Residue Cost Formation of a High Bypass Turbofan Engine
Abstract
:1. Introduction
2. System Description
2.1. General Description of the Engine Operation
2.2. Assumptions
- The engine operates in a steady state with a steady flow.
- Air and combustion gases behave as mixtures of ideal gases and one-dimensional and adiabatic steady flows.
- The chemical formula of JET-A1 is CH, and its lower heating value (LHV) is 42,800 kJ/kg [21].
- The changes in potential energy within the engine are negligible.
- The cooling air mass flow is not considered for analysis [22].
- The heat exchangers (air–fuel, fuel–oil) are not considered.
- The temperature and pressure in the dead state are 288.15 K and 101.33 kPa, respectively.
3. Energy Analysis
4. Exergy Analysis
4.1. Exergy Forms
4.2. Productive Structure
4.3. Exergy Balance Equations
4.4. Fuel–Product–Residue Table
5. Exergoeconomic Cost Analysis
5.1. Residue Formation Cost
5.2. Production Costs
- The costs of the external resources are known: .
- The production cost of the ith productive component is the sum of the cost of resources required to obtain it , the formation cost of residues allocated to this component (Equation (18)), and the purchase cost of the component . .
- If a component has a product comprising several flows, the same unit exergoeconomic cost is assigned to them. In fact, even if two or more products can be identified in the same component, their formation processes are inseparable at the considered level of aggregation.
6. Operational Diagnosis of the Fuel Impact
6.1. Fuel Impact in Terms of Malfunctions and Dysfunctions
6.2. Fuel Impact Expressed as an Exergoeconomic Cost
7. Results and Discussion
7.1. Exergy Analysis
7.2. Exergoeconomic Analysis
7.3. Malfunction Analysis
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AC | air compressor, |
ACC | annual capital cost, |
CRF | capital recovery factor, |
chS | chemical-gas stack, |
cS | cold-gas stack, |
CC | combustion chamber, |
C | compressor, |
D | diffuser, |
ECT | exergetic cost theory, |
F | fan, |
FN | fan nozzle, |
GT | gas turbine, |
HPT | high pressure turbine, |
LPT | low pressure turbine, |
N | nozzle, |
OMC | overhaul and maintenance cost, |
PW | present worth, |
PVF | present value factor, |
PFR | product-resource-residue, |
FPR | resource-product-residue, |
SV | salvage ratio, |
TOT | total, |
TCI | total capital investment. |
Nomenclature | |
x | actual conditions, |
reference conditions, | |
capital cost rate of a component (USD h), | |
dissipative components, | |
z | elevation (m), |
H | enthalpy (kJ), |
enthalpy flow rate (MW), | |
entropy generation (MW), | |
exergoeconomic cost per unit of exergy (USD GJ), | |
exergetic cost of the product (MW), | |
exergetic cost of the resource (MW), | |
exergetic cost of the waste (MW), | |
f | exergoeconomic factor (%), |
exergy flow rate (MW), | |
w | flight velocity (m s), |
fuel/air ratio (kgf (kgair)), | |
R | gas constant (kJ (kg K)), |
g | gravitational acceleration 9.81 m s, |
heat flow rate (MW), | |
irreversibility flow rate (MW), | |
lower heat value (kJ (kg)), | |
