsp)) + Ip(Dsp, qsp)*sin(ωsp*t + Phi(Dsp, qsp)), Dsp*aux <x, 0):
- aux = 1/fsp: axeX := 0 .. 1*aux: Tit := typeset(Switch*current*waveform): Labx := "Time [s]": Laby := "Amplitude [A]": sSize := 10: dfont := "Times": titSize := 15: axeSize := 15:
- plot(Is(x), x = axeX, font = [title, dfont, titSize], font = [axes, dfont, axeSize], ’labels’ = [Labx, Laby], labeldirections = ["horizontal", "vertical"], ’title’ = [Tit], color = "black", style = line, thickness = 2.6, size = [0.5, 0.5]);
Plot
- iCsh := t ->piecewise(x <= Dsp*aux, 0, Dsp*aux <x, VDDsp*t/Lsh(Dsp, qsp) - int(vCsh(tt), tt = Dsp/fsp .. t)/Lsh(Dsp, qsp) + Ip(Dsp, qsp)*(sin(ωsp*t + Phi(Dsp, qsp)) - sin(Phi(Dsp, qsp)))):
- aux = 1/fsp: axeX := 0 .. 1*aux: Tit := typeset(C[SH]*current*waveform): Labx := "Time [s]": Laby := "Amplitude [A]": sSize := 12: dfont := "Times": titSize := 15: axeSize := 15:
- plot(iCsh(x), x = axeX, font = [title, dfont, titSize], font = [axes, dfont, axeSize], ’labels’ = [Labx, Laby], labeldirections = ["horizontal", "vertical"], ’title’ = [Tit], color = "black", style = line, thickness = 2.6, size = [0.5, 0.5]);
Plot
- iLsh := t ->piecewise(x <= Dsp*aux, VDDsp*t/Lsh(Dsp, qsp) - Ip(Dsp, qsp)*sin(Phi(Dsp, qsp)), Dsp*aux <x, VDDsp*t/Lsh(Dsp, qsp) - Ip(Dsp, qsp)*sin(Phi(Dsp, qsp)) - int(vCsh(tt), tt = Dsp/fsp .. t)/Lsh(Dsp, qsp)):
- aux = 1/fsp: axeX := 0 .. 1*aux: Tit := typeset(L[SH]*Current*waveform): Labx := "Time [s]": Laby := "Amplitude [A]": sSize := 12: dfont := "Times": titSize := 15: axeSize := 15:
- plot(iLsh(x), x = axeX, font = [title, dfont, titSize], font = [axes, dfont, axeSize], ’labels’ = [Labx, Laby], labeldirections = ["horizontal", "vertical"], ’title’ = [Tit], color = "black", style = line, thickness = 2.6, size = [0.5, 0.5]);
Plot
- iRL := t ->Ip(Dsp, qsp)*sin(ωsp*t + Phi(Dsp, qsp)):
- aux = 1/fsp: axeX := 0 .. 1*aux: Tit := typeset(R[L]*Current*waveform): Labx := "Time [s]": Laby := "Amplitude [A]": sSize := 12: dfont := "Times": titSize := 15: axeSize := 15:
- plot(iRL(x), x = axeX, font = [title, dfont, titSize], font = [axes, dfont, axeSize], ’labels’ = [Labx, Laby], labeldirections = ["horizontal", "vertical"], ’title’ = [Tit], color = "black", style = line, thickness = 2.6, size = [0.5, 0.5]);
If the Maple™ Process is Well Developed, the Waveforms of the Circuit will be as Follows:
Appendix B.2. Maple™ Process of Approach B
Appendix B.2.1. Define the Input Parameters and the Extended Design Set
Input Parameters
- fsp := 100000.:
- ωsp := evalf(2*Pi*fsp):
- VDDsp := 5:
- Losp := 0.000024:
- Pinsp := 10:
- effsp := 1:
Extended Design Set
- RL := (D, q) ->KP(D, q)*VDDsp⌃2/(Pinsp*effsp):
- Lsh := (D, q) ->KL(D, q)*RL(D, q)/ωsp:
- Csh := (D, q) ->KC(D, q)/(ωsp*RL(D, q)):
- KQL := (D, q) ->ωsp*Losp/RL(D, q):
- Xs := (D, q) ->RL(D, q)*KX(D, q):
- Co := (D, q) ->1/(ωsp*RL(D, q)*KQL(D, q)):
- Ce := (D, q) ->1/(1/Co(D, q) - ωsp*Xs(D, q)):
- VCshm := (D, q) ->VDDsp*(1.7613 + 0.0500*q)/(1 - D):
Appendix B.2.2. Plot the Search Space (Only for D and/or q Unknown)
3D Plot
