Influence of Cryoconcentration on Quality Attributes of Apple Juice (Malus Domestica cv. Red Fuji)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Standards
2.2. General Experimental Procedure
2.3. Preparation of Apple Juice
2.4. CBCC Protocol
2.5. Physicochemical Analysis
2.6. Bioactive Compounds (BC) Determination
2.7. Total Bioactive Compound (TBC) Retention
2.8. Antioxidant Activity Determination
2.8.1. DPPH
2.8.2. FRAP
2.9. Identification and Quantification of Volatile Compounds
2.10. Process Parameters
2.10.1. Efficiency Process (Eff)
2.10.2. Percentage of Concentrate (PC)
2.10.3. Solute Yield (Y)
2.11. Sensory Analysis
2.12. Stadistical Analysis
3. Results and Discussion
3.1. Physicochemical Analysis
3.2. Bioactive Compound Content and Antioxidant Activity Determinations
3.3. Profile of Volatile Compounds
3.4. Process Parameters
3.5. Sensorial Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- USDA. Fresh deciduous fruit: World markets and trade (apples, grapes, and pears). In Foreign Agricultural Service (FDA); Department of Agriculture: Washington, DC, USA, 2019. Available online: https://apps.fas.usda.gov/psdonline/circulars/fruit.pdf (accessed on 15 December 2019).
- Phaiphan, A.; Panichakool, P.; Jinawan, S.; Penjumras, P. Effects of heat and shallot (Allium ascalonicum L.) supplementation on nutritional quality and enzymatic browning of apple juice. J. Food Sci. Technol. 2019, 56, 4121–4128. [Google Scholar] [CrossRef] [PubMed]
- Zorenc, Z.; Veberic, R.; Stampar, F.; Koron, D.; Mikulic-Petkovsek, M. Thermal stability of primary and secondary metabolites in highbush blueberry (Vaccinium corymbosum L.) purees. LWT Food Sci. Technol. 2017, 76, 79–86. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Wang, L.H.; Zeng, X.A.; Han, Z.; Brennan, C.S. Non-thermal technologies and its current and future application in the food industry: A review. Int. J. Food Sci. Techol. 2019, 54, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Amran, N.A.; Samsuri, S.; Safiei, N.Z.; Zakaria, Z.Y.; Jusoh, M. Review: Parametric study on the performance of progressive cryoconcentration system. Chem. Eng. Commun. 2016, 203, 957–975. [Google Scholar] [CrossRef]
- Petzold, G.; Orellana, P.; Moreno, J.; Junod, J.; Bugueño, G. Freeze concentration as a technique to protect valuable heat-labile components of foods. In Innovative Processing Technologies for Foods with Bioactive Compounds, 1st ed.; Moreno, J.J., Ed.; CRC Press: Boca Raton, FA, USA, 2016; pp. 184–190. [Google Scholar]
- Yin, Y.; Yang, Y.; de Lourdes, M.; Zhai, S.; Feng, W.; Wang, Y.; Gu, M.; Cai, L.; Zhang, L. Progressive freezing and suspension crystallization methods for tetrahydrofuran recovery from Grignard reagent wastewater. J. Clean. Prod. 2017, 144, 180–186. [Google Scholar] [CrossRef]
