Generic Digital Twin Architecture for Industrial Energy Systems
Abstract
:1. Introduction
1.1. Motivation
1.2. Related Work
2. Materials and Methods
3. Proposed Generic Digital Twin Architecture
4. Proof-of-Concept: Digital Twin Instantiation
4.1. Knowledge Representation Inside the Shared Knowledge Base
4.1.1. Base Service Ontology
4.1.2. Simulation Service—Domain Ontology
4.2. Simulation Service API
4.3. Use Case: Packed-Bed Thermal Energy Storage
4.3.1. Packed-Bed Thermal Energy Storage Test Rig
4.3.2. Simulation Service Invocation
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
5D-DT | Five-Dimensional Digital Twin |
AAS | Asset Administration Shell |
PBTES | Packed-Bed Thermal Energy Storage |
CPPS | Cyber–Physical Production System |
CPS | Cyber–Physical System |
DT | Digital Twin |
GDTA | Generic Digital Twin Architecture |
HMI | Human-Machine Interface |
HTTP | Hypertext Transfer Protocol |
IIoT | Industrial Internet of Things |
IoT | Internet of Things |
IT | Information Technology |
OPC UA | OPC Unified Architecture |
OWL | Web Ontology Language |
OWL-S | Ontology Web Language for Service |
QoS | Quality of Service |
RAMI 4.0 | Reference Architecture Model Industry 4.0 |
RDF | Resource Description Framework |
REST | Representational State Transfer |
SPARQL | SPARQL Protocol and RDF Query Language |
References
- Parida, V.; Sjödin, D.; Reim, W. Reviewing literature on digitalization, business model innovation, and sustainable industry: Past achievements and future promises. Sustainability 2019, 11, 391. [Google Scholar] [CrossRef] [Green Version]
- Roblek, V.; Meško, M.; Krapež, A. A Complex View of Industry 4.0. SAGE Open 2016, 6. [Google Scholar] [CrossRef] [Green Version]
- Tao, F.; Zhang, H.; Liu, A.; Nee, A.Y. Digital Twin in Industry: State-of-the-Art. IEEE Trans. Ind. Inform. 2019, 15, 2405–2415. [Google Scholar] [CrossRef]
- UNIDO. Accelerating Clean Energy through Industry 4.0: Manufacturing the Next Revolution; Technical Report; United Nations Industrial Development Organization: Vienna, Austria, 2017. [Google Scholar]
- Lu, Y.; Liu, C.; Wang, K.I.; Huang, H.; Xu, X. Digital Twin-driven smart manufacturing: Connotation, reference model, applications and research issues. Robot. Comput. Integr. Manuf. 2020, 61, 101837. [Google Scholar] [CrossRef]
- Josifovska, K.; Yigitbas, E.; Engels, G. Reference Framework for Digital Twins within Cyber–Physical Systems. In Proceedings of the 2019 IEEE/ACM 5th International Workshop on Software Engineering for Smart Cyber–Physical Systems, SEsCPS 2019, Montreal, QC, Canada, 28 May 2019; pp. 25–31. [Google Scholar] [CrossRef]
- Malakuti, S.; van Schalkwyk, P.; Boss, B.; Ram Sastry, C.; Runkana, V.; Lin, S.W.; Rix, S.; Green, G.; Baechle, K.; Varan Nath, C. Digital Twins for Industrial Applications. Definition, Business Values, Design Aspects, Standards and Use Cases. Version 1.0. White Paper 2020, 1–19. [Google Scholar]
- Grieves, M. Digital Twin: Manufacturing Excellence through Virtual Factory Replication. A Whitepaper by Dr. Michael Grieves. White Paper 2014, 1–7. [Google Scholar]
- Monostori, L. Cyber–physical production systems: Roots, expectations and R&D challenges. Procedia CIRP 2014, 17, 9–13. [Google Scholar] [CrossRef]
- Uhlemann, T.H.; Lehmann, C.; Steinhilper, R. The Digital Twin: Realizing the Cyber–Physical Production System for Industry 4.0. Procedia CIRP 2017, 61, 335–340. [Google Scholar] [CrossRef]
- Lee, J.; Bagheri, B.; Kao, H.A. A Cyber–Physical Systems architecture for Industry 4.0-based manufacturing systems. Manuf. Lett. 2015, 3, 18–23. [Google Scholar] [CrossRef]
- Jones, D.; Snider, C.; Nassehi, A.; Yon, J.; Hicks, B. Characterising the Digital Twin: A systematic literature review. CIRP J. Manuf. Sci. Technol. 2020, 29, 36–52. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, M.; Nee, A. Five-Dimension Digital Twin Modeling and Its Key Technologies. Digit. Twin Driven Smart Manuf. 2019, 63–81. [Google Scholar] [CrossRef]
- Ashtari Talkhestani, B.; Jung, T.; Lindemann, B.; Sahlab, N.; Jazdi, N.; Schloegl, W.; Weyrich, M. An architecture of an Intelligent Digital Twin in a Cyber–Physical Production System. At-Automatisierungstechnik 2019, 67, 762–782. [Google Scholar] [CrossRef] [Green Version]