M | Mach number (-), |
malfunction (MW), | |
mass flow rate (kg s), | |
x | molar fraction (-), |
product exergy flow (MW), | |
P | pressure (bar), |
power (MW), | |
productive component, | |
r | recirculation coefficient (-), |
residue exergy flow (MW), | |
resource exergy flow (MW), | |
q | specific heat (kJ kg), |
s | specific entropy (kJ (kgK)), |
h | specific enthalpy (kJ kg), |
specific heat capacity at constant pressure (kJ (kgK)), | |
T | temperature (C, K), |
k | unit exergoeconomic cost (USD kJ), |
unit exergy cost (-), | |
u | velocity (m s), |
V | volume (m). |
Greek symbols | |
bypass ratio (-), | |
cost ratio for the exhausted gases dissipated in the stack (-), | |
dissipative component, | |
drop or increment (%), | |
efficiency (%), | |
excess of air (%), | |
exergoeconomic cost (USD h), | |
exergy grade function (-), | |
exergy per unit mass (kJ mol), | |
pressure ratio (-), | |
productive components, | |
ratio of specific heats (-), | |
stoichiometric coefficients (-), | |
thrust (kN). | |
Subscripts | |
a | air, |
b | burner, |
c | cold, |
combustion gases, | |
component, | |
D | diagonal, |
k | dissipative component, |
environment, | |
exergetic, | |
e | external, |
f | fuel, |
h | hot, |
s | isentropic, |
m | mixture, |
overhaul and maintenance, | |
P | product, |
propulsion, | |
residue, | |
thermal, | |
thermodynamic states, | |
total, | |
total capital investment, | |
t | stagnation. |
Superscripts | |
exergy cost, | |
K | kinetic, |
P | potential, |
physical, | |
chemical, | |
t | transposed |
Matrices and vectors | |
capital cost vector (n × 1), | |
cost operator matrix (n × n), | |
cost vector (n × 1), | |
diagonal matrix (n × n) that contains the unit exergy consumption of each component, | |
dysfunction matrix (n × n), | |
endogenous irreversibility matrix (n × n), | |
final product vector (n × 1), | |
fuel, product, irreversibility and residue vector (n × 1), | |
matrix (n × n) of unit exergy consumption, | |
matrix (n × n) containing the distribution ratios, | |
malfunction matrix (n × n), | |
product, irreversibility, and residue matrix operators (n × n), | |
residue allocation matrix (n × n), | |
unitary vector (n × 1) and identity matrix (n × n), | |
vector (n × 1) of unit costs. |
Appendix A. Thermodynamic Properties of the Material and Energy Turbofan Streams
State | (kg s−1) | T (K) | P (bar) | u (m s−1) | h (kJ kg−1) | s (kJ kg−1 K−1)) | (MW) | (MW) | (MW) | (MW) |
---|---|---|---|---|---|---|---|---|---|---|
f | 5.86 | 42,800.00 | 45.44 | 0 | 0 | 266.34 | ||||
a | 2235.82 | 288.15 | 1.01 | 68.02 | 0 | 0.30 | 0 | 13.21 | 5.17 | 18.38 |
2235.82 | 290.46 | 1.04 | 0 | 2.31 | 0.30 | 0 | 13.21 | 0 | 18.38 | |
2235.82 | 290.46 | 1.04 | 0 | 2.31 | 0.30 | 0 | 13.21 | 0 | 18.28 | |
2235.82 | 336.02 | 1.64 | 0 | 48.04 | 0.31 | 0.04 | 13.21 | 0 | 110.79 | |
237.85 | 915.29 | 41.62 | 0 | 629.30 | 0.39 | 0.60 | 1.41 | 0 | 144.61 | |
243.71 | 1592.00 | 39.53 | 0 | 1633.31 | 1.52 | 1.32 | 9.25 | 0 | 331.20 | |
243.71 | 1139.14 | 7.60 | 0 | 1066.02 | 1.58 | 0.74 | 9.25 | 0 | 188.97 | |
243.71 | 804.30 | 1.37 | 0 | 646.57 | 1.64 | 0.30 | 9.25 | 0 | 82.58 | |