- Muñoz, I.D.B.; Rubio, A.; Blanco, M.; Raventós, M.; Hernández, E.; Prudêncio, E.S. Progressive freeze concentration of skimmed milk in an agitated vessel: Effect of the coolant temperature and stirring rate on process performance. Food Sci. Technol. Int. 2019, 25, 150–159. [Google Scholar] [CrossRef]
- Zambrano, A.; Ruiz, Y.; Hernández, E.; Raventós, M.; Moreno, F.L. Freeze desalination by the integration of falling film and block freeze-concentration techniques. Desalination 2018, 436, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Moreno, F.L.; Raventós, M.; Hernández, E.; Ruiz, Y. Block freeze-concentration of coffee extract: Effect of freezing and thawing stages on solute recovery and bioactive compounds. J. Food Eng. 2014, 120, 158–166. [Google Scholar] [CrossRef]
- Orellana-Palma, P. External Forces Assisted Cryoconcentration to Improve the Concentration Process and the Quality of Fruit Juices. Ph.D. Thesis, Universidad del Bío-Bío, Chillán, Chile, April 2018. [Google Scholar]
- Aider, M.; de Halleux, D.J. Passive and microwave-assisted thawing in maple sap cryoconcentration technology. J. Food Eng. 2008, 85, 65–72. [Google Scholar] [CrossRef]
- Petzold, G.; Aguilera, J.M. Centrifugal freeze concentration. Innov. Food Sci. Emerg. Technol. 2013, 20, 253–258. [Google Scholar] [CrossRef]
- Orellana-Palma, P.; Petzold, G.; Andana, I.; Torres, N.; Cuevas, C. Retention of ascorbic acid and solid concentration via centrifugal freeze concentration of orange juice. J. Food Quality 2017, 2017, 5214909. [Google Scholar] [CrossRef] [Green Version]
- Adorno, W.T.; Rezzadori, K.; Arend, G.D.; Chaves, V.C.; Reginatto, F.H.; di Luccio, M.; Petrus, J.C. Enhancement of phenolic compounds content and antioxidant activity of strawberry (Fragaria×ananassa) juice by block freeze concentration technology. J. Food Sci. Technol. 2017, 52, 781–787. [Google Scholar] [CrossRef]
- ODEPA. Región del Maule, Información Regional 2019, Ministerio de Agricultura, Gobierno de Chile, Chile, 2019. Available online: https://www.odepa.gob.cl/wp-content/uploads/2019/03/Maule.pdf (accessed on 13 January 2020).
- Orellana-Palma, P.; Petzold, G.; Guerra-Valle, M.; Astudillo-Lagos, M. Impact of block cryoconcentration on polyphenol retention in blueberry juice. Food Biosci. 2017, 20, 149–158. [Google Scholar] [CrossRef]
- Bastías-Montes, J.M.; Martín, V.S.; Muñoz-Fariña, O.; Petzold-Maldonado, G.; Quevedo-León, R.; Wang, H.; Yang, Y.; Céspedes-Acuña, C.L. Cryoconcentration procedure for aqueous extracts of maqui fruits prepared by centrifugation and filtration from fruits harvested in different years from the same localities. J. Berry Res. 2019, 9, 377–394. [Google Scholar] [CrossRef]