- plot3d(RL(Dv, qv), qv = 0 .. 2, Dv = 0 .. 0.99, tickmarks = [[0.5, 1.0, 1.5, 2], [0.2, 0.5, 0.8], default], labels = [q, D, R__L*[Omega]], labeldirections = ["horizontal", "horizontal", "vertical"], axes = normal, color = gray, font = [axes, "TIMES", 28]);
3D Plot
- plot3d(Lsh(Dv, qv)*10⌃3, qv = 0.1 .. 2, Dv = 0.1 .. 0.85, tickmarks = [[0.5, 1, 1.5, 2], [0.2, 0.5, 0.8], default], labels = [q, D, L__SH*[mH]], labeldirections = ["horizontal", "horizontal", "vertical"], axes = normal, color = gray, font = [axes, "TIMES", 28]);
3D Plot
- plot3d(Csh(Dv, qv)*10⌃6, qv = 0.1 .. 1.9, Dv = 0.1 .. 0.9, tickmarks = [[0.5, 1, 1.5, 2], [0.2, 0.5, 0.8], default], labels = [q, D, C__SH*[μF]], labeldirections = ["horizontal", "horizontal", "vertical"], axes = normal, color = gray, font = [axes, "TIMES", 28]);
3D Plot
- plot3d(Ce(Dv, qv)*10⌃9, qv = 0.01 .. 2, Dv = 0.01 .. 0.96, tickmarks = [[0.5, 1, 1.5, 2], [0.2, 0.5, 0.8], default], labels = [q, D, Ce*[nF]], labeldirections = ["horizontal", "horizontal", "vertical"], axes = normal, color = gray, font = [axes, "TIMES", 28]);
3D Plot
- plot3d(VCshm(Dv, qv), Dv = 0 .. 1, qv = 0 .. 2, tickmarks = [[0.2, 0.5, 0.8], [0.5, 1, 1.5, 2], default], labels = [D, q, V__C__SHm*[V]], labeldirections = ["horizontal", "horizontal", "vertical"], axes = normal, color = gray, font = [axes, "TIMES", 28]);
Parametric Plot
- F1 := VCshm(0.25, x): L1 := typeset(D = 0.25): S1 := asterisk: C1 := black:
- F2 := VCshm(0.375, x): L2 := typeset(D = 0.375): S2 := solidbox: C2 := gray:
- F3 := VCshm(0.5, x): L3 := typeset(D = 0.5): S3 := solidcircle: C3 := black:
- F4 := VCshm(0.625, x): L4 := typeset(D = 0.625): S4 := diagonalcross: C4 := gray:
- F5 := VCshm(0.75, x): L5 := typeset(D = 0.75): S5 := soliddiamond: C5 := black:
- Labx := "q": Laby := V__C__SHm*[V]: axeX := 0 .. 2: res := 30: sSize := 12: dfont := "TIMES": axeSize := 28:
- functionList := [F1, F2, F3, F4, F5]: colorList := [C1, C2, C3, C4, C5]: legendList := [L1, L2, L3, L4, L5]:
- symbolList := [S1, S2, S3, S4, S5]: styleList := [pointline, pointline, pointline, pointline, pointline]:
- plot([seq(functionList[k], k = [1, 2, 3, 4, 5])], x = axeX, ’numpoints’ = res, thickness = 2.4, ’style’ = [seq(styleList[k], k = [1, 2, 3, 4, 5])], ’colour’ = [seq(colorList[k], k = [1, 2, 3, 4, 5])], ’legend’ = [seq(legendList[k], k = [1, 2, 3, 4, 5])], ’symbol’ = [seq(symbolList[k], k = [1, 2, 3, 4, 5])], ’legendstyle’ = [’location’ = right, font = [dfont, axeSize]], ’symbolsize’ = sSize, font = [title, dfont, titSize], font = [axes, dfont, axeSize], ’labels’ = [Labx, Laby], labeldirections = ["horizontal", "vertical"]);
Parametric Sweep for an Optimum Value of D
- Dsp := 0.62:
- Fsym := x ->RL(Dsp, x): with(ArrayTools): vectest := RegularArray(0.1 .. 2.5, 30): FNum := evalf(seq(Fsym(x), x = eval(vectest))): RLmax := max(FNum):
- Fsym := x ->Lsh(Dsp, x): with(ArrayTools): vectest := RegularArray(0.1 .. 2.5, 30): FNum := evalf(seq(Fsym(x), x = eval(vectest))): Lshmax := max(FNum):
