Laser Metal Deposition of Ti6Al4V—A Brief Review
Abstract
:1. Introduction
2. Ti6Al4V
2.1. General Information
2.2. Crystal Structure
2.3. Heat Treatment and Mechanical Properties
3. LMD of Ti6Al4V
3.1. Process Parameters
- Powder flow rate: an increase in powder flow rate can lead to an increase in microhardness and surface roughness [23].
- Laser power: A lower surface roughness can be achieved by using a higher laser power [24]; the porosity is inversely proportional to the laser power [25,44]. However, with increased laser power, the corrosion rate and the microhardness are reduced [21,47]. Laser power has significant effects on deposition efficiency and wear resistance as well; and strong interactions with scanning speed and the powder flow rate [4,22]. Moreover, laser power shows a significant influence on the grain size and the phase structure—increased laser power leading generally to coarser grains and microstructures [36,48].
- Scanning speed: an increase in scanning speed causes generally an increase in solidification rate, microhardness and surface roughness [21,23]. Mahamood has, in his work, observed that the wear resistance performance of samples rises first and then decreases with increasing scanning speed, with the turning point at 0.065 m/s [23,49].
3.2. Macrostructure and Microstructure
- Widmanstätten: Primary grains are coarse and complete. Continuous particles grow on the grain boundary. The colonies of lamellae are thick and parallel. After slow cooling (furnace cooling) from phase zone, Widmanstätten structure with a low ductility and a high fatigue performance could be seen.
- Duplex microstructure: No more than 50% of the discontinuous equiaxed particles distribute in transformed matrix. When alloy is heated or deformed in the upper part of + phase zone, a duplex microstructure with a comprehensive performance of mechanical properties can be achieved.
- Basket-weave microstructure: primary grain boundaries are destroyed and the lamellae become shorter in multiple orientations. When a large deformation is performed near transus temperature, basket-weave structure with enhanced ductility is formed.
- Equiaxed structure: More than 50% of the primary grains and a certain amount of the transformed grains display an irregular polygon shape. With a higher deformation rate, higher temperature, longer time of temperature holding, the equiaxial level is lifted, with a result of an excellent overall performance.
3.3. Heat Treatment and Mechanical Properties
4. Summary and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Kobryn, P.A.; Moore, E.H.; Semiatin, S.L. The effect of laser power and traverse speed on microstructure, porosity, and build height in laser-deposited Ti-6Al-4V. Scr. Mater. 2000, 4, 299–305. [Google Scholar] [CrossRef]
- Yu, J.; Rombouts, M.; Maes, G.; Motmans, F. Material Properties of Ti6Al4V Parts Produced by Laser Metal Deposition. Phys. Procedia 2012, 39, 416–424. [Google Scholar] [CrossRef] [Green Version]
- Gasser, A.; Backes, G.; Kelbassa, I.; Weisheit, A.; Wissenbach, K. Laser Additive Manufacturing: Laser Metal Deposition (LMD) and Selective Laser Melting (SLM) in Turbo–Engine Applications. Laser Tech. J. 2010, 7, 58–63. [Google Scholar] [CrossRef]
- Mahamood, R.M.; Akinlabi, E.T. Effect of Laser Power and Powder Flow Rate on the Wear Resistance Behaviour of Laser Metal Deposited TiC/Ti6Al4V Composites. Mater. Today Proc. 2015, 2, 2679–2686. [Google Scholar] [CrossRef]