- Orellana-Palma, P.; González, Y.; Petzold, G. Improvement of centrifugal cryoconcentration by ice recovery applied to orange juice. Chem. Eng. Technol. 2019, 42, 925–931. [Google Scholar] [CrossRef]
- Orellana-Palma, P.; Zuñiga, R.N.; Takhar, P.S.; Gianelli, M.P.; Petzold, G. Effects of centrifugal block freeze crystallization on quality properties in pineapple juice. Chem. Eng. Technol. 2020, 43, 355–364. [Google Scholar] [CrossRef]
- Tansakul, A.; Kantrong, H.; Saengrayup, R.; Sura, P. Thermophysical properties of papaya puree. Int. J. Food Prop. 2012, 15, 1086–1100. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.R. Analysis of total phenols and other oxidation substrates and oxidants by means of Folin–Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Paz, M.; Guillon, P.; Barroso, M.F.; Carvalho, A.P.; Domingues, V.F.; Gomes, A.M.; Becker, H.; Longhinotti, E.; Delerue-Matos, C. Brazilian fruit pulps as functional foods and additives: Evaluation of bioactive compounds. Food Chem. 2014, 172, 462–468. [Google Scholar] [CrossRef] [Green Version]
- Broadhurst, R.B.; Jones, W.T. Analysis of condensed tannins usingacidified vanillin. J. Sci. Food Agric. 1978, 29, 788–794. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant Power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orellana-Palma, P.; Takhar, P.S.; Petzold, G. Increasing the separation of block cryoconcentration through a novel centrifugal filter-based method. Sep. Sci. Technol. 2019, 54, 149–158. [Google Scholar] [CrossRef]
- Petzold, G.; Moreno, J.; Lastra, P.; Rojas, K.; Orellana, P. Block freeze concentration assisted by centrifugation applied to blueberry and pineapple juices. Innov. Food Sci. Emerg. Technol. 2015, 30, 192–197. [Google Scholar] [CrossRef]
- Sánchez, J.; Ruiz, Y.; Raventós, M.; Auleda, J.M.; Hernández, E. Progressive freeze concentration of orange juice in a pilot plant falling film. Innov. Food Sci. Emerg. 2010, 11, 644–651. [Google Scholar] [CrossRef]
- Moreno, F.L.; Quintanilla-Carvajal, M.X.; Sotelo, L.I.; Osorio, C.; Raventós, M.; Hernández, E.; Ruiz, Y. Volatile compounds, sensory quality and ice morphology in falling-film and block freeze concentration of coffee extract. J. Food Eng. 2015, 166, 64–71. [Google Scholar] [CrossRef] [Green Version]
- Zielinski, A.A.; Zardo, D.M.; Alberti, A.; Bortolini, D.G.; Benvenutti, L.; Demiate, I.M.; Nogueira, A. Effect of cryoconcentration process on phenolic compounds and antioxidant activity in apple juice. J. Sci. Food Agric. 2019, 99, 2786–2792. [Google Scholar] [CrossRef]
- Ding, Z.; Qin, F.G.; Yuan, J.; Huang, S.; Jiang, R.; Shao, Y. Concentration of apple juice with an intelligent freeze concentrator. J. Food Eng. 2019, 256, 61–72. [Google Scholar] [CrossRef]
