Effects of Acupuncture Treatment on Functional Brain Networks of Parkinson’s Disease Patients during Treadmill Walking: An fNIRS Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Inclusion and Exclusion Criteria
2.4. Intervention
2.5. Measurement
fNIRS Measurement
2.6. Data Analysis
2.6.1. Preprocessing
2.6.2. Time-Series Analysis
2.6.3. Statistical Analysis
2.6.4. Functional Connectivity Analysis
3. Results
3.1. Spatial Registration
3.2. Cortical Activation
3.3. Functional Connectivity
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Ethics Statements
Abbreviations
fNIRS | functional near-infrared spectroscopy |
PD | Parkinson’s disease |
HbO | oxy-hemoglobin |
M1 | primary motor cortex |
SMA | supplementary motor area |
PFC | prefrontal cortex |
SM1 | primary somatosensory area |
PMC | premotor cortex |
fMRI | functional magnetic resonance imaging |
IG | intervention group |
CG | control group |
IRB | Institutional Review Board |
ICA | independent component analysis |
HRF | hemodynamic response function |
MDL | minimum description length |
ROIs | regions of interest |
MDS-UPDRS | movement disorder society—unified Parkinson’s Disease Rating Scale |
References
- Tarsy, D.; Gordon, L. Clinical diagnostic criteria for Parkinson’s disease. In Parkinson’s Disease; CRC Press: Boca Raton, FL, USA, 2012; pp. 732–741. [Google Scholar]
- Johnell, O.; Melton, L.J., III; Atkinson, E.J.; O’Fallon, W.M.; Kurland, L.T. Fracture risk in patients with parkinsonism: A population-based study in Olmsted County, Minnesota. Age Ageing 1992, 21, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Albani, G.; Cimolin, V.; Fasano, A.; Trotti, C.; Galli, M.; Mauro, A. “Masters and servants” in parkinsonian gait: A three-dimensional analysis of biomechanical changes sensitive to disease progression. Funct. Neurol. 2014, 29, 99. [Google Scholar] [PubMed]
- Vallabhajosula, S.; Buckley, T.A.; Tillman, M.D.; Hass, C.J. Age and Parkinson’s disease related kinematic alterations during multi-directional gait initiation. Gait Posture 2013, 37, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Bega, D.; Zadikoff, C. Complementary & alternative management of Parkinson’s disease: An evidence-based review of eastern influenced practices. J. Mov. Disord. 2014, 7, 57. [Google Scholar]
- Lee, S.-H.; Lim, S. Clinical effectiveness of acupuncture on Parkinson disease: A PRISMA-compliant systematic review and meta-analysis. Medicine 2017, 96, e5836. [Google Scholar] [CrossRef]
- Lei, H.; Toosizadeh, N.; Schwenk, M.; Sherman, S.; Karp, S.; Sternberg, E.; Najafi, B. A pilot clinical trial to objectively assess the efficacy of electroacupuncture on gait in patients with Parkinson’s disease using body worn sensors. PLoS ONE 2016, 11, e0155613. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.-Y.; Shim, S.-R.; Rhee, H.Y.; Park, H.-J.; Jung, W.-S.; Moon, S.-K.; Park, J.-M.; Ko, C.-N.; Cho, K.-H.; Park, S.-U. Effectiveness of acupuncture and bee venom acupuncture in idiopathic Parkinson’s disease. Parkinsonism Relat. Disord. 2012, 18, 948–952. [Google Scholar] [CrossRef]
- Takeuchi, N.; Izumi, S.-I. Rehabilitation with poststroke motor recovery: A review with a focus on neural plasticity. Stroke Res. Treat. 2013, 2013, 128641. [Google Scholar] [CrossRef] [Green Version]