- Inagaki, I.; Takechi, T.; Shirai, Y.; Ariyasu, N. Application and Features of Titanium for the Aerospace Industry; Nippon Steel & Sumitomo Metal Technical Report; NIPPON STEEL CORPORATION: Fukuoka, Janpan, 2014; pp. 22–27. [Google Scholar]
- Mountford, J.A. Titanium-Properties, Advantages and Applications Solving the Corrosion Problems in Marine Service; NACE International: Houston, TX, USA, 2002. [Google Scholar]
- Zhang, S.; Lin, X.; Chen, J.; Huang, W. Heat-treated microstructure and mechanical properties of laser solid forming Ti-6Al-4V alloy. Rare Met. 2009, 28, 537–544. [Google Scholar] [CrossRef]
- Rawal, S.; Brantley, J.; Karabudak, N. Additive manufacturing of Ti-6Al-4V alloy components for spacecraft applications. In Proceedings of the 2013 6th International Conference on Recent Advances in Space Technologies (RAST), Istanbul, Turkey, 12–14 June 2013; pp. 5–11. [Google Scholar]
- Batalu, D.; Cosmeleata, G.; Aloman, A. Critical analysis of the Ti-Al phase diagrams. UPB Sci. Bull. Ser. B 2006, 68, 77–90. [Google Scholar]
- Hadjixenophontos, E. Hydrogen Transport in Thin Films: Mg-MgH2 and Ti-TiH2 Systems. Ph.D. Thesis, University of Stuttgart, Stuttgart, Germany, 2018. [Google Scholar]
- Froes, F.H. Titanium: Physical Metallurgy, Processing, and Applications; ASM International: Cleveland, OH, USA, 2015. [Google Scholar]
- Van Arkel, A.C. History and Extractive Metallurgy. In Titanium—Physical Metallurgy, Processing, and Applications; ASM International: Cleveland, OH, USA, 2015. [Google Scholar]
- Morita, T.; Hatsuoka, K.; Iizuka, T.; Kawasaki, K. Strengthening of Ti–6Al–4V Alloy by Short-Time Duplex Heat Treatment. Mater. Trans. 2005, 46, 1681–1686. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H. Microstructure Heterogeneity in Additive Manufactured Ti6Al4V. Ph.D. Thesis, The University of Manchester, Manchester, UK, 2017. [Google Scholar]
- Mardaras, J.; Emile, P.; Santgerma, A. Airbus approach for F&DT stress justification of Additive Manufacturing parts. Procedia Struct. Integr. 2017, 7, 109–115. [Google Scholar]
- Leyens, C.; Peters, M. Titanium and Titanium Alloys: Fundamentals and Applications; Wiley-VCH: Weinheim, Germany; John Wiley: Chichester, UK, 2003. [Google Scholar]
- Gammon, L.M.; Briggs, R.D.; Packard, J.M.; Batson, K.W.; Boyer, R.; Domby, C.W. Metallography and microstructures of titanium and its alloys. In ASM Handbok; ASM International: Materials Park, OH, USA, 2004; Volume 9, pp. 899–917. [Google Scholar]
- Bhadeshia, H.K.D.H. Titanium and Its Alloys. Materials Science and Metallurgy; Lecture Notes; Univerisity of Cambridge: Cambridge, UK, 2013. [Google Scholar]
- Donachie, M.J. Titanium: A Technical Guide; ASM International: Cleveland, OH, USA, 2000. [Google Scholar]
- Kelbassa, I. Qualifizieren des Laserstrahl-Auftragschweißens von BLISKs aus Nickel-und Titanbasislegierungen. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 2006. [Google Scholar]
- Mahamood, R.M.; Akinlabi, E.T.; Akinlabi, S. Laser power and Scanning Speed Influence on the Mechanical Property of Laser Metal Deposited Titanium-Alloy. Lasers Manuf. Mater. Process. 2015, 2, 43–55. [Google Scholar] [CrossRef] [Green Version]
- Mahamood, R.M.; Akinlabi, E.T. Processing Parameters Optimization for Material Deposition Efficiency in Laser Metal Deposited Titanium Alloy. Lasers Manuf. Mater. Process. 2016, 3, 9–21. [Google Scholar] [CrossRef]