- Abburu, S.; Berre, A.J.; Jacoby, M.; Roman, D.; Stojanovic, L.; Stojanovic, N. COGNITWIN—Hybrid and Cognitive Digital Twins for the Process Industry. In Proceedings of the 2020 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), Cardiff, UK, 15–17 June 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Digital Twin Conceptual Model within the Context of Internet of Things. Future Internet 2020, 12, 163. [CrossRef]
- Bader, S.; Barnstedt, E.; Bedenbender, H.; Billman, M.; Boss, B.; Braunmandl, A.; Clauer, E.; Deppe, T.; Diedrich, C.; Flubacher, B.; et al. Details of the Asset Administration Shell. Plattf. Ind. 4.0 2019, 1, 473. [Google Scholar]
- Adolphs, P.; Bedenbender, H.; Dirzus, D.; Martin, E. Reference Architecture Model Industrie 4.0 (RAMI4.0); Technical Report July; VDI/VDE-Gesellschaft: Düsseldorf, Germany, 2015. [Google Scholar]
- IEC. IEC 62264 Enterprise-Control System Integration; Technical Report; International Electrotechnical Commission: Geneva, Switzerland, 2016. [Google Scholar]
- Fernández-López, M.; Gómez-Pérez, A.; Juristo, N. METHONTOLOGY: From Ontological Art Towards Ontological Engineering. Spring Symp. Ontol. Eng. AAAI 1997, SS-97-06, 33–40. [Google Scholar] [CrossRef]
- Poveda-Villalón, M.; Gómez-Pérez, A.; Suárez-Figueroa, M.C. OOPS! (OntOlogy Pitfall Scanner!): An On-line Tool for Ontology Evaluation. Int. J. Semant. Web Inf. Syst. (IJSWIS) 2014, 10, 7–34. [Google Scholar] [CrossRef] [Green Version]
- Glimm, B.; Horrocks, I.; Motik, B.; Stoilos, G. HermiT: Reasoning with Large Ontologies; Computer Science; University of Oxford: Oxford, UK, 2009; p. 64. [Google Scholar]
- Koschnick, G. Industrie 4.0: Smart Services; Technical Report July; German Electrical and Electronic Manufacturers’ Association: Frankfurt am Main, Germany, 2016. [Google Scholar]
- Jammes, F.; Smit, H. Service-oriented paradigms in industrial automation. IEEE Trans. Ind. Inform. 2005, 1, 62–70. [Google Scholar] [CrossRef]
- Boschert, S.; Rosen, R. Digital Twin—The Simulation Aspect. In Mechatronic Futures; Hehenberger, P., Bradley, D., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 59–74. [Google Scholar] [CrossRef]
- Martin, D.; Burstein, M.; Hobbs, J.; Lassila, O.; McDermott, D.; McIlraith, S.; Narayanan, S.; Paolucci, M.; Parsia, B.; Payne, T.; et al. OWL-S: Semantic markup for web services. W3C Memb. Submiss. 2004, 22. [Google Scholar]
- Hobbs, J.R.; Little, C. Time Ontology in OWL. W3C Candidate Recommendation; Technical Report; World Wide Web Consortium (W3C): Cambridge, MA, USA, 2020. [Google Scholar]
- Knublauch, H.; Fergerson, R.W.; Noy, N.F.; Musen, M.A. The Protégé OWL plugin: An open development environment for semantic web applications. In International Semantic Web Conference; Springer: Berlin/Heidelberg, Germany, 2004; pp. 229–243. [Google Scholar]
- Jacoby, M.; Usländer, T. Digital Twin and Internet of Things—Current Standards Landscape. Appl. Sci. 2020, 10, 6519. [Google Scholar] [CrossRef]
- Publio, G.C.; Esteves, D.; Lawrynowicz, A.; Panov, P.; Soldatova, L.N.; Soru, T.; Vanschoren, J.; Zafar, H. ML-Schema: Exposing the Semantics of Machine Learning with Schemas and Ontologies. arXiv 2018, arXiv:1807.05351. [Google Scholar]
- Ławrynowicz, A.; Panov, P.; Soldatova, L.; Soru, T.; Vanschoren, J. ML Schema Core Specification. W3C Release 17 October 2016; Technical Report; World Wide Web Consortium (W3C): Cambridge, MA, USA, 2016. [Google Scholar]
- Andreozzi, A.; Bianco, N.; Manca, O.; Nardini, S.; Naso, V. Numerical investigation of sensible thermal energy storage in high temperature solar systems. Comput. Methods Exp. Meas. XIV 2009, 48, 461–472. [Google Scholar] [CrossRef] [Green Version]
- Dincer, I.; Rosen, M.A. Chapter 6—Heat Storage Systems. In Exergy Analysis of Heating, Refrigerating and Air Conditioning; Dincer, I., Rosen, M.A., Eds.; Elsevier: Boston, MA, USA, 2015; pp. 221–278. [Google Scholar] [CrossRef]
- Lund, H.; Østergaard, P.; Connolly, D.; Ridjan, I.; Mathiesen, B.; Hvelplund, F.; Thellufsen, J.; Sorknses, P. Energy storage and smart energy systems. Int. J. Sustain. Energy Plan. Manag. 2016, 11, 3–14. [Google Scholar] [CrossRef]