- Chau, A.C.; Cheung, R.T.F.; Jiang, X.; Au-Yeung, P.K.; Li, L.S. An fMRI study showing the effect of acupuncture in chronic stage stroke patients with aphasia. J. Acupunct. Meridian Stud. 2010, 3, 53–57. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Jack, C.R., Jr.; Yang, E.S. An fMRI study of somatosensory-implicated acupuncture points in stable somatosensory stroke patients. J. Magn. Reson. Imaging Off. J. Int. Soc. Magn. Reson. Med. 2006, 24, 1018–1024. [Google Scholar]
- Kim, H.Y.; Seo, K.; Jeon, H.J.; Lee, U.; Lee, H. Application of functional near-infrared spectroscopy to the study of brain function in humans and animal models. Mol. Cells 2017, 40, 523. [Google Scholar] [CrossRef] [Green Version]
- Gramigna, V.; Pellegrino, G.; Cerasa, A.; Cutini, S.; Vasta, R.; Olivadese, G.; Martino, I.; Quattrone, A. Near-infrared spectroscopy in gait disorders: Is it time to begin? Neurorehabil. Neural Repair 2017, 31, 402–412. [Google Scholar] [CrossRef] [Green Version]
- Stuart, S.; Vitorio, R.; Morris, R.; Martini, D.N.; Fino, P.C.; Mancini, M. Cortical activity during walking and balance tasks in older adults and in people with Parkinson’s disease: A structured review. Maturitas 2018, 113, 53–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, J.-H.; Park, S.; An, J.; Choi, J.-D.; Seol, I.C.; Park, G.; Lee, S.H.; Moon, Y.; Kang, W.; Jung, E.-S.; et al. Gait Disturbance Improvement and Cerebral Cortex Rearrangement by Acupuncture in Parkinson’s Disease: A Pilot Assessor-Blinded, Randomized, Controlled, Parallel-Group Trial. Neurorehabil. Neural Repair 2020. [Google Scholar] [CrossRef]
- Skidmore, F.; Korenkevych, D.; Liu, Y.; He, G.; Bullmore, E.; Pardalos, P.M. Connectivity brain networks based on wavelet correlation analysis in Parkinson fMRI data. Neurosci. Lett. 2011, 499, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Wang, L.; Chen, Y.; Zhao, C.; Li, K.; Chan, P. Changes of functional connectivity of the motor network in the resting state in Parkinson’s disease. Neurosci. Lett. 2009, 460, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.-H.; Kim, H.; Jung, I.; Yoo, H. Acupuncture for improving gait disturbance in Parkinson’s disease: A study protocol for a pilot randomized controlled trial. Eur. J. Integr. Med. 2018, 20, 16–21. [Google Scholar] [CrossRef]
- MacPherson, H.; White, A.; Cummings, M.; Jobst, K.; Rose, K.; Niemtzow, R. Standards for reporting interventions in controlled trials of acupuncture: The STRICTA recommendations. Complement. Ther. Med. 2001, 9, 246–249. [Google Scholar] [CrossRef] [Green Version]
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel, R. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov. Disord. Off. J. Mov. Disord. Soc. 2008, 23, 2129–2170. [Google Scholar] [CrossRef]
- Maki, A.; Yamashita, Y.; Ito, Y.; Watanabe, E.; Mayanagi, Y.; Koizumi, H. Spatial and temporal analysis of human motor activity using noninvasive NIR topography. Med. Phys. 1995, 22, 1997–2005. [Google Scholar] [CrossRef]
- Miyai, I.; Tanabe, H.C.; Sase, I.; Eda, H.; Oda, I.; Konishi, I.; Tsunazawa, Y.; Suzuki, T.; Yanagida, T.; Kubota, K. Cortical mapping of gait in humans: A near-infrared spectroscopic topography study. Neuroimage 2001, 14, 1186–1192. [Google Scholar] [CrossRef] [PubMed]