- Mahamood, R.M.; Akinlabi, E.T. Scanning speed and powder flow rate influence on the properties of laser metal deposition of titanium alloy. Int. J. Adv. Manuf. Technol. 2017, 91, 2419–2426. [Google Scholar] [CrossRef]
- Mahamood, R.M. Effect of Laser Power and Gas Flow Rate on Properties of Directed Energy Deposition of Titanium Alloy. Lasers Manuf. Mater. Process. 2018, 5, 42–52. [Google Scholar] [CrossRef]
- Erinosho, M.F.; Akinlabi, E.T.; Pityana, S. Laser Metal Deposition of Ti6Al4V/Cu Composite: A Study of the Effect of Laser Power on the Evolving Properties. In Proceedings of the World Congress of Engineering (WCE), London, UK, 2–4 July 2014. [Google Scholar]
- Heigel, J.C.; Michaleris, P.; Reutzel, E.W. Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti–6Al–4V. Addit. Manuf. 2015, 5, 9–19. [Google Scholar] [CrossRef]
- Yan, M.; Yu, P. An Overview of Densification, Microstructure and Mechanical Property of Additively Manufactured Ti-6Al-4V—Comparison among Selective Laser Melting, Electron Beam Melting, Laser Metal Deposition and Selective Laser Sintering, and with Conventional Powder Metallurgy. In Sintering Techniques of Materials; Lakshmanan, A., Ed.; InTech: London, UK, 2015. [Google Scholar]
- Li, P.H.; Guo, W.G.; Huang, W.D.; Su, Y.; Lin, X.; Yuan, K.B. Thermomechanical response of 3D laser-deposited Ti–6Al–4V alloy over a wide range of strain rates and temperatures. Mater. Sci. Eng. A 2015, 647, 34–42. [Google Scholar] [CrossRef]
- Qiu, C.; Ravi, G.A.; Dance, C.; Ranson, A.; Dilworth, S.; Attallah, M.M. Fabrication of large Ti–6Al–4V structures by direct laser deposition. J. Alloys Compd. 2015, 629, 351–361. [Google Scholar] [CrossRef]
- Carroll, B.E.; Palmer, T.A.; Beese, A.M. Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing. Acta Mater. 2015, 87, 309–320. [Google Scholar] [CrossRef]
- Sterling, A.J.; Torries, B.; Shamsaei, N.; Thompson, S.M.; Seely, D.W. Fatigue behavior and failure mechanisms of direct laser deposited Ti-6Al-4V. Mater. Sci. Eng. A 2016, 655, 100–112. [Google Scholar] [CrossRef]
- Paydas, H.; Mertens, A.; Carrus, R.; Lecomte-Beckers, J.; Tchuindjang, J.T. Laser cladding as repair technology for Ti–6Al–4V alloy: Influence of building strategy on microstructure and hardness. Mater. Des. 2015, 85, 497–510. [Google Scholar] [CrossRef]
- Wang, T.; Zhu, Y.Y.; Zhang, S.Q.; Tang, H.B.; Wang, H.M. Grain morphology evolution behavior of titanium alloy components during laser melting deposition additive manufacturing. J. Alloys Compd. 2015, 632, 505–513. [Google Scholar] [CrossRef]
- Nassar, A.R.; Keist, J.S.; Reutzel, E.W.; Spurgeon, T.J. Intra-layer closed-loop control of build plan during directed energy additive manufacturing of Ti–6Al–4V. Addit. Manuf. 2015, 6, 39–52. [Google Scholar] [CrossRef]
- Raju, R.; Duraiselvam, M.; Petley, V.; Verma, S.; Rajendran, R. Microstructural and mechanical characterization of Ti6Al4V refurbished parts obtained by laser metal deposition. Mater. Sci. Eng. A 2015, 643, 64–71. [Google Scholar] [CrossRef]
- Ravi, G.A.; Qiu, C.; Attallah, M.M. Microstructural control in a Ti-based alloy by changing laser processing mode and power during direct laser deposition. Mater. Lett. 2016, 179, 104–108. [Google Scholar] [CrossRef]
- Yan, L.; Chen, X.; Li, W.; Newkirk, J.; Liou, F. Direct laser deposition of Ti-6Al-4V from elemental powder blends. Rapid Prototyp. J. 2016, 22, 810–816. [Google Scholar] [CrossRef] [Green Version]