7 | 243.71 | 753.49 | 1.01 | 356.78 | 582.92 | 1.64 | 0.24 | 9.25 | 15.51 | 82.27 |
8 | 1997.96 | 294.73 | 1.01 | 287.85 | 6.61 | 0.32 | 0 | 11.81 | 82.78 | 94.73 |
2235.82 | 0.05 | 0 | 0 | 102.23 | ||||||
1997.96 | 0.05 | 0 | 0 | 91.35 | ||||||
237.85 | 0.05 | 0 | 0 | 10.88 | ||||||
237.85 | 0.58 | 0 | 0 | 138.26 | ||||||
243.71 | 248,378.58 | 0.57 | 0 | 0 | 138.26 | |||||
243.71 | 248,378.58 | 0.42 | 0 | 0 | 102.23 |
Appendix B. Exergy Balance
Component | (MW) | (MW) | (MW) | (MW) | (-) | (MW) | (MW) |
---|---|---|---|---|---|---|---|
Cold-air side (Bypass section) | |||||||
D | 4.62 | 4.53 | 0 | 0.09 | 0.98 | 4.62 | 0.09 |
F | 91.35 | 82.67 | 0 | 8.68 | 0.90 | 91.35 | 8.68 |
FN | 87.05 | 82.78 | 0 | 4.28 | 0.95 | −82.78 | 4.28 |
cSt | 0.15 | 0.00 | 0.15 | 0.00 | −13.20 | −13.05 | |
Hot-gas side (Core engine) | |||||||
D | 0.55 | 0.54 | 0 | 0.01 | 0.98 | 0.55 | 0.01 |
F | 10.88 | 9.84 | 0 | 1.03 | 0.90 | 10.88 | 1.03 |
C | 138.26 | 132.82 | 0 | 5.43 | 0.96 | 138.26 | 5.43 |
CC | 266.34 | 186.59 | 0 | 79.75 | 0.70 | 248.38 | 124.71 |
HPT | 142.23 | 138.26 | 0 | 3.97 | 0.97 | −138.26 | 3.97 |
LPT | 106.39 | 102.23 | 0 | 4.17 | 0.96 | −102.23 | 4.17 |
N | 15.82 | 15.51 | 0 | 0.31 | 0.98 | −15.51 | 0.31 |
hSt | 57.51 | 0.00 | 43.87 | 13.64 | −142.07 | −84.56 | |
chSt | 7.84 | 0.00 | 7.84 | 0.00 | |||
Turbofan Engine | |||||||
GE90 | 271.51 | 98.29 | 51.86 | 121.37 | 0.36 | 0.00 | 55.08 |
Appendix C. Exergoeconomic Analysis
(USD/h) | (%) | ||||||||||
D | 42.24 | 0 | 0.80 | 0.06 | 0 | 41.38 | 1.90 | 0.15 | 0 | 97.95 | 100 |
F | 25,682.73 | 15,691 | 8569.71 | 41.71 | 842 | 538.15 | 33.50 | 0.16 | 3.31 | 1.20 | 5.59 |
FN | 22,982.24 | 13,998 | 7645.71 | 37.27 | 751 | 550.10 | 33.44 | 0.16 | 3.31 | 1.38 | 2.85 |
C | 40,954.65 | 20,977 | 18,119.13 | 3.52 | 1126 | 729.62 | 44.36 | 0.01 | 2.78 | 1.02 | 12.17 |
CC | 33,096.83 | 25,927 | 5663.10 | 0 | 1391 | 115.86 | 17.11 | 0.00 | 4.20 | 0.20 | 1.47 |
HPT | 33,457.49 | 20,977 | 10,804.03 | 3.52 | 1126 | 547.56 | 32.36 | 0.01 | 3.39 | 0.94 | 13.80 |
LPT | 25,014.96 | 15,691 | 8081.70 | 2.63 | 842 | 397.47 | 32.36 | 0.01 | 3.39 | 0.91 | 9.24 |
N | 3772.04 | 2334 | 1202.03 | 0.39 | 125 | 110.55 | 32.11 | 0.01 | 3.36 | 1.69 | 47.48 |
GE90 | 26,754.28 | 16,331.89 | 8847.75 | 37.66 | 876.32 | 660.65 | 33.07 | 0.14 | 3.28 | 2.47 | 30.69 |
Appendix D. Equations of FPR and PFR Symbolic Representations
FPR representation | PFR representation | |
---|---|---|
In terms of external resources | In terms of final products | |
Coefficients | ||
Distribution coefficients | Recirculation coefficients | |
Unit exergy consumption coefficients | ||
Diagonal matrices | ||
and | ||
Exergy flows | ||
(rows of the FPR table) | ||
, | , | |
, | , | |
, | , | |
, | , | |
, | ||
Exergy costs | ||
, | ||
Contributions of irreversibilities and residues to the exergy costs | ||
Exergoeconomic costs | ||
, , , | ||
Contributions of energy resources, residues, and component costs to the product cost | ||
, and | ||
References