- Khajehei, F.; Niakousari, M.; Eskandari, M.H.; Sarshar, M. Production of pomegranate juice concentrate by complete block cryoconcentration process. J. Food Process Eng. 2015, 38, 488–498. [Google Scholar] [CrossRef]
- Petzold, G.; Orellana, P.; Moreno, J.; Cerda, E.; Parra, P. Vacuum-assisted block freeze concentration applied to wine. Innov. Food Sci. Emerg. 2016, 36, 330–335. [Google Scholar] [CrossRef]
- Melgosa, M.; Hita, E.; Poza, A.J.; Alman, D.H.; Berns, R.S. Suprathreshold color-difference ellipsoids for surface colors. Color Res. Appl. 1997, 22, 148–155. [Google Scholar] [CrossRef]
- Sun, Y.; Zhong, L.; Cao, L.; Lin, W.; Ye, X. Sonication inhibited browning but decreased polyphenols contents and antioxidant activity of fresh apple (Malus pumila mill, cv. Red Fuji) juice. J. Food Sci. Technol. 2015, 52, 8336–8342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laaksonen, O.; Kuldjärv, R.; Paalme, T.; Virkki, M.; Yang, B. Impact of apple cultivar, ripening stage, fermentation type and yeast strain on phenolic composition of apple ciders. Food Chem. 2017, 233, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Nunes, G.L.; Boaventura, B.C.B.; Pinto, S.S.; Verruck, S.; Murakami, F.S.; Prudêncio, E.S.; Amboni, R.D.D.M.C. Microencapsulation of freeze concentrated Ilex paraguariensis extract by spray drying. J. Food Eng. 2015, 151, 60–68. [Google Scholar] [CrossRef]
- Correa, L.J.; Ruiz, R.Y.; Moreno, F.L. Effect of falling-film freeze concentration on bioactive compounds in aqueous coffee extract. J. Food Process Eng. 2018, 41, e12606. [Google Scholar] [CrossRef]
- Silva, K.M.; Zielinski, A.A.F.; Benvenutti, L.; Bortolini, D.G.; Zardo, D.M.; Beltrame, F.L.; Nogueira, A.; Alberti, A. Effect of fruit ripening on bioactive compounds and antioxidant capacity of apple beverages. Food Sci. Technol. 2019, 39, 294–300. [Google Scholar] [CrossRef] [Green Version]
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef] [Green Version]
- Kheshti, N.; Melo, A.A.M.; Cedeno, A.B.; Obenland, D.; Prakash, A. Physiological response of ‘Fuji’apples to irradiation and the effect on quality. Radiat. Phys. Chem. 2019, 165, 108389. [Google Scholar] [CrossRef]
- Mao, D.; Liu, H.; Li, Z.; Niu, Y.; Xiao, Z.; Zhang, F.; Zhu, J. Impact of sensory interactions among volatile compounds of juice of Red Delicious apples. Hortic. Environ. Biotechnol. 2019. [Google Scholar] [CrossRef]
- Medina, S.; Perestrelo, R.; Santos, R.; Pereira, R.; Câmara, J.S. Differential volatile organic compounds signatures of apple juices from Madeira Island according to variety and geographical origin. Microchem. J. 2019, 150, 104094. [Google Scholar] [CrossRef]
- Espino-Díaz, M.; Sepúlveda, D.R.; González-Aguilar, G.; Olivas, G.I. Biochemistry of apple aroma: A review. Food Technol. Biotechnol. 2016, 54, 375–394. [Google Scholar] [CrossRef] [PubMed]