- Fsym := x ->Csh(Dsp, x): with(ArrayTools): vectest := RegularArray(0.1 .. 2.5, 30): FNum := evalf(seq(Fsym(x), x = eval(vectest))): Cshmax := max(FNum):
- Fsym := x ->Ce(Dsp, x): with(ArrayTools): vectest := RegularArray(0.1 .. 2.5, 30): FNum := evalf(seq(Fsym(x), x = eval(vectest))): Cemax := max(FNum):
- Fsym := x ->VCshm(Dsp, x): with(ArrayTools): vectest := RegularArray(0.1 .. 2.5, 30): FNum := evalf(seq(Fsym(x), x = eval(vectest))): VCshmax := max(FNum):
- F1 := RL(Dsp, x)/RLmax: L1 := typeset(R[L]*[Omega]/round(1.0*RLmax)): S1 := asterisk: C1 := black:
- F2 := Lsh(Dsp, x)/Lshmax: L2 := typeset(L[SH]*[mH]/round(1000.*Lshmax)): S2 := solidbox: C2 := gray:
- F3 := Csh(Dsp, x)/Cshmax: L3 := typeset(C[SH]*[nF]/round(0.10*10⌃10*Cshmax)): S3 := solidcircle: C3 := black:
- F4 := Ce(Dsp, x)/Cemax: L4 := typeset(C[e]*[nF]/round(0.10*10⌃10*Cemax)): S4 := diagonalcross: C4 := gray:
- F5 := VCshm(Dsp, x)/VCshmax: L5 := typeset(V[C[SHm]]*[V]/round(1.0*VCshmax)): S5 := soliddiamond: C5 := black:
- Tit := typeset("D=", Dsp): Labx := "q": Laby := "Components": axeX := 0 .. 2.5: axeY := 0 .. 1: sSize := 12: dfont := "TIMES": titSize := 12: axeSize := 20: functionList := [F1, F2, F3, F4, F5]: colorList := [C1, C2, C3, C4, C5]: legendList := [L1, L2, L3, L4, L5]: symbolList := [S1, S2, S3, S4, S5]: styleList := [pointline, pointline, pointline, pointline, pointline, pointline]:
- plot([seq(functionList[k], k = [1, 2, 3, 4, 5])], x = axeX, y = axeY, ’numpoints’ = 1, thickness = 2.4, ’style’ = [seq(styleList[k], k = [1, 2, 3, 4, 5])], ’colour’ = [seq(colorList[k], k = [1, 2, 3, 4, 5])], ’legend’ = [seq(legendList[k], k = [1, 2, 3, 4, 5])], ’symbol’ = [seq(symbolList[k], k = [1, 2, 3, 4, 5])], ’legendstyle’ = [’location’ = right, font = [dfont, axeSize]], ’symbolsize’ = sSize, font = [title, dfont, titSize], font = [axes, dfont, axeSize], ’labels’ = [Labx, Laby], labeldirections = ["horizontal", "vertical"], ’title’ = [Tit]);
If Step 4 is well Developed, the Plots of the Search Space will be as Follows
Appendix B.2.3. Calculate the Circuit Values
Circuit Values
- Dsp := 0.62:
- qsp := 1.821:
- evalf(RL(Dsp, qsp));
- evalf(Lsh(Dsp, qsp));
- evalf(Csh(Dsp, qsp));
- evalf(Ce(Dsp, qsp));
- evalf(VCshm(Dsp, qsp));
Verify the Following Values:
Appendix B.2.4. Plot the Circuit Waveforms
Plot
- vg := t ->piecewise(t <= Dsp*aux, 1, Dsp*aux <t, 0):
- aux := 1/fsp: axeX := 0 .. 1*aux: Tit := typeset(Swith*driver*waveform): Labx := "Time [s]": Laby := "Amplitude [V]": sSize := 12: dfont := "Times": titSize := 15: axeSize := 15:
- plot(vg(x), x = axeX, font = [title, dfont, titSize], font = [axes, dfont, axeSize], ’labels’ = [Labx, Laby], labeldirections = ["horizontal", "vertical"], ’title’ = [Tit], color = "black", style = line, thickness = 2.6, size = [0.5, 0.5]);
Plot
- vCsh := t ->piecewise(x <= Dsp*aux, 0, Dsp*aux <x, VDDsp*(1 + C1_VDD(Dsp, qsp)*cos(ωsp*qsp*t) + C2_VDD(Dsp, qsp)*sin(ωsp*qsp*t) - qsp⌃2*p(Dsp, qsp)*cos(ωsp*t + Phi(Dsp, qsp))/(-qsp⌃2 + 1))):