- Balli, O. Thermodynamic, thermoeconomic and environmental performance analyses of a high bypass turbofan engine used on commercial aircraft. J. Sci. Sak. Univ. 2019, 23, 453–461. [Google Scholar] [CrossRef]
- Balli, O.; Sohret, Y.; Karakic, H. Energetic and exergetic performance evaluation of GE90-115B high bypass turbofan engine for different fuel ussage. In Proceedings of the 7th Global Conference on Global Warming (GCGW-2018), Izmir, Turkey, 24–28 June 2018. [Google Scholar]
- Balli, O.; Aras, H.; Aras, N.; Hepbasli, A. Exergetic and exergoeconomic analysis of an Aircraft Jet Engine (AJE). Int. J. Exergy 2008, 5, 567. [Google Scholar] [CrossRef]
- Turgut, E.; Karakoc, T.; Hepbasli, A. Exergoeconomic analysis of an aircraft turbofan engine. Int. J. Exergy 2009, 6, 277–294. [Google Scholar] [CrossRef]
- Aydin, H.; Turan, O.; Midilli, A.; Karakoc, T. Exergetic and exergo–economic analysis of a turboprop engine: A case study for CT7–9C. Int. J. Exergy 2012, 11, 69–88. [Google Scholar] [CrossRef]
- Altuntas, O.; Karakoc, T.; Hepbasli, A. A parametric study of a piston-prop aircraft engine using exergy and exergoeconomic analysis methods. Int. J. Green Energy 2015, 12, 2–14. [Google Scholar] [CrossRef]
- Altuntas, O.; Karakoc, T.; Hepbasli, A. Exergoeconomic environmental optimization of piston-prop aircraft engines. Int. J. Green Energy 2015, 12, 41–50. [Google Scholar] [CrossRef]
- Sahu, M.; Choudhary, T.; Sanjay, Y. Exergoeconomic Analysis of Air Cooled Turboprop Engine: Air Craft Application. In Proceedings of the SAE 2017 AeroTech Congress & Exhibition, Fort Worth, TX, USA, 26–28 September 2017. SAE Technical Paper 2017-01-2044. [Google Scholar]
- Picallo, A.; Catrini, P.; Piacentino, A.; Sala, J. A novel thermoeconomic analysis under dynamic operating conditions for space heating and cooling systems. Energy 2019, 180, 819–837. [Google Scholar] [CrossRef]
- Lozano, M.; Valero, A. Theory of the exergetic cost. Energy 1993, 18, 939–960. [Google Scholar] [CrossRef]
- Valero, A.; Cuadra, C. Thermoeconomic Analysis. In Exergy, Energy System Analysis and Optimization-Volume II: Thermoeconomic Analysis Modeling, Simulation and Optimization in Energy Systems; Frangopoulos, C.A., Ed.; EOLSS Publishers: Oxford, UK, 2006; Chapter 2. [Google Scholar]
- Torres, C.; Valero, A.; Perez, E. Guidelines to developing software for thermoeconomic analysis of energy systems, part I: The thermoeconomic model. Proc. ECOS 2007, 2007, 435e42. [Google Scholar]
- Torres, C.; Valero, A.; Rangel, V.; Zaleta, A. On the cost formation process of the residues. Energy 2008, 33, 144–152. [Google Scholar] [CrossRef]
- Seyyedi, S.; Ajam, H.; Farahat, S. A new approach for optimization of thermal power plant based on the exergoeconomic analysis and structural optimization method: Application to the CGAM problem. Energy Convers. Manag. 2010, 51, 2202–2211. [Google Scholar] [CrossRef]
- Agudelo, A.; Valero, A.; Torres, C. Allocation of waste cost in thermoeconomic analysis. Energy 2012, 45, 634–643. [Google Scholar] [CrossRef]
- Lugo-Méndez, H.D.; Torres-González, E.V.; Castro-Hernández, S.; Salazar-Pereyra, M.; López-Arenas, T.; Lugo-Leyte, R. An Irreversibility-Based Criterion to Determine the Cost Formation of Residues in a Three-Pressure-Level Combined Cycle. Entropy 2020, 22, 299. [Google Scholar]