- Piccone, P.; Lonzarich, V.; Navarini, L.; Fusella, G.; Pittia, P. Effect of sugars on liquid–vapour partition of volatile compounds in ready-to-drink coffee beverages. Int. J. Mass Spectrom. 2012, 47, 1120–1131. [Google Scholar] [CrossRef] [PubMed]
- Bonilla-Zavaleta, E.; Vernon-Carter, E.J.; Beristain, C.I. Thermophysical properties of freeze-concentrated pineapple juice. Ital. J. Food Sci. 2006, 18, 367–376. [Google Scholar]
- Gunathilake, M.; Shimmura, K.; Dozen, M.; Miyawaki, O. Flavor retention in progressive freeze-concentration of coffee extract and pear (La France) juice flavor condensate. Food Sci. Technol. Res. 2014, 20, 547–554. [Google Scholar] [CrossRef] [Green Version]
- Miyawaki, O.; Gunathilake, M.; Omote, C.; Koyanagi, T.; Sasaki, T.; Take, H.; Matsuda, A.; Ishisaki, K.; Miwa, S.; Kitano, S. Progressive freeze-concentration of apple juice and its application to produce a new type apple wine. J. Food Eng. 2016, 171, 153–158. [Google Scholar] [CrossRef] [Green Version]
- Perestrelo, R.; Silva, C.; Silva, P.; Medina, S.; Câmara, J.S. Differentiation of fresh and processed fruit juices using volatile composition. Molecules 2019, 24, 974. [Google Scholar] [CrossRef] [Green Version]
- López-Fructuoso, M.L.; Echeverría-Cortada, G. Apple (Malus x domestica Borkh.). In Handbook of Fruit and Vegetable Flavors, 1st ed.; Hui, Y.H., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; pp. 247–264. [Google Scholar]
- Zhu, D.; Ren, X.; Wei, L.; Cao, X.; Ge, Y.; Liu, H.; Li, J. Collaborative analysis on difference of apple fruits flavour using electronic nose and electronic tongue. Sci. Hortic. 2020, 260, 108879. [Google Scholar] [CrossRef]
- Welti-Chanes, J.; Bermúdez, D.; Valdez-Fragoso, A.; Mújica-Paz, H.; Alzamora, S.M. Principles and applications of freeze-concentration and freeze-drying. In Handbook of Food Science, Technology, and Engineering, 1st ed.; Hui, Y.H., Ed.; Marcel Dekker: New York, NY, USA, 2004; pp. 13–17. [Google Scholar]
- Gu, X.; Watanabe, M.; Suzuki, T.; Miyawaki, O. Limiting partition coefficient in a tubular ice system for progressive freeze-concentration. Food Sci. Technol. Res. 2008, 14, 249–252. [Google Scholar] [CrossRef]
- Dette, S.S.; Jansen, H. Freeze concentration of black currant juice. Chem. Eng. Technol. 2010, 33, 762–766. [Google Scholar] [CrossRef]
- Ramos, F.A.; Delgado, J.L.; Bautista, E.; Morales, A.L.; Duque, C. Changes in volatiles with the application of progressive freeze-concentration to Andes berry (Rubus glaucus Benth). J. Food Eng. 2005, 69, 291–297. [Google Scholar] [CrossRef]
Fresh Juice | CBCC Cycle 1 | CBCC Cycle 2 | CBCC Cycle 3 | |
---|---|---|---|---|
TSSC (°Brix) | 13.9 ± 1.0d | 31.4 ± 1.9c | 44.7 ± 1.7b | 54.9 ± 0.7a |
pH | 3.5 ± 0.0a | 3.4 ± 0.0b | 3.3 ± 0.0c | 3.1 ± 0.0d |