- Wolff, S.; Lee, T.; Faierson, E.; Ehmann, K.; Cao, J. Anisotropic properties of directed energy deposition (DED)-processed Ti–6Al–4V. J. Manuf. Process. 2016, 24, 397–405. [Google Scholar] [CrossRef] [Green Version]
- Zhai, Y.; Lados, D.A.; Brown, E.J.; Vigilante, G.N. Fatigue crack growth behavior and microstructural mechanisms in Ti-6Al-4V manufactured by laser engineered net shaping. Int. J. Fatigue 2016, 93, 51–63. [Google Scholar] [CrossRef]
- Sridharan, N.; Chaudhary, A.; Nandwana, P.; Babu, S.S. Texture Evolution During Laser Direct Metal Deposition of Ti-6Al-4V. JOM 2016, 68, 772–777. [Google Scholar] [CrossRef]
- Reichardt, A.; Dillon, R.P.; Borgonia, J.P.; Shapiro, A.A.; McEnerney, B.W.; Momose, T.; Hosemann, P. Development and characterization of Ti-6Al-4V to 304L stainless steel gradient components fabricated with laser deposition additive manufacturing. Mater. Des. 2016, 104, 404–413. [Google Scholar] [CrossRef]
- Keist, J.S.; Palmer, T.A. Role of geometry on properties of additively manufactured Ti-6Al-4V structures fabricated using laser based directed energy deposition. Mater. Des. 2016, 106, 482–494. [Google Scholar] [CrossRef]
- Marshall, G.J.; Young, W.J.; Thompson, S.M.; Shamsaei, N.; Daniewicz, S.R.; Shao, S. Understanding the Microstructure Formation of Ti-6Al-4V During Direct Laser Deposition via In-Situ Thermal Monitoring. JOM 2016, 68, 778–790. [Google Scholar] [CrossRef]
- Ogunlana, M.O.; Akinlabi, E.T. Influence of process parameters on porosity behaviour of laser metal deposited titanium composites. In Proceedings of the World Congress on Engineering and Computer Science, San Francisco, CA, USA, 19–21 October 2016. [Google Scholar]
- Zhong, C.; Chen, J.; Linnenbrink, S.; Gasser, A.; Sui, S.; Poprawe, R. A comparative study of Inconel 718 formed by High Deposition Rate Laser Metal Deposition with GA powder and PREP powder. Mater. Des. 2016, 107, 386–392. [Google Scholar] [CrossRef]
- Ahsan, M.N.; Pinkerton, A.J.; Moat, R.J.; Shackleton, J. A comparative study of laser direct metal deposition characteristics using gas and plasma-atomized Ti–6Al–4V powders. Mater. Sci. Eng. A 2011, 528, 7648–7657. [Google Scholar] [CrossRef]
- Mahamood, R.M.; Akinlabi, E.T. Corrosion behavior of laser additive manufactured titanium alloy. Int. J. Adv. Manuf. Technol. 2018, 99, 1545–1552. [Google Scholar] [CrossRef]
- Han, Y.; Lu, W.; Jarvis, T.; Shurvinton, J.; Wu, X. Investigation on the Microstructure of Direct Laser Additive Manufactured Ti6Al4V Alloy. Mater. Res. 2015, 18, 24–28. [Google Scholar] [CrossRef] [Green Version]
- Mahamood, R.M.; Akinlabi, E.T.; Shukla, M.; Pityana, S. Scanning velocity influence on microstructure, microhardness and wear resistance performance of laser deposited Ti6Al4V/TiC composite. Mater. Des. 2013, 50, 656–666. [Google Scholar] [CrossRef]
- Pederson, R. Microstructure and Phase Transformation of Ti-6Al-4V. Ph.D. Thesis, Luleå Tekniska Universitet, Luleå, Sweden, 2002. [Google Scholar]
- Banerjee, D.; Williams, J.C. Perspectives on titanium science and technology. Acta Mater. 2013, 61, 844–879. [Google Scholar] [CrossRef]
- Ahmed, T.; Rack, H.J. Phase transformationfs during cooling in α + β titanium alloys. Mater. Sci. Eng. A 1998, 243, 206–211. [Google Scholar] [CrossRef]
- Liu, S.; Shin, Y.C. Additive manufacturing of Ti6Al4V alloy: A review. Mater. Des. 2019, 164, 107552. [Google Scholar] [CrossRef]