- Torres, C.; Valero, A. Curso de doctorado (termoeconomía); Departamento de Ingeniería Mecánica, Universidad de Zaragoza: Zaragoza, Spain, 2000. [Google Scholar]
- Picallo, A.; Escudero, C.; Flores, I.; Sala, J. Symbolic thermoeconomics in building energy supply systems. Energy Build. 2016, 127, 561–570. [Google Scholar] [CrossRef]
- Torres, C.; Valero, A.; Serra, L.; Royo, J. Structural theory and thermoeconomic diagnosis: Part I. On malfunction and dysfunction analysis. Energy Convers. Manag. 2002, 43, 1503–1518. [Google Scholar] [CrossRef]
- Sala, L.; Picallo, A. Operational diagnosis of thermal installations in buildings. In Exergy Analysis and Thermoeconomics of Buildings; Butterworth-Heinemann: Oxford, UK, 2020; pp. 721–788. [Google Scholar] [CrossRef]
- Mattingly, J.D. Elements of Propulsion: Gas Turbines and Rockets; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2006. [Google Scholar]
- Turan, O. An exergy way to quantify sustainability metrics for a high bypass turbofan engine. Energy 2015, 86, 722–736. [Google Scholar] [CrossRef]
- Szargut, J. International progress in second law analysis. Energy 1980, 5, 709–718. [Google Scholar] [CrossRef]
- Pal, R. Chemical exergy of ideal and non-ideal gas mixtures and liquid solutions with applications. Int. J. Mech. Eng. Educ. 2019, 47, 44–72. [Google Scholar] [CrossRef]
- Turan, Ö. Mach number effect on the thermodynamic efficiencies of a turbojet engines: An UAV application. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 2018, 7, 848–863. [Google Scholar]
- McGovern, J. Exergy analysis? A different perspective on energy part 1: The concept of exergy. Proc. Inst. Mech. Eng. Part A J. Power Energy 1990, 204, 253–262. [Google Scholar] [CrossRef]
- Valero, A.; Usón, S.; Torres, C.; Valero, A. Application of thermoeconomics to industrial ecology. Entropy 2010, 12, 591–612. [Google Scholar] [CrossRef]
- Keshavarzian, S.; Gardumi, F.; Rocco, M.; Colombo, E. Off-Design modeling of natural gas combined cycle power plants: An order reduction by means of thermoeconomic input–output analysis. Entropy 2016, 18, 71. [Google Scholar] [CrossRef] [Green Version]
- Piacentino, A. Application of advanced thermodynamics, thermoeconomics and exergy costing to a Multiple Effect Distillation plant: In-depth analysis of cost formation process. Desalination 2015, 371, 88–103. [Google Scholar] [CrossRef]
- Usón, S.; Valero, A.; Agudelo, A. Thermoeconomics and industrial symbiosis. Effect of by-product integration in cost assessment. Energy 2012, 45, 43–51. [Google Scholar] [CrossRef]
- Villalón, J.; Torrent, J.; Aragón, E. Termoeconomía y Optimización Energética; Fundación Gómez Pardo: Madrid, Spain, 2009. [Google Scholar]
- Frangopoulos, C.A. Thermo-economic functional analysis and optimization. Energy 1987, 12, 563–571. [Google Scholar] [CrossRef]
- Lozano, M.; Valero, A. Thermoeconomic analysis of gas turbine cogeneration systems. In Proceedings of the 1993 ASME Winter Annual Meeting, New Orleans, LA, USA, 28 November–3 December 1993; pp. 311–320. [Google Scholar] [CrossRef]