TTA (g malic acid/L) | 2.3 ± 0.0d | 2.5 ± 0.0c | 2.8 ± 0.0b | 3.0 ± 0.1a |
ρ (g/mL) | 1.1 ± 0.0d | 1.2 ± 0.0c | 1.4 ± 0.0b | 1.5 ± 0.0a |
Color | ||||
L* | 78.1 ± 1.3a | 76.9 ± 3.0a | 68.1 ± 1.9b | 68.4 ± 0.4b |
a* | 3.9 ± 0.2c | 6.1 ± 1.6b | 10.9 ± 0.9a | 11.0 ± 0.6a |
b* | 27.7 ± 0.4c | 38.9 ± 4.7b | 41.1 ± 2.2a | 43.5 ± 3.7a |
ΔE* | - | 11.6 ± 0.2c | 17.2 ± 0.1b | 25.0 ± 0.0a |
Fresh Apple Juice | Cryoconcentration | |||
---|---|---|---|---|
Cycle 1 | Cycle 2 | Cycle 3 | ||
Bioactive compound content | ||||
TPC (mg GAE/100 g d.m.) | 244.3 ± 17.0d | 364.8 ± 29.0c | 606.3 ± 41.9b | 818.9 ± 33.0a |
TPC retention, % | - | 66.1 | 77.2 | 84.9 |
TFC (mg CEQ/100 g d.m.) | 81.5 ± 12.2d | 115.6 ± 4.5c | 185.5 ± 13.1b | 247.8 ± 17.2a |
TFC retention, % | - | 62.8 | 70.8 | 77.0 |
TFLC (mg CEQ/100 g d.m.) | 123.8 ± 6.1d | 169.8 ± 10.0c | 255.1 ± 16.3b | 344.9 ± 20.0a |
TFLC retention, % | - | 60.7 | 64.1 | 70.5 |
Antioxidant activity | ||||
DPPH (µmol TE/100 g d.m.) | 522.5 ± 44.9d | 1039.6 ± 43.4c | 1315.7 ± 14.5b | 1803.2 ± 25.5a |
FRAP (µmol TE/100 g d.m.) | 467.1 ± 27.2d | 1277.4 ± 121.5c | 1635.8 ± 78.4b | 2935.5 ± 198.3a |
No2 | Compound3 | RT4 (min) | KI5 | Fresh Juice | CBCC Cycle 1 | CBCC Cycle 2 | CBCC Cycle 3 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Area ± DS6 (μV·s) | Area7 (%) | Area ± DS6 (μV·s) | Area7 (%) | Area ± DS6 (μV·s) | Area7 (%) | Area ± DS6 (μV·s) | Area7 (%) | ||||
1 | NI | 6.724 | - | 282830.0 ± 102706.3 | 0.01 | 318078.0 ± 127061.1 | 0.02 | 343100.0 ± 202337.3 | 0.03 | ||
2 | NI | 7.401 | 79843.7 ± 14999.8 | 0.01 | - | - | - | ||||
3 | 2-Propanol | 7.970 | 541 | 297065.3 ± 72216.7 | 0.04 | 26522226.0 ± 243313.7 | 0.88 | 44308240.0 ± 2419159.8 | 1.11 | 2795932.0 ± 778665.7 | 0.27 |
4 | NI | 9.285 | 568 | 86606.7 ± 4348.5 | 0.01 | - | - | - | |||
5 | Butanal | 10.721 | 603 | 899295.3 ± 467383.0 | 0.10 | 4323310.0 ± 580702.2 | 0.14 | 12829114.0 ± 673907.7 | 0.33 | 2938169.0 ± 690048.5 | 0.28 |
6 | Ethyl acetate | 11.876 | 637 | 217697.0 ± 107843.9 | 0.03 | - | 3638095.0 ± 356798.3 | 0.09 | - | ||
7 | 2 Methyl-1- propanol | 12.853 | 664 | 51488.3 ± 5197.4 | 0.01 | 665740.0 ± 126926.5 | 0.02 | 1830674.0 ± 183780.9 | 0.05 | 524879.3 ± 47988.2 | 0.05 |
8 | 1-Butanol | 14.588 | 709 | 20481655.7 ± 361528.7 | 2.43 | 96660253.0 ± 1745979.4 | 3.40 | 195310887.0 ± 1996063.3 | 4.98 | 46142108.0 ± 4665844.3 | 4.39 |
9 | Propyl acetate | 15.673 | 734 | 1399590.0 ± 764702.1 | 0.17 | - | - | 2622423.7 ± 1295829.1 | 0.25 | ||
10 | 2-Pentanone | 15.816 | 746 | 671524.0 ± 14587.0 | 0.01 | - | - | 354600.3 ± 304093.3 | 0.19 | ||
11 | NI | 16.361 | 758 | 57146.0 ± 11278.2 | 0.01 | - | - | - | |||
12 | Ethyl 2-methyl propanoate | 17.925 | 784 | 25673504.7 ± 919970.3 | 3.17 | 135434152.0 ± 7823690.3 | 4.68 | 275036482.0 ± 2859035.3 | 7.01 | 61557574.3 ± 4399046.7 | 5.87 |