- Hofmann, R.; Halmschlager, V.; Koller, M.; Scharinger-Urschitz, G.; Birkelbach, F.; Walter, H. Comparison of a physical and a data-driven model of a Packed Bed Regenerator for industrial applications. J. Energy Storage 2019, 23, 558–578. [Google Scholar] [CrossRef]
- Michalka, A. Experimentelle Untersuchungen eines Festbettregenerators mit feinem Kies als Speichermaterial. Ph.D. Thesis, Technicacl University of Vienna, Vienna, Austria, 2018. [Google Scholar]
- Mayrhuber, F.; Walter, H.; Hameter, M. Experimental and numerical investigation on a fixed bed regenerator. In Proceedings of the 10th International Conference on Sustainable Energy and Environmental Protection, Bled, Slovenia, 27–30 June 2017; University of Maribor Press: Maribor, Slovenia, 2017; p. 30. [Google Scholar]
- Halmschlager, V.; Koller, M.; Birkelbach, F.; Hofmann, R. Grey Box Modeling of a Packed-Bed Regenerator Using Recurrent Neural Networks. IFAC-PapersOnLine 2019, 52, 765–770. [Google Scholar] [CrossRef]
- Gorecky, D.; Schmitt, M.; Loskyll, M.; Zühlke, D. Human-machine-interaction in the industry 4.0 era. In Proceedings of the 2014 12th IEEE International Conference on Industrial Informatics, INDIN 2014, Porto Alegre, Brazil, 27–30 July 2014; pp. 289–294. [Google Scholar] [CrossRef]
- Jochem, R.; Klasen, W.; Linke, L.; Jaenicke, L.; Gamer, T.; Stolz, M.; Mehrfeld, J.; Teuscher, A.; Fritsche, W. Security in RAMI4.0; Technical Report; Platform Industrie 4.0: Berlin, Germany, 2016. [Google Scholar]
- Bader, S.R.; Maleshkova, M. The Semantic Asset Administration Shell; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; Volume 1, pp. 159–174. [Google Scholar] [CrossRef] [Green Version]
Name | Target Domain | Structure | Main Parts | Level of Abstraction |
---|---|---|---|---|
3D-DT [8] | Life-cycle Management | component-based | 3 components | high |
5D-DT [13] | Manufacturing | component-based | 5 components | high |
5C Architecture [11] | CPS in manufacturing | layer-based | 5 layers | high |
Intelligent DT [14] | Production Systems | component-based | 4 interfaces & 9 components | low |
Ref. Framework for DT [6] | CPS in general | component-based | 4 main components | low |
COGNITWIN [15] | Process Industry | components & layers | 5 layers & 19 components | low |
Conceptual DT Model [16] | CPS in general | layer-based | 6 layers | medium |
ASS [17] | Manufacturing | only meta-model | ongoing work | — |
Endpoint | Description | HTTP | URL | Parameters |
---|---|---|---|---|
service | Returns information about the simulation service as JSON | ‘GET‘ | /servicestate | none |
model | Returns information about the current model within the simulation service as JSON | ‘GET‘ | /model/ | none |
train | Trains the current model and returns information of the current model together with a summary of the model performance. | ‘PUT‘ | /train | data_path = path to the training data; model_params = dictionary with model parameters |
predict | Returns prediction of the input data from the selected model instance as JSON | ‘GET‘ | /predict | model = modelLocation returned by calling model-endpoint or after a training invocation; data_path = path to the input data |
uploaddata | Uploads new data to the simulation service which is used for training or prediction | ‘POST‘ | /upload/data/ | file = data stored in a file in arbitrary format |
uploadmodel | Uploads a new model for the Matlab based Simulation Service instance. | ‘POST‘ | /upload/model/ | file = code stored in a Matlab file |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steindl, G.; Stagl, M.; Kasper, L.; Kastner, W.; Hofmann, R. Generic Digital Twin Architecture for Industrial Energy Systems. Appl. Sci. 2020, 10, 8903. https://doi.org/10.3390/app10248903
Steindl G, Stagl M, Kasper L, Kastner W, Hofmann R. Generic Digital Twin Architecture for Industrial Energy Systems. Applied Sciences. 2020; 10(24):8903. https://doi.org/10.3390/app10248903
Chicago/Turabian StyleSteindl, Gernot, Martin Stagl, Lukas Kasper, Wolfgang Kastner, and Rene Hofmann. 2020. "Generic Digital Twin Architecture for Industrial Energy Systems" Applied Sciences 10, no. 24: 8903. https://doi.org/10.3390/app10248903
APA StyleSteindl, G., Stagl, M., Kasper, L., Kastner, W., & Hofmann, R. (2020). Generic Digital Twin Architecture for Industrial Energy Systems. Applied Sciences, 10(24), 8903. https://doi.org/10.3390/app10248903