- Zhang, S. Research on the Heat Treated Microstructures and Properties of Laser Solid Forming Ti-6Al-4V Alloy. Ph.D. Thesis, Northwestern Polytechnical University, Xi’an, China, 2009. [Google Scholar]
- Sieniawski, J.; Ziaja, W.; Kubiak, K.; Motyka, M. Microstructure and mechanical properties of high strength two-phase titanium alloys. In Titanium Alloys-Advances in Properties Control; IntechOpen: London, UK, 2013. [Google Scholar]
- Saboori, A.; Gallo, D.; Biamino, S.; Fino, P.; Lombardi, M. An Overview of Additive Manufacturing of Titanium Components by Directed Energy Deposition: Microstructure and Mechanical Properties. Appl. Sci. 2017, 7, 883. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Chang, L.; Wang, J.; Sang, L.; Wu, S.; Zhang, Y. In-situ investigation of the anisotropic mechanical properties of laser direct metal deposition Ti6Al4V alloy. Mater. Sci. Eng. A 2018, 712, 199–205. [Google Scholar] [CrossRef]
- Grong, O. Metallurgical Modelling of Welding; Institute of Materials: London, UK, 1997. [Google Scholar]
- Galarraga, H.; Warren, R.J.; Lados, D.A.; Dehoff, R.R.; Kirka, M.M.; Nandwana, P. Effects of heat treatments on microstructure and properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM). Mater. Sci. Eng. A 2017, 685, 417–428. [Google Scholar] [CrossRef] [Green Version]
- Ervin, J.K. Post Heat Treatment Effects of Ti-6Al-4V Produced via Solid Freeform Electron Beam Melting. Master’s Thesis, North Carolina State University, Raleigh, NC, USA, 2008. [Google Scholar]
- Shao, H.; Zhao, Y.; Ge, P.; Zeng, W. Influence of cooling rate and aging on the lamellar microstructure and fractography of TC21 titanium alloy. Metallogr. Microstruct. Anal. 2013, 2, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Meyer, L.W.; Krüger, L.; Sommer, K.; Halle, T.; Hockauf, M. Dynamic strength and failure behavior of titanium alloy Ti-6Al-4V for a variation of heat treatments. Mech. Time-Depend. Mater. 2008, 12, 237–247. [Google Scholar] [CrossRef]
Chem. Element wt.% | Al | V | Fe | O | N | C | H | Ti | Others (Each) | Others (Total) |
---|---|---|---|---|---|---|---|---|---|---|
Min. | 5.50 | 3.50 | 0 | 0 | 0 | 0 | 0 | balance | 0 | 0 |
Max. | 6.75 | 4.50 | 0.40 | 0.20 | 0.05 | 0.08 | 0.015 | balance | 0.10 | 0.40 |
Cast Material | Annealed Material | |
---|---|---|
ASTM F1108 | ASTM F1472 | |
Yield Strength () | 758 MPa | 860 MPa |
Ultimate Tensile Strength () | 860 MPa | 930 MPa |
Elongation at break (%) | >8 | >10 |
Reduction of Area (%) | >14 | >25 |
Powder Feeding Rate (kg/h) | Laser Power (W) | Scanning Speed v (mm/min) | Laser Spot Diameter d (mm) | Geometry of Samples (mm) | Powder Type/ Particle Size (m) | ||
---|---|---|---|---|---|---|---|
Kelbassa [20] | 0.036–0.096 | 250–500 | 500 | 1.3 | 50 × 10 × 10 | GA/45–71 | |
Mahamood [21,22,23,24] | 0.12–0.24 | 1500–3000 | 3000 | 3 | 6 layers | GA/150–200 | |
Erinosho [25] | – | 600–1800 | 300 | 4 | Single tracks | –/150–200 | |
Heigel [26] | 0.18 | 410–415 | 510 | 3 | 38.1 × 12.7 × 3 | –/44–149 | |
Yan [27] | – | 3500 | 120–2400 | 0.5–4.1 | 250 × 250 × 400 | –/10–200 | |
Li [28] | 0.9–1.8 | 7000 | 600–900 | 6 | 80 × 53 × 60 | –/40–100 | |
Qiu [29] | 0.36–0.96 | 800–1500 | 600–1000 | 0.2–6 | Thin walls | –/75–105 | |
Carroll [30] | 0.48 | 2000 | 636 | 4 | Thin walls | PREP/89 | |
Sterling [31] | 0.576 | 350 | 1015.8 | 1.1 | 5 layers | PREP/45–150 | |