- aux = 1/fsp: axeX := 0 .. 1*aux: Tit := typeset(Switch*voltage*waveform): Labx := "Time [s]": Laby := "Amplitude [V]": sSize := 10: dfont := "Times": titSize := 15: axeSize := 15:
- plot(vCsh(x), x = axeX, font = [title, dfont, titSize], font = [axes, dfont, axeSize], ’labels’ = [Labx, Laby], labeldirections = ["horizontal", "vertical"], ’title’ = [Tit], color = "black", style = line, thickness = 2.6, size = [0.5, 0.5]);
Plot
- Ip := (D, q) ->2*gx(D, q)*VDDsp/RL(D, q):
- Is := t ->piecewise(x <= Dsp*aux, VDDsp*t/Lsh(Dsp, qsp) - Ip(Dsp, qsp)*sin(Phi(Dsp, qsp)) + Ip(Dsp, qsp)*sin(ωsp*t + Phi(Dsp, qsp)), Dsp*aux <x, 0):
- aux = 1/fsp: axeX := 0 .. 1*aux: Tit := typeset(Switch*current*waveform): Labx := "Time [s]": Laby := "Amplitude [A]": sSize := 10: dfont := "Times": titSize := 15: axeSize := 15:
- plot(Is(x), x = axeX, font = [title, dfont, titSize], font = [axes, dfont, axeSize], ’labels’ = [Labx, Laby], labeldirections = ["horizontal", "vertical"], ’title’ = [Tit], color = "black", style = line, thickness = 2.6, size = [0.5, 0.5]);
Plot
- iCsh := t ->piecewise(x <= Dsp*aux, 0, Dsp*aux <x, VDDsp*t/Lsh(Dsp, qsp) - int(vCsh(tt), tt = Dsp/fsp .. t)/Lsh(Dsp, qsp) + Ip(Dsp, qsp)*(sin(ωsp*t + Phi(Dsp, qsp)) - sin(Phi(Dsp, qsp)))):
- aux = 1/fsp: axeX := 0 .. 1*aux: Tit := typeset(C[SH]*current*waveform): Labx := "Time [s]": Laby := "Amplitude [A]": sSize := 12: dfont := "Times": titSize := 15: axeSize := 15:
- plot(iCsh(x), x = axeX, font = [title, dfont, titSize], font = [axes, dfont, axeSize], ’labels’ = [Labx, Laby], labeldirections = ["horizontal", "vertical"], ’title’ = [Tit], color = "black", style = line, thickness = 2.6, size = [0.5, 0.5]);
Plot
- iLsh := t ->piecewise(x <= Dsp*aux, VDDsp*t/Lsh(Dsp, qsp) - Ip(Dsp, qsp)*sin(Phi(Dsp, qsp)), Dsp*aux <x, VDDsp*t/Lsh(Dsp, qsp) - Ip(Dsp, qsp)*sin(Phi(Dsp, qsp)) - int(vCsh(tt), tt = Dsp/fsp .. t)/Lsh(Dsp, qsp)):
- aux = 1/fsp: axeX := 0 .. 1*aux: Tit := typeset(L[SH]*Current*waveform): Labx := "Time [s]": Laby := "Amplitude [A]": sSize := 12: dfont := "Times": titSize := 15: axeSize := 15:
- plot(iLsh(x), x = axeX, font = [title, dfont, titSize], font = [axes, dfont, axeSize], ’labels’ = [Labx, Laby], labeldirections = ["horizontal", "vertical"], ’title’ = [Tit], color = "black", style = line, thickness = 2.6, size = [0.5, 0.5]);
Plot
- iRL := t ->Ip(Dsp, qsp)*sin(ωsp*t + Phi(Dsp, qsp)):
- aux = 1/fsp: axeX := 0 .. 1*aux: Tit := typeset(R[L]*Current*waveform): Labx := "Time [s]": Laby := "Amplitude [A]": sSize := 12: dfont := "Times": titSize := 15: axeSize := 15:
- plot(iRL(x), x = axeX, font = [title, dfont, titSize], font = [axes, dfont, axeSize], ’labels’ = [Labx, Laby], labeldirections = ["horizontal", "vertical"], ’title’ = [Tit], color = "black", style = line, thickness = 2.6, size = [0.5, 0.5]);
If the Maple™ Process is well Developed, the Waveforms of the Circuit will be as Follows:
References
- Liu, S.; Liu, M.; Han, S.; Zhu, X.; Ma, C. Tunable Class E2 DC–DC Converter With High Efficiency and Stable Output Power for 6.78-MHz Wireless Power Transfer. IEEE Trans. Power Electron. 2018, 33, 6877–6886. [Google Scholar]
