Nutrients Recovery during Vermicomposting of Cow Dung, Pig Manure, and Biochar for Agricultural Sustainability with Gases Emissions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Waste Materials for Vermicomposting
2.3. Experimental Setup
2.4. Physiochemical Properties and Nutrients Analysis
2.5. Measurement of Ammonia Volatilization
2.6. Measurement of Greenhouse Gas Emissions
2.7. Statistical Analyses
3. Results and Discussion
3.1. EC and pH during Vermicomposting
3.2. Macronutrients during Degradation Processes
3.3. Micronutrients during Degradation Processes
3.4. Dynamics of Nitrogen and Carbon Forms
3.5. NH3 Volatilization
3.6. CO2, CH4, and N2O Emissions
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- ISWA–Global Assessment of Municipal Organic Waste Production and Recycling. 2020. Available online: https://www.altereko.it/wp-content/uploads/2020/03/Report-1-Global-Assessment-of-Municipal-Organic-Waste.pdf (accessed on 9 December 2020).
- Szanto, G.L.; Hamelers, H.V.M.; Rulkens, W.H.; Veeken, A.H.M. NH3, N2O and CH4 emissions during passively aerated composting of straw-rich pig manure. Bioresour. Technol. 2007, 98, 2659–2670. [Google Scholar] [CrossRef]
- Hanc, A.; Chadimova, Z. Nutrient recovery from apple pomace waste by vermicomposting technology. Bioresour. Technol. 2014, 168, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.K.; Agarwal, S.K.; Chauhan, K.; Valani, D. The wonders of earthworms and its vermicompost in farm production: Charles Darwin’s ‘friends of farmers’, with potential to replace destructive chemical fertilizers. Agric. Sci. 2010, 1, 76–94. [Google Scholar] [CrossRef] [Green Version]
- Domínguez, J.; Aira, M.; Gómez-Brandón, M. Vermicomposting: Earthworms enhance the work of microbes. In Microbes at Work; Springer Science and Business Media LLC: Berlin, Germany, 2010; pp. 93–114. [Google Scholar]
- Sharma, K.; Garg, V.K. Management of food and vegetable processing waste spiked with buffalo waste using earthworms (Eisenia fetida). Environ. Sci. Pollut. Res. 2017, 24, 7829–7836. [Google Scholar] [CrossRef]
- Zhou, H.-B.; Ma, C.; Gao, D.; Chen, T.-B.; Zheng, G.-D.; Chen, J.; Pan, T.-H. Application of a recyclable plastic bulking agent for sewage sludge composting. Bioresour. Technol. 2014, 152, 329–336. [Google Scholar] [CrossRef]
- Mohee, R.; Soobhany, N. Comparison of heavy metals content in compost against vermicompost of organic solid waste: Past and present. Resour. Conserv. Recycl. 2014, 92, 206–213. [Google Scholar] [CrossRef]
- Soobhany, N.; Mohee, R.; Garg, V.K. Comparative assessment of heavy metals content during the composting and vermicomposting of Municipal Solid Waste employing Eudrilus eugeniae. Waste Manag. 2015, 39, 130–145. [Google Scholar] [CrossRef] [PubMed]
- Soobhany, N.; Mohee, R.; Garg, V.K. Recovery of nutrient from Municipal Solid Waste by composting and vermicomposting using earthworm Eudrilus eugeniae. J. Environ. Chem. Eng. 2015, 3, 2931–2942. [Google Scholar] [CrossRef]