- Hoshi, Y. Functional near-infrared optical imaging: Utility and limitations in human brain mapping. Psychophysiology 2003, 40, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.; Park, J.-S.; Jung, Y.-J. OptoNet: A MATLAB-based toolbox for cortical network analyses using functional near-infrared spectroscopy. Opt. Eng. 2019, 59, 061602. [Google Scholar] [CrossRef]
- Robertson, F.C.; Douglas, T.S.; Meintjes, E.M. Motion artifact removal for functional near infrared spectroscopy: A comparison of methods. IEEE Trans. Biomed. Eng. 2010, 57, 1377–1387. [Google Scholar] [CrossRef] [PubMed]
- Kohno, S.; Miyai, I.; Seiyama, A.; Oda, I.; Ishikawa, A.; Tsuneishi, S.; Amita, T.; Shimizu, K. Removal of the skin blood flow artifact in functional near-infrared spectroscopic imaging data through independent component analysis. J. Biomed. Opt. 2007, 12, 062111. [Google Scholar] [CrossRef] [PubMed]
- Dien, J. Issues in the application of the average reference: Review, critiques, and recommendations. Behav. Res. Methods Instrum. Comput. 1998, 30, 34–43. [Google Scholar] [CrossRef]
- Junghöfer, M.; Elbert, T.; Tucker, D.M.; Braun, C. The polar average reference effect: A bias in estimating the head surface integral in EEG recording. Clin. Neurophysiol. 1999, 110, 1149–1155. [Google Scholar] [CrossRef] [Green Version]
- Jang, K.-E.; Tak, S.; Jung, J.; Jang, J.; Jeong, Y.; Ye, Y.C. Wavelet minimum description length detrending for near-infrared spectroscopy. J. Biomed. Opt. 2009, 14, 034004. [Google Scholar] [CrossRef]
- Scholkmann, F.; Kleiser, S.; Metz, A.J.; Zimmermann, R.; Pavia, J.M.; Wolf, U.; Wolf, M. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage 2014, 85, 6–27. [Google Scholar] [CrossRef]
- Wolf, M.; Wolf, U.; Toronov, V.; Michalos, A.; Paunescu, L.A.; Choi, J.H.; Gratton, E. Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: A near-infrared spectroscopy study. Neuroimage 2002, 16, 704–712. [Google Scholar] [CrossRef] [Green Version]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, J.C.; Tak, S.; Jang, K.E.; Jung, J.; Jang, J. NIRS-SPM: Statistical parametric mapping for near-infrared spectroscopy. Neuroimage 2009, 44, 428–447. [Google Scholar] [CrossRef] [PubMed]
- Varotto, G.; Visani, E.; Franceschetti, S.; Sparacino, G.; Panzica, F. Spectral and coherence analysis of EEG during intermittent photic stimulation in patients with photosensitive epilepsy. Int. J. Bioelectromagn. 2009, 11, 189–193. [Google Scholar]
- Singh, A.K.; Okamoto, M.; Dan, H.; Jurcak, V.; Dan, I. Spatial registration of multichannel multi-subject fNIRS data to MNI space without MRI. Neuroimage 2005, 27, 842–851. [Google Scholar] [CrossRef] [PubMed]
- Maillet, A.; Pollak, P.; Debû, B. Imaging gait disorders in parkinsonism: A review. J. Neurol. Neurosurg. Psychiatry 2012, 83, 986–993. [Google Scholar] [CrossRef]
- La Fougere, C.; Zwergal, A.; Rominger, A.; Förster, S.; Fesl, G.; Dieterich, M.; Brandt, T.; Strupp, M.; Bartenstein, P.; Jahn, K. Real versus imagined locomotion: A [18F]-FDG PET-fMRI comparison. Neuroimage 2010, 50, 1589–1598. [Google Scholar] [CrossRef]
- Zwergal, A.; Linn, J.; Xiong, G.; Brandt, T.; Strupp, M.; Jahn, K. Aging of human supraspinal locomotor and postural control in fMRI. Neurobiol. Aging 2012, 33, 1073–1084. [Google Scholar] [CrossRef]