- Qaragoez, Y.M.; Ali, I.; Kim, S.J.; Lee, K.Y. A 5.8 GHz 9.5 dBm Class-E Power Amplifier for DSRC Applications. In Proceedings of the 2019 International SoC Design Conference (ISOCC), Jeju, Korea, 6–9 October 2019; pp. 202–203. [Google Scholar]
- Silva-Pereira, M.; Caldinhas Vaz, J. A Single-Ended Modified Class-E PA With HD2 Rejection for Low-Power RF Applications. IEEE Solid-State Circuits Lett. 2018, 1, 22–25. [Google Scholar]
- Gorain, C.; Sadhu, P.K.; Raman, R. Analysis of High-Frequency Class E Resonant Inverter and its Application in an Induction Heater. In Proceedings of the 2018 2nd International Conference on Power, Energy and Environ.: Towards Smart Technology (ICEPE), Shillong, India, 1–2 June 2018; pp. 1–6. [Google Scholar]
- Peña-Eguiluz, R.; Pérez-Martínez, J.A.; López-Callejas, R.; Mercado-Cabrera, A.; Solís-Pacheco, J.; Aguilar-Uscanga, B.; Muñoz-Castro, A.E.; Valencia-Alvarado, R.; Barocio-Delgado, S.R.; Rodríguez-Méndez, B.G.; et al. Analysis and Application of a Parallel E-Class Amplifier as RF Plasma Source. IEEE Trans. Plasma Sci. 2010, 38, 2840–2847. [Google Scholar]
- Mangkalajan, S.; Ekkaravarodome, C.; Jirasereeamornkul, K.; Thounthong, P.; Higuchi, K.; Kazimierczuk, M.K. A Single-Stage LED Driver Based on ZCDS Class-E Current-Driven Rectifier as a PFC for Street-Lighting Applications. IEEE Trans. Power Electron. 2018, 33, 8710–8727. [Google Scholar]
- Ewing, G.D. High-Efficiency Radio-Frequency Power Amplifiers. Ph.D. Dissertation, Oregon State University, Corvallis, OR, USA, 1964. [Google Scholar]
- Sokal, N.O.; Sokal, A.D. Class E-A new class of high-efficiency tuned single-ended switching power amplifiers. IEEE J. Solid-State Circuits 1975, 10, 168–176. [Google Scholar]
- Raab, F. Idealized operation of the class E tuned power amplifier. IEEE Trans. Circuits Syst. 1977, 24, 725–735. [Google Scholar]
- Kessler, D.J.; Kazimierczuk, M.K. Power losses and efficiency of class-E power amplifier at any duty ratio. IEEE Trans. Circuits Syst. I Reg. Pap. 2004, 51, 1675–1689. [Google Scholar]
- Zulinski, R.; Steadman, J. Class E Power Amplifiers and Frequency Multipliers with finite DC-Feed Inductance. IEEE Trans. Circuits Syst. 1987, 34, 1074–1087. [Google Scholar]
- Li, C.; Yam, Y. Maximum frequency and optimum performance of class E power amplifiers. IEEE. Proc. Circuits Devices Syst. 1994, 141, 174–184. [Google Scholar]
- Choi, D.K.; Long, S.I. Finite DC feed inductor in class E power amplifiers-a simplified approach. In Proceedings of the 2002 IEEE MTT-S International Microwave Symposium Digest, Seattle, WA, USA, 2–7 June 2002; Volume 3, pp. 1643–1646. [Google Scholar]
- Sekiya, H.; Sasase, I.; Mori, S. Computation of design values for Class E amplifiers without using waveform equations. IEEE Trans. Circuits Syst. I Fundam. Theory 2002, 49, 966–978. [Google Scholar]