- Stanek, W. (Ed.) Thermodynamics for Sustainable Management of Natural Resources; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Dogonchi, A.; Seyyedi, S. Two New Alternative Options for Residues Cost Distribution Ratio. J. Appl. Dyn. Syst. Control 2018, 1, 28–36. [Google Scholar]
- Hernández, V.; Capilla, A.; Carlos, L.; Uson, C. Thermoeconomic Diagnosis of Large Industrial Boilers: Microscopic Representation of the Exergy Cost Theory. Ph.D. Thesis, Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain, 2005. [Google Scholar]
- Valero, A.; Correas, L.; Zaleta, A.; Lazzaretto, A.; Verda, V.; Reini, M.; Rangel, V. On the thermoeconomic approach to the diagnosis of energy system malfunctions: Part 2. Malfunction definitions and assessment. Energy 2004, 29, 1889–1907. [Google Scholar] [CrossRef]
- Kelly, S.; Tsatsaronis, G.; Morosuk, T. Advanced exergetic analysis: Approaches for splitting the exergy destruction into endogenous and exogenous parts. Energy 2009, 34, 384–391. [Google Scholar] [CrossRef]
- Valero, A.; Lerch, F.; Serra, L.; Royo, J. Structural theory and thermoeconomic diagnosis: Part II: Application to an actual power plant. Energy Convers. Manag. 2002, 43, 1519–1535. [Google Scholar] [CrossRef]
- Cantwell, B. The GE90-An Introduction. In Ed: Stanford Course Material; Stanford University: Stanford, CA, USA, 2011; Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwilv7e179btAhUWPXAKHSNUBN0QFjAAegQIAhAC&url=https%3A%2F%2Fwww.kimerius.com%2Fapp%2Fdownload%2F5781574315%2FThe%2BGE90%2B-%2BAn%2Bintroduction.pdf&usg=AOvVaw0DT9tyNfSM9D6iBPQzEvuO (accessed on 26 November 2020).
- Misra, R.; Sahoo, P.; Sahoo, S.; Gupta, A. Thermoeconomic optimization of a single effect water/LiBr vapour absorption refrigeration system. Int. J. Refrig. 2003, 26, 158–169. [Google Scholar] [CrossRef]
- Sala, L.; Picallo, A. Symbolic Thermoeconomics applied to thermal facilities. In Exergy Analysis and Thermoeconomics of Buildings; Butterworth-Heinemann: Oxford, UK, 2020; pp. 663–720. [Google Scholar] [CrossRef]
Component | Energy Balance | Adiabatic Efficiency |
---|---|---|
D | ||
F | ||
C | ||
CC | ||
HPT | ||
LPT | ||
FN | ||
N | ||
Turbofan |
State | Mass Flow Rate | Temperature | Pressure |
---|---|---|---|
a | |||
01 | |||
02 | |||
03 | |||
04 | |||
05 | |||
06 | |||
7 | |||
8 |
Component | ||||
---|---|---|---|---|
Cold-air side (Bypass section) | ||||
D | 0 | |||
F | 0 | |||
FN | 0 | |||
cS | ||||
Hot-gas side (Core engine) | ||||
D | 0 | |||
F | 0 | |||
C | 0 | |||
CC | 0 | |||
HPT | 0 | |||
LPT | 0 | |||
N | 0 | |||
hS | ||||
chS |
Resources of Productive Components | Resources of Dissipative Components | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
: Exergy of the external resources used by the ith component. | ||||||||||||
: Exergy of the final product obtained from the ith component. | ||||||||||||
: Product of the ith component used as resource in the jth component. | ||||||||||||
: Product of the ith component and dissipated in the rth dissipative component. . | ||||||||||||