- Pirsaheb, M.; Sharafi, K.; Khosravi, T. Domestic scale vermicomposting for solid waste management. Int. J. Recycl. Org. Waste Agric. 2013, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Zhu, B. Diversity and abundance of soil fauna as influenced by long-term fertilization in cropland of purple soil, China. Soil Tillage Res. 2015, 146, 39–46. [Google Scholar] [CrossRef]
- Sánchez-Monedero, M.; Cayuela, M.; Roig, A.; Jindo, K.; Mondini, C.; Bolan, N. Role of biochar as an additive in organic waste composting. Bioresour. Technol. 2018, 247, 1155–1164. [Google Scholar] [CrossRef] [PubMed]
- Roberts, P.; Jones, D.L.; Edwards, G. Yield and vitamin C content of tomatoes grown in vermicomposted wastes. J. Sci. Food Agric. 2007, 87, 1957–1963. [Google Scholar] [CrossRef]
- Jouquet, P.; Plumere, T.; Thu, T.D.; Rumpel, C.; Duc, T.T.; Orange, D. The rehabilitation of tropical soils using compost and vermicompost is affected by the presence of endogeic earthworms. Appl. Soil Ecol. 2010, 46, 125–133. [Google Scholar] [CrossRef]
- Teenstra, E.; Vellinga, T.V.; Aktasaeng, N.; Amatayaku, W.; Ndambi, A.; Pelster, D.; Germer, L.; Jenet, A.; Opio, C.; Andeweg, K. Global Asessment of Manure Management Policies and Practices; UR Livestock Research: Wageningen, The Netherlands, 2014. [Google Scholar]
- Elvira, C.; Sampedro, L.; Benítez, E.; Nogales, R. Vermicomposting of sludges from paper mill and dairy industries with Eisenia andrei: A pilot-scale study. Bioresour. Technol. 1998, 63, 205–211. [Google Scholar] [CrossRef]
- Eskandari, H.; Kazemi, K. Changes in germination properties of rape (Brassica napus L.) as affected by hydropriming of seeds. J. Basic Appl. Sci. Res. 2012, 2, 3285–3288. [Google Scholar]
- Hu, Q.; Hua, W.; Yin, Y.; Zhang, X.; Liu, L.; Shi, J.; Zhao, Y.; Qin, L.; Chen, C.; Wang, H. Rapeseed research and production in China. Crop. J. 2017, 5, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Pang, J.-Z.; Qiao, Y.-H.; Sun, Z.; Zhang, S.-X.; Li, Y.-L.; Zhang, R.-Q. Effects of epigeic earthworms on decomposition of wheat straw and nutrient cycling in agricultural soils in a reclaimed salinity area: A microcosm study. Pedosphere 2012, 22, 726–735. [Google Scholar] [CrossRef]
- Raza, S.T.; Bo, Z.; Ali, Z.; Liang, T.J. Vermicomposting by Eisenia Fetida is a sustainable and eco-friendly technology for better nutrient recovery and organic waste management in upland areas of China. Pak. J. Zool. 2019, 51, 1027. [Google Scholar] [CrossRef]
- Behera, S.N.; Sharma, M.; Aneja, V.; Balasubramanian, R. Ammonia in the atmosphere: A review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environ. Sci. Pollut. Res. 2013, 20, 8092–8131. [Google Scholar] [CrossRef]
- Liang, Y.; Leonard, J.; Feddes, J.; McGill, W. Influence of carbon and buffer amendment on ammonia volatilization in composting. Bioresour. Technol. 2006, 97, 748–761. [Google Scholar] [CrossRef]
- Wang, J.Z.; Hu, Z.Y.; Zhou, X.; An, Z.Z.; Gao, J.F.; Liu, X.N.; Jiang, L.L.; Lu, J.; Kang, X.M.; Li, M.; et al. Effects of reed straw, zeolite, and superphosphate amendments on ammonia and greenhouse gas emissions from stored duck manure. J. Environ. Qual. 2012, 41, 1221–1227. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Wang, Q.; Huang, H.; Li, R.; Shen, F.; Lahori, A.H.; Wang, P.; Guo, D.; Guo, Z.; Jiang, S.; et al. Effect of biochar amendment on greenhouse gas emission and bio-availability of heavy metals during sewage sludge co-composting. J. Clean. Prod. 2016, 135, 829–835. [Google Scholar] [CrossRef]
