Properties of the Iron Bacteria Biofouling on Ni–P–rGO Coating
Abstract
:1. Introduction
2. Experimental
2.1. Experimental Procedure
- (1)
- Prepare Ni–P–rGO coatings.
- (2)
- Analyze the coating morphology.
- (3)
- Measure the coating contact angle and calculate surface energy.
- (4)
- Cultivate the iron bacteria.
- (5)
- Conduct biofouling experiments.
2.2. The Coating of Ni–P–rGO
2.3. Contact Angle and Surface Energy
2.4. Biofouling
3. Results
3.1. Morphology
3.2. The Weight of Biofouling on Carbon Steel and Ni–P–rGO Coating
3.3. Effect of the Surface Energy Component on the Biofouling of Iron Bacteria
4. Discussion
5. Conclusions
- (1)
- In comparison with the carbon steel, the Ni–P–rGO coating exhibited an excellent property of inhibiting the biofouling of iron bacteria, with the (Ni–P–rGO40) coating reducing the biofouling sediment by 97.2%.
- (2)
- The biofouling sediment on the Ni–P–rGO coating showed the following trend: With the increase of the graphene concentration, the weight of biofouling first decreased and then increased. When increasing the amount of graphene from 20 to 40 mg/L, the weight of biofouling decreased to 21.4%; however, as the concentration of graphene ranged from 40 to 80 mg/L, the biofouling increased to 165.5%.
- (3)
- Graphene concentration can affect the CQ ratio of an Ni–P–rGO coating, thus affecting the weight of iron bacteria biofouling.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yang, S.R.; Xu, Z.M.; Sun, L.F. Fouling and Counter Measures for Heat Transfer Equipment, 2nd ed.; Science Press: Beijing, China, 2004. [Google Scholar]
- Li, B.; Logan, B.E. Bacterial adhesion to glass and metal-oxide surfaces. Colloids Surf. B 2004, 36, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.D.; Yao, X.; Bai, W.Y.; Xu, Z.M. Effect of electroless Ni-P alloy coating on biofouling of iron bacteria. J. Eng. Therm. Energy Power 2016, 60, 4858–4865. [Google Scholar]
- Liu, Y.; Zhao, Q. Influence of surface energy of modified surfaces on bacterial adhesion. Biophys. Chem. 2005, 117, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.M.; Wang, D.; Kong, L.W.; Liu, Z.D. Fouling characteristics of iron bacteria on the surface of electroless plating of Ni-Cu-P. Huagong Jinzhan 2017, 2. [Google Scholar] [CrossRef] [Green Version]
- Shao, W.; Zhao, Q. Effect of corrosion rate and surface energy of silver coatings on bacterial adhesion. Colloids Surf. B 2010, 76, 98–103. [Google Scholar] [CrossRef]
- Wu, H.H.; Liu, F.; Gong, W.B.; Ye, F.Y.; Hao, L.F.; Jiang, J.B.; Han, S. Preparation of Ni-P-GO composite coatings and its mechanical properties. Surf. Coat. Technol. 2015, 272, 25–32. [Google Scholar] [CrossRef]
- Matjie, R.; Zhang, S.; Zhao, Q.; Mabuza, N.; Bunt, J.R. Tailored surface energy of stainless steel plate coupons to reduce the adhesion of aluminium silicate deposit. Fuel 2016, 181, 573–578. [Google Scholar] [CrossRef] [Green Version]
- Shao, W.; Wu, J.M.; Liu, H.; Dong, G.H.; Wang, S.X.; Min, H.H.; Huang, M. Graphene oxide reinforced Ni-P coatings for bacterial adhesion inhibition. RSC Adv. 2016, 6, 46270. [Google Scholar] [CrossRef]