- Fukuyama, H.; Ouchi, Y.; Matsuzaki, S.; Nagahama, Y.; Yamauchi, H.; Ogawa, M.; Kimura, J.; Shibasaki, H. Brain functional activity during gait in normal subjects: A SPECT study. Neurosci. Lett. 1997, 228, 183–186. [Google Scholar] [CrossRef]
- Brinkman, C.; Porter, R. Supplementary motor area in the monkey: Activity of neurons during performance of a learned motor task. J. Neurophysiol. 1979, 42, 681–709. [Google Scholar] [CrossRef]
- Sabatini, U.; Boulanouar, K.; Fabre, N.; Martin, F.; Carel, C.; Colonnese, C.; Bozzao, L.; Berry, I.; Montastruc, J.; Chollet, F. Cortical motor reorganization in akinetic patients with Parkinson’s disease: A functional MRI study. Brain 2000, 123, 394–403. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.-P.; Wang, N.-H.; Li, T.-C.; Hsieh, C.-L.; Chang, H.-H.; Hwang, K.-L.; Ko, W.-S.; Chang, M.-H. A randomized clinical trial of acupuncture versus oral steroids for carpal tunnel syndrome: A long-term follow-up. J. Pain 2011, 12, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Maeda, Y.; Kim, H.; Kettner, N.; Kim, J.; Cina, S.; Malatesta, C.; Gerber, J.; McManus, C.; Ong-Sutherland, R.; Mezzacappa, P. Rewiring the primary somatosensory cortex in carpal tunnel syndrome with acupuncture. Brain 2017, 140, 914–927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maidan, I.; Bernad-Elazari, H.; Giladi, N.; Hausdorff, J.M.; Mirelman, A. When is higher level cognitive control needed for locomotor tasks among patients with Parkinson’s disease? Brain Topogr. 2017, 30, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Maidan, I.; Nieuwhof, F.; Bernad-Elazari, H.; Reelick, M.F.; Bloem, B.R.; Giladi, N.; Deutsch, J.E.; Hausdorff, J.M.; Claassen, J.A.; Mirelman, A. The role of the frontal lobe in complex walking among patients with Parkinson’s disease and healthy older adults: An fNIRS study. Neurorehabil. Neural Repair 2016, 30, 963–971. [Google Scholar] [CrossRef] [Green Version]
Intervention Group | Control Group | p-Value | |
---|---|---|---|
Males, n (%) | 10 (76.92%) | 7 (53.85%) | 0.2162 |
Females, n (%) | 3 (23.08%) | 6 (46.15%) | |
Age (years) | 65.38 ± 7.81 | 61.46 ± 8.33 | 0.2274 |
Age at onset (years) | 58.46 ± 10.10 | 53.08 ± 9.26 | 0.1693 |
Disease duration (years) | 6.92 ± 4.83 | 8.38 ± 3.88 | 0.3917 |
Hoehn & Yahr scale score | 1.92 ± 0.64 | 1.85 ± 0.69 | 0.7706 |
Ch | MNI | Region | Ch | MNI | Region | ||||
---|---|---|---|---|---|---|---|---|---|
x | y | z | x | y | x | ||||
1 | 37 | −34 | 72 | SM1 | 25 | 8 | 31 | 63 | SMA |
2 | 17 | −33 | 79 | SM1 | 26 | −11 | 32 | 62 | PMC |
3 | −4 | −38 | 78 | M1 | 27 | −32 | 28 | 55 | DLPFC |
4 | −21 | −32 | 76 | SM1 | 28 | 39 | 41 | 41 | DLPFC |
5 | 49 | −22 | 65 | SM1 | 29 | 25 | 42 | 50 | FEF |
6 | 28 | −21 | 75 | M1 | 30 | 12 | 42 | 56 | FEF |
7 | 10 | −20 | 79 | PMC | 31 | −3 | 42 | 54 | FEF |
8 | −13 | −20 | 79 | PMC | 32 | −18 | 42 | 53 | FEF |
9 | −35 | −21 | 73 | PMC | 33 | −34 | 39 | 44 | FEF |
10 | 38 | −10 | 69 | SMA | 34 | 44 | 51 | 26 | FPA |
11 | 16 | −7 | 76 | SMA | 35 | 20 | 51 | 46 | FEF |
12 | −7 | −8 | 77 | SMA | 36 | 6 | 49 | 50 | FEF |
13 | −23 | −11 | 75 | SMA | 37 | −13 | 51 | 48 | FEF |
14 | 44 | 5 | 60 | PMC | 38 | −38 | 51 | 30 | FPA |
15 | 24 | 7 | 71 | PMC | 39 | 14 | 58 | 40 | DLPFC |