- Borchard, N.; Wolf, A.; Laabs, V.; Aeckersberg, R.; Scherer, H.W.; Moeller, A.; Amelung, W. Physical activation of biochar and its meaning for soil fertility and nutrient leaching–A greenhouse experiment. Soil Use Manag. 2012, 28, 177–184. [Google Scholar] [CrossRef]
- Chowdhury, M.A.; de Neergaard, A.; Jensen, L.S. Composting of solids separated from anaerobically digested animal manure: Effect of different bulking agents and mixing ratios on emissions of greenhouse gases and ammonia. Biosyst. Eng. 2014, 124, 63–77. [Google Scholar] [CrossRef]
- Ermolaev, E.; Sundberg, C.; Pell, M.; Jönsson, H. Greenhouse gas emissions from home composting in practice. Bioresour. Technol. 2014, 151, 174–182. [Google Scholar] [CrossRef]
- Zhou, M.; Zhu, B.; Brüggemann, N.; Bergmann, J.; Wang, Y.; Butterbach-Bahl, K. N2O and CH4 emissions, and NO3−leaching on a crop-yield basis from a subtropical rain-fed wheat–maize rotation in response to different types of nitrogen fertilizer. Ecosystems 2014, 17, 286–301. [Google Scholar] [CrossRef]
- Mahaly, M.; Senthilkumar, A.K.; Arumugam, S.; Kaliyaperumal, C.; Karupannan, N. Vermicomposting of distillery sludge waste with tea leaf residues. Sustain. Environ. Res. 2018, 28, 223–227. [Google Scholar] [CrossRef]
- Lu, R. Analytical Methods of Soil Agrochemistry; China Agricultural Science and Technology Press: Beijing, China, 1999. [Google Scholar]
- Guangming, T.; Jinliu, C.; Zucong, C.; Litao, R. Ammonia volatilization from winter wheat field top dressed with urea. Pedosphere 1998, 8, 331–336. [Google Scholar]
- Cao, Y.; Tian, Y.; Yin, B.; Zhu, Z. Assessment of ammonia volatilization from paddy fields under crop management practices aimed to increase grain yield and N efficiency. Field Crop. Res. 2013, 147, 23–31. [Google Scholar] [CrossRef]
- Zheng, X.; Xie, B.; Liu, C.; Zhou, Z.; Yao, Z.; Wang, Y.; Wang, Y.; Yang, L.; Zhu, J.; Huang, Y.; et al. Quantifying net ecosystem carbon dioxide exchange of a short-plant cropland with intermittent chamber measurements. Glob. Biogeochem. Cycles 2008, 22, GB3031. [Google Scholar] [CrossRef]
- Lei, M.; Zucong, C.; Weixin, D. Carbon contents in soils and crops as affected by long-term fertilization. Acta Pedol. Sin. 2005, 42, 776. [Google Scholar]
- Wang, Q.; Wang, Z.; Awasthi, M.K.; Jiang, Y.; Li, R.; Ren, X.; Zhao, J.; Shen, F.; Wang, M.; Zhang, Z. Evaluation of medical stone amendment for the reduction of nitrogen loss and bioavailability of heavy metals during pig manure composting. Bioresour. Technol. 2016, 220, 297–304. [Google Scholar] [CrossRef]
- Villar, I.; Alves, D.; Pérez-Díaz, D.; Mato, S.; Mato, S. Changes in microbial dynamics during vermicomposting of fresh and composted sewage sludge. Waste Manag. 2016, 48, 409–417. [Google Scholar] [CrossRef]
- Pareek, P.K.; Bhatnagar, P.; Singh, J.; Jain, M.; Sharma, M. Nitrogen and vermicompost interaction on soil and leaf nutrient status of kinnow mandarin in vertisols of Jhalawar district. J. Plant. Nutr. 2016, 39, 942–948. [Google Scholar] [CrossRef]