- Qian, Y.; Zhou, T.F.; Jiang, Y.G.; Yan, X.; An, Z.L.; Wang, X.B.; Zhang, D.Y.; Ono, T. Preparation of graphene-enhanced nickel-phosphorus composite films by ultrasonic-assisted electroless plating. Appl. Surf. Sci. 2018, 435, 617–625. [Google Scholar]
- Lee, C.K.; Teng, C.L.; Tan, A.H.; Yang, C.Y.; Lee, S.L. Electroless Ni-P/Diamond/Graphene composite coatings and characterization of their wear and corrosion resistance in sodium chloride solution. Key Eng. Mater. 2015, 656, 51–56. [Google Scholar] [CrossRef]
- Dexter, S.C.; Sullivan, J.D.; Williams, J.; Watson, S.W. Influence of substrate wettability on the attachment of marine bacteria to various surfaces. Appl. Microbiol. 1975, 30, 298–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baier, R.E. Adsorption of Micro-Organism to Surface; Wiley Interscience: Hoboken, NJ, USA, 1980. [Google Scholar]
- Brink, L.E.S.; Elbers, S.J.G.; Robertsen, T.; Both, P. The anti-fouling action of polymers preadsorbed on ultrafiltration and microfiltration membranes. J. Membr. Sci. 1993, 76, 281–291. [Google Scholar] [CrossRef]
- Pasmore, M.; Todd, P.; Smith, S.; Baker, D.; Silverstein, J.; Coons, D.; Bowman, C.N. Effects of ultrafiltration membrane surface properties on Pseudomonas aeruginosa biofilm initiation for the purpose of reducing biofouling. J. Membr. Sci. 2001, 194, 15–32. [Google Scholar] [CrossRef]
- Hahnel, S.; Rosentritt, M.; Handel, G.; Bürgers, R. Surface characterization of dental ceramics and initial streptococcal adhesion in vitro. Dent. Mater. 2009, 25, 969–975. [Google Scholar] [CrossRef] [PubMed]
- Al-Janabi, A.; Malayeri, M.R. A criterion for the characterization of modified surfaces during crystallization fouling based on electron donor component of surface energy. Chem. Eng. Res. Des. 2015, 100, 212–227. [Google Scholar] [CrossRef]
- Azeredo, J.; Visser, J.; Oliveira, R. Exopolymers in bacterial adhesion: Interpretation in terms of DLVO and XDLVO theories. Colloids Surf. B 1999, 14, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Liu, Y.; Wang, C.; Wang, S.; Müller-Steinhagen, H. Effect of surface free energy on the adhesion of biofouling and crystalline fouling. Chem. Eng. Sci. 2005, 60, 4858–4865. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, Q. The CQ ratio of surface energy components influences adhesion and removal of fouling bacteria. Biofouling 2011, 27, 275–285. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, Q. Influence of surface-energy components of Ni-P-TiO2-PTFE nanocomposite coatings on bacterial adhesion. Langmuir 2011, 27, 9512–9519. [Google Scholar] [CrossRef]
- Tavana, H.; Simon, F.; Grundke, K.; Kwok, D.Y.; Hair, M.L.; Neumann, A.W. Interpretation of contact angle measurements on two different fluoropolymers for the determination of solid surface tension. J. Colloid Interface Sci. 2005, 291, 497–506. [Google Scholar] [CrossRef]
- State Technology Supervision Administration. Industrial Circulating Cooling Water; GB/T 14643.6-93; State Technology Supervision Administration: Beijing, China, 1993.