- Milosevic, D.; van der Tang, J.; van Roermund, A. Explicit design equations for class-E power amplifiers with small DC-feed inductance. In Proceedings of the 2005 European Conference on Circuit Theory and Design, Cork, Ireland, 2 September 2005; Volume 3, pp. III/101–III/104. [Google Scholar]
- Acar, M.; Annema, A.; Nauta, B. Generalized Design Equations for Class-E Power Amplifiers with Finite DC Feed Inductance. In Proceedings of the 36th European Microw. Conference, Manchester, UK, 10–15 September 2006; pp. 1308–1311. [Google Scholar] [CrossRef] [Green Version]
- Acar, M.; Annema, A.J.; Nauta, B. Analytical Design Equations for Class-E Power Amplifiers. IEEE Trans. Circuits Syst. I Reg. Papers 2007, 54, 2706–2717. [Google Scholar] [CrossRef] [Green Version]
- Du, X.; Nan, J.; Chen, W.; Shao, Z. ‘New’ solutions of Class-E power amplifier with finite dc feed inductor at any duty ratio. IET Circuits Devices Syst. 2014, 8, 311–321. [Google Scholar]
- Fajardo, A.; de Sousa, F.R. Integrated CMOS class-E power amplifier for self-sustaining wireless power transfer system. In Proceedings of the 2016 29th Symposium on Integrated Circuits and Systems Design (SBCCI), Belo Horizonte, Brazil, 29 August–3 September 2016; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Fajardo, A.; de Sousa, F.R. Simple expression for estimating the switch peak voltage on the class-E amplifier with finite DC-feed inductance. In Proceedings of the 2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS), Florianopolis, Brazil, 28 February–2 March 2016; pp. 183–186. [Google Scholar] [CrossRef] [Green Version]
- Casallas, I.; Páez, C.; Perilla, G.; Fajardo, A. Design methodology of Class-E power amplifier using feed inductance tuning for high-efficiency operation in wireless power transfer applications. In Proceedings of the ANDESCON 2020 Conference, Quito, Ecuador, 13–16 October 2020; pp. 869–874. [Google Scholar]
- Smith, G.H.; Zulinski, R.E. An exact analysis of class E amplifiers with finite DC-feed inductance at any output Q. IEEE Trans. Circuits Syst. 1990, 37, 530–534. [Google Scholar]
- Iwadare, M.; Mori, S.; Ikeda, K. Even Harmonic Resonant Class E Tuned Power Amplifier without RF Choke. Electron. Commun. Jpn. Part 1 Commun. 1996, 79, 23–30. [Google Scholar]
- Hasani, J.Y.; Kamarei, M. Analysis and Optimum Design of a Class E RF Power Amplifier. IEEE Trans. Circuits Syst. Regul. Pap. 2008, 55, 1759–1768. [Google Scholar]
- Sadeghpour, R.; Nabavi, A. Design Procedure of Quasi-Class-E Power Amplifier for Low-Breakdown-Voltage Devices. IEEE Trans. Circuits Syst. I Reg. Pap. 2014, 61, 1416–1428. [Google Scholar]
- Kreißig, M.; Ellinger, F. Extended analysis of idealized class-E operation with finite DC-feed inductance and preservation of zero volt switching at variable load. In Proceedings of the 2017 14th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), Giardini Naxos, Italy, 12–15 June 2017; pp. 1–4. [Google Scholar]
- Hayati, M.; Roshani, S.; Kazimierczuk, M.K.; Sekiya, H. Analysis and design of class E power amplifier considering MOSFET parasitic input and output capacitances. IET Circuits Devices Syst. 2016, 10, 433–440. [Google Scholar]