- Manyuchi, M.; Mbohwa, C.; Muzenda, E. Vermicomposting of soybean and maize straw residues as an agro waste management initiative. In Proceedings of the 6th International Conference on Sustainability, Technology and Education 2017, Sydney, Australia, 11–13 December 2017. [Google Scholar]
- Cabrera, M.; Kissel, D.E.; Vigil, M.F. Nitrogen mineralization from organic residues. J. Environ. Qual. 2005, 34, 75–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrow, C. Biochar: Potential for countering land degradation and for improving agriculture. Appl. Geogr. 2012, 34, 21–28. [Google Scholar] [CrossRef]
- Clough, T.J.; Condron, L.M. Biochar and the nitrogen cycle: Introduction. J. Environ. Qual. 2010, 39, 1218–1223. [Google Scholar] [CrossRef]
- Clough, T.J.; Condron, L.M.; Kammann, C.; Muller, C.W. A review of biochar and soil nitrogen dynamics. Agronomy 2013, 3, 275–293. [Google Scholar] [CrossRef] [Green Version]
- Farrell, M.; Macdonald, L.M.; Butler, G.; Chirino-Valle, I.; Condron, L.M. Biochar and fertiliser applications influence phosphorus fractionation and wheat yield. Biol. Fertil. Soils 2014, 50, 169–178. [Google Scholar] [CrossRef]
- Joy, A.; Kamath, S. Management of industrial sludge by vermicomposting: A pilot scale study. Int. J. Civ. Eng. Tech. 2017, 8, 1471–1478. [Google Scholar]
- Singh, M.; Wasnik, K. Effect of vermicompost and chemical fertilizer on growth, herb, oil yield, nutrient uptake, soil fertility, and oil quality of rosemary. Commun. Soil Sci. Plant. Anal. 2013, 44, 2691–2700. [Google Scholar] [CrossRef]
- Da Silva, A.N.; Basso, C.J.; Muraro, D.S.; Ortigara, C.; Pansera, E. Pig slurry composting as a nitrogen source in proso millet crop. Pesqui. Agropecuária Trop. 2016, 46, 80–88. [Google Scholar] [CrossRef] [Green Version]
- Atiyeh, R.; Arancon, N.; Edwards, C.; Metzger, J. The influence of earthworm-processed pig manure on the growth and productivity of marigolds. Bioresour. Technol. 2002, 81, 103–108. [Google Scholar] [CrossRef]
- Nigussie, A.; Kuyper, T.W.; Bruun, S.; De Neergaard, A. Vermicomposting as a technology for reducing nitrogen losses and greenhouse gas emissions from small-scale composting. J. Clean. Prod. 2016, 139, 429–439. [Google Scholar] [CrossRef]
- Lubbers, I.M.; Van Groenigen, K.J.; Fonte, S.J.; Six, J.; Brussaard, L.; Van Groenigen, J.W. Greenhouse-gas emissions from soils increased by earthworms. Nat. Clim. Chang. 2013, 3, 187–194. [Google Scholar] [CrossRef]
- Lazcano, C.; Dominguez, J.R. Effects of vermicompost as a potting amendment of two commercially-grown ornamental plant species. Span. J. Agric. Res. 2010, 8, 1260–1270. [Google Scholar] [CrossRef] [Green Version]
- Dass, A.; Lenka, N.K.; Patnaik, U.S.; Sudhishri, S. Integrated nutrient management for production, economics, and soil improvement in winter vegetables. Int. J. Veg. Sci. 2008, 14, 104–120. [Google Scholar] [CrossRef]
- Manna, M.C.; Jha, S.; Ghosh, P.K.; Acharya, C.L. Comparative efficacy of three epigeic earthworms under different deciduous forest litters decomposition. Bioresour. Technol. 2003, 88, 197–206. [Google Scholar] [CrossRef]