13 | 2-Methyl butanol | 18.611 | 799 | 293726.3 ± 226346.6 | 0.04 | - | 109469714.0 ± 30464924.4 | 2.79 | 3655384.7 ± 1424984.6 | 0.35 | |
14 | 1-Pentanol | 19.312 | 812 | 946200.3 ± 393295.3 | 0.12 | 5607103.0 ± 959253.5 | 0.19 | 15885328.0 ± 315675.8 | 0.50 | 3155739.3 ± 785815.3 | 0.30 |
15 | 2-Penten-1-ol | 19.841 | 822 | 1307300.6 ± 152564.3 | 0.16 | - | - | 769415.8 ± 58147.2 | 0.07 | ||
16 | NI | 19.915 | 826 | - | - | - | 61358.5 ± 8789.1 | 0.01 | |||
17 | Methyl isopentanoate | 20.003 | 829 | - | - | - | 84779.2 ± 13559.9 | 0.01 | |||
18 | Ethyl butanoate | 20.306 | 831 | - | 188154.0 ± 33997.0 | 0.01 | - | - | |||
19 | Propyl propanoate | 20.701 | 838 | 265527334.3 ± 2211731.2 | 32.78 | 744949465.0 ± 11043397.5 | 24.56 | 927660144.0 ± 36874740.6 | 23.73 | 271190131.0 ± 10810605.6 | 25.74 |
20 | Ethyl 3-methyl butanoate | 22.509 | 872 | - | - | 858797.0 ± 318410.1 | 0.02 | 387819.0 ± 141958.1 | 0.03 | ||
21 | Ethyl 2-methyl butanoate | 22.832 | 879 | 115971.0 ± 47112.6 | 0.01 | - | - | 74396.0 ± 3335.7 | 0.01 | ||
22 | Propyl isobutyrate | 23.885 | 897 | 363829.0 ± 461296.3 | 0.03 | 6516629.0 ± 1550179.1 | 0.22 | 8901868.0 ± 1242428.9 | 0.23 | 1072184.0 ± 588990.5 | 0.10 |
23 | 3-Methylbutyl acetate | 24.390 | 906 | 161453176.3 ± 7205273.7 | 19.93 | 299040619.0 ± 7574801.7 | 9.90 | 419808246.0 ± 28706962.8 | 10.70 | 150049001.3 ± 31966969.9 | 14.30 |
24 | 2-Methyl butyl acetate | 24.594 | 909 | 113265346.3 ± 4841724.61 | 13.98 | 761197445.0 ± 19537256.3 | 25.20 | 754701538.0 ± 51802781.9 | 19.23 | 177007026.3 ± 56927390.8 | 16.77 |
25 | Ethyl pentanoate | 24.915 | 919 | 165161225.33 ± 3722692.8 | 20.53 | 809534184.0 ± 25344664.5 | 26.79 | 1046607079.0 ± 54059121.1 | 26.66 | 278107449.7 ± 33341609.1 | 26.44 |
26 | 1-Hexanol | 25.325 | 921 | 10568683.0 ± 2696706.6 | 1.30 | 1015759.0 ± 159355.2 | 0.03 | 30848006.0 ± 4908217.2 | 0.79 | 14051512.3 ± 7343551.9 | 1.34 |
27 | 2-Heptanone | 26.401 | 939 | 201229.0 ± 98152.8 | 0.28 | 5335595.0 ± 219869.2 | 0.18 | 5669031.0 ± 1660335.6 | 0.14 | 3932498.0 ± 2801013.5 | 0.38 |
28 | 2,4-Hexadienal | 28.333 | 970 | 2981978.0 ± 934205.0 | 0.37 | 3575161.0 ± 250404.8 | 0.14 | 1074023.0 ± 353934.4 | 0.03 | 1974035.7 ± 1925044.1 | 0.19 |
29 | 1-Heptanol | 28.649 | 975 | - | - | - | 89140.0 ± 17472.9 | 0.05 | |||
30 | NI | 30.152 | 1.001 | - | - | - | - | ||||
31 | Ethyl hexanoate | 31.498 | 1.024 | 281486.0 ± 57977.3 | 0.04 | - | - | - | |||
32 | NI | 32.117 | 1.030 | - | - | - | - | ||||
33 | Octanal | 32.791 | 1.049 | 31600971.7 ± 3572723.2 | 3.70 | 80883130.0 ± 709157.4 | 2.67 | 32316356.0 ± 4685213.8 | 0.91 | 18271366.7 ± 10206857.7 | 1.75 |
34 | 2-Ethyl-1-hexanol | 34.606 | 1.083 | 580902.7 ± 277644.3 | 0.07 | - | - | - | |||