- Sokal, N.O. Class-E RF power amplifiers. QEX Commun. Quart 2001, 204, 9–20. [Google Scholar]
- Rodríguez Páez, J.S.; Fajardo, A. Class-E PA design methodology by re-tuning. In Proceedings of the 2014 IEEE 5th Colombian Workshop on Circuits and Systems (CWCAS), Bogota, Colombia, 16–17 October 2014; pp. 1–4. [Google Scholar]
- Grebennikov, A.V.; Jaeger, H. Class E with parallel circuit - a new challenge for high-efficiency RF and microwave power amplifiers. IEEE Int. Microw. Symp. Dig. 2002, 3, 1627–1630. [Google Scholar]
- Kazimierczuk, M.K. RF Power Amplifiers; Wiley Online Library: Hoboken, NJ, USA, 2008; Volume 1, pp. 185–198. [Google Scholar]
- Erickson, R.W.; Maksimovic, D. Fundamentals of Power Electronics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Mediano, A.; Molina-Gaudo, P.; Bernal, C. Design of Class E Amplifier With Nonlinear and Linear Shunt Capacitances for Any Duty Cycle. IEEE Trans. Microw. Theory Tech. 2007, 55, 484–492. [Google Scholar]
- Kazimierczuk, M.; Puczko, K. Exact analysis of class E tuned power amplifier at any Q and switch duty cycle. IEEE Trans. Circuits Syst. 1987, 34, 149–159. [Google Scholar]
- Casallas, I.; Páez-Rueda, C.; Perilla, G.; Fajardo, A. Class-E design under maximum-rating constraints. Manuscript submitted for publication in IEEE Transactions on Circuits and Systems I. 14 October 2020. [Google Scholar]
- Van Wageningen, D.; Staring, T. The Qi wireless power standard. In Proceedings of the 14th International Power Electronics and Motion Control Conference EPE-PEMC 2010, Ohrid, Macedonia, 6–8 September 2010; pp. S15-25–S15-32. [Google Scholar]
- Williams, R.K.; Darwish, M.N.; Blanchard, R.A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. The Trench Power MOSFET: Part I—History, Technology, and Prospects. IEEE Trans. Electron Devices 2017, 64, 674–691. [Google Scholar]
- Gaudo, P.M.; Bernal, C.; Mediano, A. Output power capability of class-E amplifiers with nonlinear shunt capacitance. In Proceedings of the 2004 IEEE MTT-S International Microwave Symposium Digest, Fort Worth, TX, USA, 6–11 June 2004; Volume 2, pp. 891–894. [Google Scholar]
Parameter | Ewing [7] | Kazimierczuk [31] | Grebennikov [30] | Iwadare [23] | Acar [17] |
---|---|---|---|---|---|
∞ | ∞ | 0.732 | 3.534 | 0.732 | |
0.184 | 0.184 | 0.685 | 0.071 | 0.685 | |
0.577 | 0.577 | 1.365 | 0.056 | 1.365 | |
0.637 | 1.152 | 0 | -4.903 | 0 | |
switch | finite | zero | zero | zero | zero |
infinite | infinite | finite | finite | finite | |
linear | linear | linear | linear | linear | |
D | arbitrary | 0.5 | 0.5 | 0.5 | arbitrary |
[kHz] | [V] | [μH] | [W] | D | q | |
---|---|---|---|---|---|---|
100 | 5 | 24 | 10 | 1 | 0.5 | 1.412 |
Parameter | Value * | Parameter | Value * | Parameter | Value * |
---|---|---|---|---|---|
0.7332 | −0.0002 | 2.6106 | |||
0.6841 | −2.4925 | −2.1385 | |||
1.3632 | p | 43.8534 | 0.8256 |
Variable | Design Values | Commercial Values |
---|---|---|
[] | 3.41 | 3.40 |
[H] | 3.98 | 3.90 |