- Ashiya, P. C:N ratio of vermicompost of eisenia foetida treated with nitrogenous fertilizer urea. Int. J. Environ. Sci. Technol. 2017, 6, 1161–1165. [Google Scholar]
- Yadav, A.; Garg, V.K. Nutrient recycling from industrial solid wastes and weeds by vermiprocessing using earthworms. Pedosphere 2013, 23, 668–677. [Google Scholar] [CrossRef]
- Yan, Y.W.; Aziz, N.A.A.; Shamsuddin, Z.H.; Mustafa, M.; Abd-Aziz, S.; Teng, S.K. Enhancement of plant nutrient contents in rice straw vermicompost through the addition of rock phosphate. Acta Biol. Malays. 2012, 1, 41–45. [Google Scholar] [CrossRef]
- Fornes, F.; Mendoza-Hernández, D.; García-De-La-Fuente, R.; Abad, M.; Belda, R.M. Composting versus vermicomposting: A comparative study of organic matter evolution through straight and combined processes. Bioresour. Technol. 2012, 118, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Kalamdhad, A.S.; Nayak, A.K.; Varma, V.S. Effects of various C/N ratios during vermicomposting of sewage sludge using Eisenia fetida. J. Environ. Sci. Technol. 2013, 6, 63–78. [Google Scholar] [CrossRef] [Green Version]
- Pattnaik, S.; Reddy, M.V. Nutrient status of vermicompost of urban green waste processed by three earthworm species—Eisenia fetida, Eudrilus eugeniae,andPerionyx excavatus. Appl. Environ. Soil Sci. 2010, 2010, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Manyuchi, M.; Phiri, A. Vermicomposting in solid waste management: A review. Int. J. Sci. Eng. Technol. 2013, 2, 1234–1242. [Google Scholar] [CrossRef]
- El-Haddad, M.; Zayed, M.S.; El-Sayed, G.; Hassanein, M.; El-Satar, A.A. Evaluation of compost, vermicompost and their teas produced from rice straw as affected by addition of different supplements. Ann. Agric. Sci. 2014, 59, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Dortzbach, D. Accumulation of zinc, copper and manganese in soil fertilized with pig manure and urea in Southern State of Santa Catarina (Brazil). In Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010. [Google Scholar]
- L’Herroux, L.; Le Roux, S.; Appriou, P.; Martinez, J. Behaviour of metals following intensive pig slurry applications to a natural field treatment process in Brittany (France). Environ. Pollut. 1997, 97, 119–130. [Google Scholar] [CrossRef]
- Mondal, T.; Datta, J.K.; Mondal, N.K. Chemical fertilizer in conjunction with biofertilizer and vermicompost induced changes in morpho-physiological and bio-chemical traits of mustard crop. J. Saudi Soc. Agric. Sci. 2017, 16, 135–144. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez-Miceli, F.A.; Santiago-Borraz, J.; Molina, J.A.M.; Nafate, C.C.; Abud-Archila, M.; Llaven, M.A.O.; Rincón-Rosales, R.; Dendooven, L. Vermicompost as a soil supplement to improve growth, yield and fruit quality of tomato (Lycopersicum esculentum). Bioresour. Technol. 2007, 98, 2781–2786. [Google Scholar] [CrossRef]
- Papathanasiou, F.; Papadopoulos, I.; Tsakiris, I.; Tamoutsidis, E. Vermicompost as a soil supplement to improve growth, yield and quality of lettuce (Lactuca sativa L.). J. Food Agric. Environ. 2012, 10, 677–682. [Google Scholar]