35 | Pentyl butanoate | 35.360 | 1.097 | 598638.7 ± 461256.6 | 0.07 | - | 3189589.0 ± 758448.3 | 0.08 | 431032.3 ± 361305.8 | 0.06 | |
36 | Nonanal | 39.545 | 1.150 | 60112.6 ± 9852.2 | 0.01 | - | - | 81955.3 ± 9122.6 | 0.01 | ||
37 | Heptanoic acid | 41.207 | 1.170 | - | 195623.1 ± 175114.1 | 0.01 | - | - | |||
38 | Benzyl acetate | 44.348 | 1.213 | 80022.0 ± 11152.2 | 0.01 | - | - | 85308.7 ± 16928.7 | 0.01 | ||
39 | Methyl nonanoate | 48.928 | 1.256 | - | - | - | 70145.7 ± 8071.2 | 0.01 | |||
40 | Octanoic acid | 50.263 | 1.263 | - | - | 264806.0 ± 18648.2 | 0.01 | - | |||
41 | NI | 51.915 | 1.284 | - | - | - | 89854.3 ± 40343.6 | 0.01 | |||
42 | NI | 54.328 | 1.300 | - | - | - | 59558.8 ± 7154.4 | 0.01 | |||
43 | 2,4-Decadienal | 56.586 | 1.392 | - | - | 152347.5 ± 33258.4 | 0.01 | - | |||
44 | NI | 57.536 | 1.412 | - | - | - | 110933.3 ± 32305.7 | 0.01 | |||
45 | NI | 58.701 | 1.419 | - | - | - | - | ||||
46 | NI | 59.187 | 1.425 | - | - | - | - | ||||
47 | NI | 59.543 | 1.437 | - | - | - | - | ||||
48 | Ethyl decanoate | 60.595 | 1.442 | 3909910.0 ± 2829238.5 | 0.49 | 25309997.0 ± 1427639.1 | 0.78 | 17520119.0 ± 1762721.8 | 0.50 | 6322302.5 ± 427412.8 | 0.60 |
49 | NI | 62.819 | 1.501 | - | - | - | 98941.0 ± 23746.7 | 0.01 | |||
50 | Tetradecanoic acid | 64.699 | 1.539 | - | - | - | 215383.0 ± 232813.3 | 0.02 | |||
51 | NI | 65.074 | 1.543 | - | - | - | - | ||||
52 | NI | 65.690 | 1.559 | 87066.3 ± 11890.7 | 0.01 | - | - | 94033.0 ± 20933.8 | 0.01 | ||
53 | Geranyl butyrate | 67.627 | 1.598 | 294987.0 ± 33403.3 | 0.02 | - | - | - | |||
Total | 809595513.2 | 100.0 | 3007237375.1 | 100.0 | 3908198561.5 | 100.0 | 1048871472.1 | 100.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orellana-Palma, P.; Lazo-Mercado, V.; Gianelli, M.P.; Hernández, E.; Zúñiga, R.N.; Petzold, G. Influence of Cryoconcentration on Quality Attributes of Apple Juice (Malus Domestica cv. Red Fuji). Appl. Sci. 2020, 10, 959. https://doi.org/10.3390/app10030959
Orellana-Palma P, Lazo-Mercado V, Gianelli MP, Hernández E, Zúñiga RN, Petzold G. Influence of Cryoconcentration on Quality Attributes of Apple Juice (Malus Domestica cv. Red Fuji). Applied Sciences. 2020; 10(3):959. https://doi.org/10.3390/app10030959
Chicago/Turabian StyleOrellana-Palma, Patricio, Virgilio Lazo-Mercado, María Pía Gianelli, Eduard Hernández, Rommy N. Zúñiga, and Guillermo Petzold. 2020. "Influence of Cryoconcentration on Quality Attributes of Apple Juice (Malus Domestica cv. Red Fuji)" Applied Sciences 10, no. 3: 959. https://doi.org/10.3390/app10030959
APA StyleOrellana-Palma, P., Lazo-Mercado, V., Gianelli, M. P., Hernández, E., Zúñiga, R. N., & Petzold, G. (2020). Influence of Cryoconcentration on Quality Attributes of Apple Juice (Malus Domestica cv. Red Fuji). Applied Sciences, 10(3), 959. https://doi.org/10.3390/app10030959