[nF] | 319.48 | 330.00 |
[nF] | 105.54 | 100.00 |
[V] | 18.32 | NA |
D | 0.5 | 0.5 |
q | 1.412 | 1.412 |
Variable | Design Values | Commercial Values |
---|---|---|
[] | 3.95 | 3.90 |
[H] | 7.51 | 7.50 |
[nF] | 101.74 | 100.00 |
[nF] | 102.36 | 100.00 |
[V] | 24.37 | NA |
D | 0.62 | 0.62 |
q | 1.821 | 1.821 |
Parameter | Approach A | Approach B | Optimization Effect * [%] |
---|---|---|---|
[V] | 17.02 | 26.42 | 55.20 |
[V] | 2.00 | 0.08 | 96.12 |
[A] | 4.45 | 4.30 | 3.37 |
[A] | 189.00 | 6.72 | 96.45 |
[W] | 8.81 | 10.50 | 19.23 |
[W] | 8.68 | 10.43 | 20.18 |
0.99 | 0.99 | 0.79 | |
0.0027 | 0.0588 | 2078.94 |
Specification | Case 1 | Case 2 | Case 3 | Case 4 |
---|---|---|---|---|
D | 0.4 | 0.5 | nv | nv |
q | nv | nv | nv | nv |
[MHz] | 0.5 | 1 | 10 | 4 |
nv | nv | 30 | 32 | |
[V] | 12 | nv | nv | 6 |
[W] | nv | 1 | 8 | 6 |
[W] | nv | 1 | 8 | 6 |
1 | 1 | 1 | 1 | |
3.3 | nv | 2.4 | nv | |
[H] | nv | 33 | nv | nv |
[nF] | 22 | nv | nv | nv |
[nF] | nv | 22.6 | nv | nv |
maximize | ||||
nv | nv | nv | <2A |
Parameter | Case 1 | Case 2 | Case 3 | Case 4 |
---|---|---|---|---|
3.30 | 4.94 | 2.40 | 10.90 | |
[nH] | 492.19 | 520.09 | 31.05 | 1.47 |
[nF] | 133.02 | 22.60 | 2.60 | 172.20 |
[H] | 4.61 | 33.00 | 1.15 | 13.87 |
[nF] | 22.00 | 0.76 | 0.22 | 114.10 |
[V] | 12.00 | 1.93 | 4.44 | 6.00 |
[W] | 50.28 | 1.00 | 8.00 | 6.00 |
[W] | 50.28 | 1.00 | 8.00 | 6.00 |
1 | 1 | 1 | 1 | |
D | 0.40 | 0.50 | 0.55 | 0.75 |
q | 1.244 | 1.468 | 1.771 | 2.504 |
4.39 | 41.94 | 30.00 | 32.00 |
Study case | Parameter | Model | Simulated | APE * |
---|---|---|---|---|
1 | [W] | 50.28 | 51.36 | 2.14 |
[W] | 50.28 | 50.82 | 1.08 | |
1.00 | 0.99 | 1.04 | ||
2 | [W] | 1.00 | 1.00 | 0.13 |
[W] | 1.00 | 0.99 | 0.78 | |
1.00 | 0.99 | 0.65 | ||
3 | [W] | 8.00 | 8.95 | 11.89 |
[W] | 8.00 | 8.87 | 10.83 | |
1.00 | 0.99 | 0.95 | ||
0.1082 | 0.10705 | 1.06 | ||
4 | [W] | 6.00 | 6.31 | 5.20 |
[W] | 6.00 | 6.28 | 4.69 | |
1.00 | 1.00 | 0.49 | ||
[A] | 1.38 | 1.39 | 1.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casallas, I.; Paez-Rueda, C.-I.; Perilla, G.; Pérez, M.; Fajardo, A. Design Methodology of the Class-E Power Amplifier with Finite Feed Inductance—A Tutorial Approach. Appl. Sci. 2020, 10, 8765. https://doi.org/10.3390/app10248765
Casallas I, Paez-Rueda C-I, Perilla G, Pérez M, Fajardo A. Design Methodology of the Class-E Power Amplifier with Finite Feed Inductance—A Tutorial Approach. Applied Sciences. 2020; 10(24):8765. https://doi.org/10.3390/app10248765
Chicago/Turabian StyleCasallas, Ingrid, Carlos-Ivan Paez-Rueda, Gabriel Perilla, Manuel Pérez, and Arturo Fajardo. 2020. "Design Methodology of the Class-E Power Amplifier with Finite Feed Inductance—A Tutorial Approach" Applied Sciences 10, no. 24: 8765. https://doi.org/10.3390/app10248765
APA StyleCasallas, I., Paez-Rueda, C. -I., Perilla, G., Pérez, M., & Fajardo, A. (2020). Design Methodology of the Class-E Power Amplifier with Finite Feed Inductance—A Tutorial Approach. Applied Sciences, 10(24), 8765. https://doi.org/10.3390/app10248765