- Yoon, S.; Joo, P.; Pramanik, P. Changes in fungal and bacterial diversity during vermicomposting of industrial sludge and poultry manure mixture: Detecting the mechanism of plant growth promotion by vermicompost. Biomass–Detect. Prod. Usage 2012, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Van Vliet, P.; Beare, M.; Coleman, D.C.; Hendrix, P. Effects of enchytraeids (Annelida: Oligochaeta) on soil carbon and nitrogen dynamics in laboratory incubations. Appl. Soil Ecol. 2004, 25, 147–160. [Google Scholar] [CrossRef]
- Lv, B.; Zhang, D.; Cui, Y.; Yin, F. Effects of C/N ratio and earthworms on greenhouse gas emissions during vermicomposting of sewage sludge. Bioresour. Technol. 2018, 268, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Pang, J.; Zhang, Z.; Li, H. Sustainability assessment of solid waste management in China: A decoupling and decomposition analysis. Sustainability 2014, 6, 9268–9281. [Google Scholar] [CrossRef] [Green Version]
- Velasco-Velasco, J.; Parkinson, R.; Kuri, V. Ammonia emissions during vermicomposting of sheep manure. Bioresour. Technol. 2011, 102, 10959–10964. [Google Scholar] [CrossRef] [PubMed]
- Lv, B.; Xing, M.; Yang, J.; Qi, W.; Lu, Y. Chemical and spectroscopic characterization of water extractable organic matter during vermicomposting of cattle dung. Bioresour. Technol. 2013, 132, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Koubová, A.; Goberna, M.; Šimek, M.; Chroňáková, A.; Pižl, V.; Insam, H.; Elhottová, D. Effects of the earthworm Eisenia andrei on methanogens in a cattle-impacted soil: A microcosm study. Eur. J. Soil Biol. 2012, 48, 32–40. [Google Scholar] [CrossRef]
- Robin, P.; Germain, P.; Lecomte, M.; Landrain, B.; Li, Y.; Cluzeau, D. Earthworm effects on gaseous emissions during vermifiltration of pig fresh slurry. Bioresour. Technol. 2011, 102, 3679–3686. [Google Scholar] [CrossRef]
- Chan, Y.C.; Sinha, R.K.; Wang, W. Emission of greenhouse gases from home aerobic composting, anaerobic digestion and vermicomposting of household wastes in Brisbane (Australia). Waste Manag. Res. 2011, 29, 540–548. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Hu, Z.; Xu, X.; Jiang, X.; Zheng, B.; Liu, X.; Pan, X.; Kardol, P. Emissions of ammonia and greenhouse gases during combined pre-composting and vermicomposting of duck manure. Waste Manag. 2014, 34, 1546–1552. [Google Scholar] [CrossRef]
- Lv, B.; Xing, M.; Yang, J. Speciation and transformation of heavy metals during vermicomposting of animal manure. Bioresour. Technol. 2016, 209, 397–401. [Google Scholar] [CrossRef] [PubMed]
Treatments | COM | VCM | VPM | VBC | ||||
---|---|---|---|---|---|---|---|---|
Nutrients | Initial | Final | Initial | Final | Initial | Final | Initial | Final |
TOC | 385.24 ± 1.0 | 319.25 ± 1.4 ab | 373.81 ± 0.9 | 276.00 ± 2.0 b | 376.99 ± 1.9 | 298.68 ± 4.6 b | 390.55 ± 2.0 | 382.20 ± 2.5 a |
TN | 13.78 ± 0.4 | 22.49 ± 0.2 a | 17.77 ± 0.4 | 29.15 ± 0.0 ab | 20.15 ± 0.2 | 26.62 ± 0.3 a | 17.51 ± 0.1 | 17.53 ± 0.2 b |
TP | 1.79 ± 0.2 | 3.37 ± 0.2 b | 3.26 ± 1.0 | 3.41 ± 0.3 b | 2.21 ± 0.8 | 7.74 ± 0.3 a | 2.92 ± 1.7 | 2.20 ± 0.0 c |