16 | 10 | 5 | 74 | PMC | 40 | −8 | 58 | 42 | DLPFC |
17 | −13 | 6 | 73 | PMC | 41 | 33 | 63 | 20 | FPA |
18 | −34 | 5 | 66 | PMC | 42 | 24 | 63 | 29 | FPA |
19 | 33 | 19 | 62 | SMA | 43 | 4 | 63 | 32 | FPA |
20 | 15 | 19 | 68 | PMC | 44 | −17 | 63 | 30 | FPA |
21 | −4 | 18 | 68 | PMC | 45 | −27 | 64 | 20 | FPA |
22 | −21 | 21 | 66 | SMA | 46 | 15 | 70 | 22 | FPA |
23 | 40 | 28 | 52 | FEF | 47 | −11 | 70 | 20 | FPA |
24 | 20 | 32 | 60 | FEF |
V1 | V4 | V8 | V1 vs. V4 | V4 vs. V8 | V1 vs. V8 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD (mM) | Mean ± SD (mM) | Mean ± SD (mM) | t-Value | p-Value | t-Value | p-Value | t-Value | p-Value | ||
CG | M1 | 0.498 ± 0.00008 | 0.433 ± 0.00004 | 0.658 ± 0.00011 | 0.0005 | 1.00 | −1.224 | 0.23 | −0.827 | 0.415 |
SMA | 0.498 ± 0.00007 | 0.423 ± 0.00004 | 0.453 ± 0.00005 | 0.1910 | 0.849 | −1.408 | 0.163 | −1.344 | 0.183 | |
PFC | 0.569 ± 0.00008 | 0.489 ± 0.00004 | 0.482 ± 0.00006 | 1.9556 | 0.0542 | −0.667 | 0.507 | 1.842 | 0.0694 | |
IG | M1 | 0.58 ± 0.00007 | 0.419 ± 0.00003 | 0.477 ± 0.00004 | −1.708 | 0.0958 | −3.940 | 3.37 × 10−4 *** | −5.724 | 1.36 × 10−6 *** |
SMA | 0.705 ± 0.00008 | 0.587 ± 0.00004 | 0.568 ± 0.00005 | −4.684 | 9.94 × 10−6 *** | −3.905 | 1.82 × 10−4 *** | −6.836 | 9.44 × 10−10 *** | |
PFC | 1.02 ± 0.0001 | 0.773 ± 0.00005 | 0.667 ± 0.00005 | −1.474 | 0.144 | −1.508 | 0.135 | −3.413 | 9.65 × 10−4 *** |
CG | IG | t-Value | p-Value | ||
---|---|---|---|---|---|
Mean ± SD (mM) | Mean ± SD (mM) | ||||
M1 | V1 | 0.498 ± 0.00008 | 0.58 ± 0.00007 | −0.753 | 0.4542 |
V4 | 0.433 ± 0.00004 | 0.419 ± 0.00003 | 0.267 | 6.54 × 10−2 | |
V8 | 0.658 ± 0.00011 | 0.477 ± 0.00004 | 1.701 | 9.32 × 10−4 *** | |
SMA | V1 | 0.498 ± 0.00008 | 0.705 ± 0.00008 | −1.872 | 0.7898 |
V4 | 0.423 ± 0.00004 | 0.587 ± 0.00004 | −3.105 | 2.20 × 10−3 ** | |
V8 | 0.453 ± 0.00005 | 0.568 ± 0.00005 | −1.635 | 4.75 × 10−6 *** | |
PFC | V1 | 0.569 ± 0.00008 | 1.02 ± 0.0001 | −3.457 | 9.08 × 10−2 |
V4 | 0.489 ± 0.00004 | 0.773 ± 0.00005 | −4.731 | 0.104 | |
V8 | 0.482 ± 0.00006 | 0.667 ± 0.00005 | −2.376 | 1.86 × 10−2 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.H.; Park, S.-S.; Jang, J.-h.; Jin, S.H.; Baik, Y.-S.; Yoo, H.-R. Effects of Acupuncture Treatment on Functional Brain Networks of Parkinson’s Disease Patients during Treadmill Walking: An fNIRS Study. Appl. Sci. 2020, 10, 8954. https://doi.org/10.3390/app10248954
Lee SH, Park S-S, Jang J-h, Jin SH, Baik Y-S, Yoo H-R. Effects of Acupuncture Treatment on Functional Brain Networks of Parkinson’s Disease Patients during Treadmill Walking: An fNIRS Study. Applied Sciences. 2020; 10(24):8954. https://doi.org/10.3390/app10248954
Chicago/Turabian StyleLee, Seung Hyun, Sang-Soo Park, Jung-hee Jang, Sang Hyeon Jin, Young-Soo Baik, and Ho-Ryong Yoo. 2020. "Effects of Acupuncture Treatment on Functional Brain Networks of Parkinson’s Disease Patients during Treadmill Walking: An fNIRS Study" Applied Sciences 10, no. 24: 8954. https://doi.org/10.3390/app10248954
APA StyleLee, S. H., Park, S. -S., Jang, J. -h., Jin, S. H., Baik, Y. -S., & Yoo, H. -R. (2020). Effects of Acupuncture Treatment on Functional Brain Networks of Parkinson’s Disease Patients during Treadmill Walking: An fNIRS Study. Applied Sciences, 10(24), 8954. https://doi.org/10.3390/app10248954