Paydas [32] | 0.1 | 2000 | 400 | 1.4 | 39 × 20 × 5 | PREP/45–78 | |
0.019 | 300 | 600 | 0.036 | ||||
Wang [33] | 0.36–3.54 | 6000 | 1000 | 6 | Thin walls | PREP/80–250 | |
Nassar [34] | 0.18 | 500 | 634.8 | 1.24 | 24 × 38 × 9 | –/126.8 | |
Raju [35] | 0.24 | 1500 | 500-700 | 2 | 20 × 4.5 × 2 | GA/45–100 | |
Ravi [36] | – | 480–1800 | 700–1000 | – | 22 × 22 × 16 | PREP/45–150 | |
Yan [37] | – | 550–750 | 200–400 | 3 | 12.7 × 6.4 × 50.8 | –/106–175 | |
Wolff [38] | 0.432 | 710–940 | 600 | 1.83 | 40 × 40 × 40 | –/45–150 | |
Zhai [39] | 0.06/0.12 | 330/780 | 600/800 | – | 102 × 51 × 8 | GA/– | |
64 × 13 × 43 | |||||||
51 × 13 × 38 | |||||||
Sridharan [40] | 0.126 | 400 | 635 | – | 4 layers | PREP/44–120 | |
Reichardt [41] | 0.042–0.18 | 600 | 762 | – | Thin walls | –/44–177 | |
Keist [42] | 0.72 | 2000 | 600 | 4 | Thin walls | PREP/58–156 | |
Marshall [43] | 0.468 | 350 | 1014 | 2.9 | 6.6 × 6.6 × 78.2 | PREP/45–150 | |
Ogunlana [44] | 0.4 | 800–2400 | 1000 | 4 | Single tracks | –/45–90 |
Powder Feeding Rate (kg/h) | Laser Power (W) | Scanning Speed v (mm/min) | Tensile Axis Orientation | Yield Strength (MPa) | Tensile Strength (MPa) | Elongation (%) | |
---|---|---|---|---|---|---|---|
Kelbassa [20] | 0.036 | 450 | 500 | vertical | 984.37 | 1094.2 | 4.2 |
horizontal | 1040.8 | 1151.7 | 2.2 | ||||
955 °C, 1 h, helium quenching | vertical | 922.2 | 1038.3 | 11.49 | |||
+700 °C, 2 h, argon cooling | horizontal | 933.9 | 1035.6 | 7.11 | |||
640 °C, 1 h, vacuum oven cooling | vertical | 1008.9 | 1112 | 9.5 | |||
horizontal | 1050.5 | 1147.3 | 7.07 | ||||
Qiu [29] | 0.39–0.45 | 1100–1200 | 750–850 | vertical | 950 ± 2 | 1025 ± 2 | 5 ± 1 |
horizontal | 950 ± 2 | 1025 ± 10 | 12 ± 1 | ||||
920 °C, 100 MPa, 4 h, furnace cooling | – | 850 ± 2 | 920 ± 1 | 17 ± 2 | |||
Carroll [30] | 0.48 | 2000 | 636 | vertical (top) | 945 ± 13 | 1041 ± 12 | 14.5 ± 1.2 |
vertical (bottom) | 970 ± 17 | 1087 ± 8 | 13.6 ± 0.5 | ||||
horizontal | 960 ± 26 | 1063 ± 20 | 10.9 ± 1.4 | ||||
Sterling [31] | 0.576 | 350 | 1015.8 | horizontal | 908 | 1038 | 3.8 |
704 °C, 1 h, furnace cooling | 959 | 1049 | 3.7 | ||||
1050 °C, 2 h, furnace cooling | 957 | 1097 | 3.4 | ||||
Zhai [39] | 0.06 | 330 | 600 | horizontal | 1005 | 1103 | 4 |
760 ± 4 °C, 1 h, air cooling | 1000 | 1073 | 9 | ||||
0.12 | 780 | 800 | 990 | 1042 | 7 | ||
760 ± 4 °C, 1 h, air cooling | 991 | 1044 | 10 | ||||
Keist [42] | 0.72 | 2000 | 600 | vertical | 916 ± 34 | 1032 ± 31 | 19 ± 4 |
horizontal | 961 ± 40 | 1072 ± 33 | 17 ± 4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, C.; Liu, J.; Zhao, T.; Schopphoven, T.; Fu, J.; Gasser, A.; Schleifenbaum, J.H. Laser Metal Deposition of Ti6Al4V—A Brief Review. Appl. Sci. 2020, 10, 764. https://doi.org/10.3390/app10030764
Zhong C, Liu J, Zhao T, Schopphoven T, Fu J, Gasser A, Schleifenbaum JH. Laser Metal Deposition of Ti6Al4V—A Brief Review. Applied Sciences. 2020; 10(3):764. https://doi.org/10.3390/app10030764
Chicago/Turabian StyleZhong, Chongliang, Jianing Liu, Tong Zhao, Thomas Schopphoven, Jinbao Fu, Andres Gasser, and Johannes Henrich Schleifenbaum. 2020. "Laser Metal Deposition of Ti6Al4V—A Brief Review" Applied Sciences 10, no. 3: 764. https://doi.org/10.3390/app10030764
APA StyleZhong, C., Liu, J., Zhao, T., Schopphoven, T., Fu, J., Gasser, A., & Schleifenbaum, J. H. (2020). Laser Metal Deposition of Ti6Al4V—A Brief Review. Applied Sciences, 10(3), 764. https://doi.org/10.3390/app10030764