TK | 8.14 ± 3.9 | 11.24 ± 4.0 a | 9.21 ± 4.0 | 13.77 ± 2.0 a | 10.29 ± 3.3 | 12.10 ± 2.2 a | 14.46 ± 2.9 | 14.01 ± 4.0 a |
T Ca | 4.30 ± 0.6 | 26.60 ± 4.9 a | 9.14 ± 0.1 | 29.75 ± 4.0 a | 16.78 ± 2.0 | 46.71 ± 7.1 a | 17.83 ± 3.0 | 35.42 ± 1.9 a |
T Mg | 2.58 ± 1.0 | 4.97 ± 1.0 b | 2.72 ± 0.7 | 5.26 ± 0.2 ab | 4.74 ± 0.5 | 7.86 ± 1.3 a | 3.85 ± 0.5 | 6.73 ± 1.3 ab |
T Cu | 0.06 ± 0.0 | 0.03 ± 0.0 b | 0.02 ± 0.0 | 0.03 ± 0.0 b | 0.25 ± 0.1 | 0.38 ± 0.1 a | 0.02 ± 0.0 | 0.03 ± 0.0 b |
T Fe | 2.01 ± 1.0 | 3.76 ± 0.1 a | 1.98 ± 0.8 | 3.77 ± 0.3 a | 1.81 ± 0.2 | 3.74 ± 1.0 a | 3.22 ± 0.0 | 4.05 ± 1.9 a |
T Mn | 0.16 ± 0.1 | 0.27 ± 0.0 b | 0.09 ± 0.0 | 0.26 ± 0.0 b | 0.12 ± 0.0 | 0.36 ± 0.0 a | 0.12 ± 0.0 | 0.20 ± 0.0 c |
T Zn | 0.04 ± 0.0 | 0.03 ± 0.0 b | 0.01 ± 0.0 | 0.04 ± 0.0 b | 0.21 ± 0.0 | 0.37 ± 0.0 a | 0.01 ± 0.0 | 0.03 ± 0.0 b |
C:N ratio | 22.03 ± 5.8 | 14.9 ± 1.3 c | 22.13 ± 6.2 | 14.47 ± 0.1 b | 18.79 ± 1.1 | 14.47 ± 0.1 b | 23.84 ± 4.0 | 22.73 ± 4.5 a |
Treatment | COM | VCM | VPM | VBC | ||||
---|---|---|---|---|---|---|---|---|
Nutrients | Increase | Decrease | Increase | Decrease | Increase | Decrease | Increase | Decrease |
TOC | 17.12 | 26.16 | 20.77 | 2.13 | ||||
TN | 63.20 | 64.04 | 32.10 | 0.11 | ||||
TP | 88.22 | 4.60 | 250.2 | 24.65 | ||||
TK | 38.08 | 49.51 | 17.58 | 3.11 | ||||
T Ca | 518.60 | 225.49 | 178.36 | 98.63 | ||||
T Mg | 92.63 | 93.38 | 65.82 | 74.80 | ||||
T Cu | 50 | 50 | 52 | 50 | ||||
T Fe | 87.06 | 90.40 | 106.62 | 25.77 | ||||
T Mn | 68.75 | 188.88 | 200 | 75.32 | ||||
T Zn | 25 | 300 | 76.19 | 200 | ||||
C:N ratio | 32.36 | 34.61 | 22.99 | 4.65 | ||||
C: P ratio | 56 | 29.41 | 77.33 | 29.88 |
Treatments | GHGs Emissions Equivalent (g CO2-eq/kg) | |||
---|---|---|---|---|
CO2 | CH4 | N2O | GWP | |
COM | 92.3 | 0.01 | 0.01 | 3.32 |
VCM | 118.1 | 0.01 | 0.02 | 6.3 |
VPM | 85.7 | 0.14 | 0.04 | 16.8 |
VBC | 82.7 | 0.01 | 0.01 | 3.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raza, S.T.; Zhu, B.; Tang, J.L.; Ali, Z.; Anjum, R.; Bah, H.; Iqbal, H.; Ren, X.; Ahmad, R. Nutrients Recovery during Vermicomposting of Cow Dung, Pig Manure, and Biochar for Agricultural Sustainability with Gases Emissions. Appl. Sci. 2020, 10, 8956. https://doi.org/10.3390/app10248956
Raza ST, Zhu B, Tang JL, Ali Z, Anjum R, Bah H, Iqbal H, Ren X, Ahmad R. Nutrients Recovery during Vermicomposting of Cow Dung, Pig Manure, and Biochar for Agricultural Sustainability with Gases Emissions. Applied Sciences. 2020; 10(24):8956. https://doi.org/10.3390/app10248956
Chicago/Turabian StyleRaza, Syed Turab, Bo Zhu, Jia Liang Tang, Zulfiqar Ali, Raheel Anjum, Hamidou Bah, Hassan Iqbal, Xiao Ren, and Rida Ahmad. 2020. "Nutrients Recovery during Vermicomposting of Cow Dung, Pig Manure, and Biochar for Agricultural Sustainability with Gases Emissions" Applied Sciences 10, no. 24: 8956. https://doi.org/10.3390/app10248956
APA StyleRaza, S. T., Zhu, B., Tang, J. L., Ali, Z., Anjum, R., Bah, H., Iqbal, H., Ren, X., & Ahmad, R. (2020). Nutrients Recovery during Vermicomposting of Cow Dung, Pig Manure, and Biochar for Agricultural Sustainability with Gases Emissions. Applied Sciences, 10(24), 8956. https://doi.org/10.3390/app10248956