Recirculation coefficients | ||||||||||||
, | ||||||||||||
, , | ||||||||||||
, ; | ||||||||||||
; |
Thrust, Bypass Ratio, Component Efficiencies and Pressure Ratios | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(kN) | (-) | (-) | (-) | (-) | (-) | (-) | (-) | (-) | (-) | (-) | (-) | (-) | (%) |
510 | 8.4 | 0.99 | 0.98 | 0.89 | 0.88 | 0.9 | 0.9 | 0.95 | 0.95 | 25.3 | 1.58 | 40 | 5 |
Ambient Conditions | Fuel Properties | ||||||||||||
M | |||||||||||||
(-) | (ºC) | (bar) | (kJ/kg) | ||||||||||
0.2 | 15 | 1.013 | C12H23 | 42,800 |
Productive Components | Dissipative Components | Total | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
271.51 | |||||||||||||
5.07 | |||||||||||||
92.51 | |||||||||||||
82.78 | |||||||||||||
132.82 | |||||||||||||
186.59 | |||||||||||||
138.26 | |||||||||||||
102.23 | |||||||||||||
15.51 | |||||||||||||
Total | 98.29 | 5.17 | 102.23 | 87.05 | 138.26 | 266.34 | 142.23 | 106.39 | 15.82 | 0.15 | 57.51 | 7.84 |
Equation (22) | Equation (23) | Equation (24) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sum | |||||||||||
(MW) | (MW) | (MW) | (MW) | ||||||||
D | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
F | 0.10 | 0.02 | 0.00 | −0.01 | 0.01 | 0.00 | 0.02 | 0.10 | 0.01 | 0.10 | 0.11 |
FN | 0.04 | 0.00 | 0.81 | 0.00 | 0.00 | 0.00 | 0.00 | 0.85 | 0.00 | 0.85 | 0.85 |
C | 0.50 | 0.38 | 0.00 | −0.55 | 0.94 | −0.03 | 0.68 | −0.18 | 1.05 | −0.18 | 0.87 |
CC | 0.02 | 0.06 | 0.00 | 0.75 | −0.90 | −0.03 | 0.97 | −0.70 | 0.79 | −0.70 | 0.08 |
HPT | 0.10 | 0.00 | 0.00 | −0.38 | 0.40 | 0.00 | 0.10 | −0.02 | 0.12 | −0.02 | 0.10 |
LPT | 0.07 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.01 | 0.04 | 0.04 | 0.04 | 0.07 |
N | −0.03 | 0.00 | −1.58 | 0.00 | 0.00 | 0.00 | 0.00 | −1.61 | 0.00 | −1.61 | −1.61 |
Sum | 0.80 | 0.45 | −0.77 | −0.15 | 0.45 | −0.06 | 1.77 | −1.52 | 2.01 | −1.52 |
(USD/h) | |||
---|---|---|---|
D | 0 | 0 | 0 |
F | 0 | −0.54 | 0 |
FN | 0 | 0 | 219.80 |
C | 0 | 86.33 | 0 |
CC | −14.72 | −5.04 | 0 |
HPT | 0 | 67.72 | 0 |
LPT | 0 | 54.39 | 0 |
N | 0 | 7.03 | −372.45 |
GE90 | −14.72 | 209.89 | −152.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Helen, L.-M.; Sergio, C.-H.; Martín, S.-P.; Javier, V.-L.; Vicente, T.-G.E.; Raúl, L.-L. Residue Cost Formation of a High Bypass Turbofan Engine. Appl. Sci. 2020, 10, 9060. https://doi.org/10.3390/app10249060
Helen L-M, Sergio C-H, Martín S-P, Javier V-L, Vicente T-GE, Raúl L-L. Residue Cost Formation of a High Bypass Turbofan Engine. Applied Sciences. 2020; 10(24):9060. https://doi.org/10.3390/app10249060
Chicago/Turabian StyleHelen, Lugo-Méndez, Castro-Hernández Sergio, Salazar-Pereyra Martín, Valencia-López Javier, Torres-González Edgar Vicente, and Lugo-Leyte Raúl. 2020. "Residue Cost Formation of a High Bypass Turbofan Engine" Applied Sciences 10, no. 24: 9060. https://doi.org/10.3390/app10249060
APA StyleHelen, L. -M., Sergio, C. -H., Martín, S. -P., Javier, V. -L., Vicente, T. -G. E., & Raúl, L. -L. (2020). Residue Cost Formation of a High Bypass Turbofan Engine. Applied Sciences, 10(24), 9060. https://doi.org/10.3390/app10249060