- Oss, C.J.V.; Good, R.J.; Chaudhury, M.K. Additive and nonadditive surface tension components and the interpretation of contact angles. Langmuir 1988, 4, 884–891. [Google Scholar]
- Oss, C.J.V.; Ju, L.; Chaudhury, M.K.; Good, R.J. Estimation of the polar parameters of the surface tension of liquids by contact angle measurements on gels. J. Colloid Interface Sci. 1989, 128, 313–319. [Google Scholar]
- Chen, J.; Zheng, X.; Wang, H.; Zheng, W.T. Graphene oxide-Ag nanocomposite: In situ photochemical synthesis and application as a surface-enhanced Raman scattering substrate. Thin Solid Film 2011, 520, 179–185. [Google Scholar] [CrossRef]
- Dinh, D.A.; Hui, K.S.; Hui, K.N.; Cho, Y.R.; Zhou, W.; Hong, X.T.; Chun, H. Green synthesis of high conductivity silver nanoparticle-reduced graphene oxide composite films. Appl. Surf. Sci. 2014, 298, 62–67. [Google Scholar] [CrossRef]
- Wu, J.X.; Xu, H.; Zhang, J. Raman spectroscopy of graphene. Acta Chim. Sin. 2014, 72, 301–318. [Google Scholar] [CrossRef] [Green Version]
- Chibowski, E.; Hołysz, L.; Wójcik, W. Changes in zeta potential and surface free energy of calcium carbonate due to exposure to radiofrequency electric field. Colloids Surf. A 1994, 92, 79–85. [Google Scholar] [CrossRef]
- Oss, C.J.V. Interfacial Forces in Aqueous Media; Marcel Dekker: New York, NY, USA, 1994. [Google Scholar]
Nickel Sulfate | 25 g/L |
---|---|
Sodium Hypophosphite | 30 g/L |
Citric Acid | 15 g/L |
Lactic Acid | 16 g/L |
Sodium Acetate | 11 g/L |
Potassium Iodide | 0.01 g/L |
Graphene | 20–80 mg/L |
OP-10 | Appropriate |
pH | 4.8 |
Temperature | 83 °C |
Surface Tension [24] | |||||
---|---|---|---|---|---|
Distilled water | 72.8 | 21.8 | 51.0 | 25.5 | 25.5 |
Diiodomethane | 50.8 | 50.8 | 0 | 0 | 0 |
Ethylene glycol | 48.0 | 29.0 | 19.0 | 1.92 | 47.0 |
Contact Angle(θ) | Surface Energy(mJ/m2) | ||||||
---|---|---|---|---|---|---|---|
H2O | CH2I2 | C2H6O2 | γLW | γ+ | γ- | γTOT | |
Carbon steel | 80.6 ± 0.9 | 36.6 ± 0.9 | 56.6 ± 1.4 | 41.28 | 0.02 | 6.69 | 42.01 |
Ni–P–rGO20 | 85.1 ± 0.9 | 41.2 ± 1.8 | 60 ± 1 | 39.00 | 0.007 | 4.56 | 39.37 |
Ni–P–rGO30 | 86.5 ± 1 | 41.7 ± 1.3 | 64.5 ± 2 | 38.74 | 0.11 | 4.95 | 40.22 |
Ni–P–rGO40 | 87 ± 1.5 | 41 ± 1 | 66.5 ± 2 | 39.10 | 0.23 | 5.19 | 41.27 |
Ni–P–rGO50 | 88.2 ± 1.2 | 42.4 ± 2.1 | 67.3 ± 2.2 | 38.50 | 0.21 | 4.65 | 40.46 |
Ni–P–rGO60 | 89.2 ± 2.3 | 41.2 ± 1.8 | 68.5 ± 2.5 | 39.00 | 0.29 | 4.31 | 41.25 |
Ni–P–rGO70 | 89.9 ± 1.1 | 41.2 ± 1.8 | 69.5 ± 2 | 39.00 | 0.35 | 4.14 | 41.41 |
Ni–P–rGO80 | 90.9 ± 1.1 | 41.2 ± 2.7 | 70.1 ± 0.9 | 39.00 | 0.36 | 3.70 | 41.32 |
Iron bacteria | 30.5 ± 1.5 | 38.3 ± 1.2 | 48.9 ± 1.1 | 40.45 | 0.81 | 71.20 | 55.63 |
Ammonium Ferric Citrate | 10 g/L |
Sodium nitrate | 0.5 g/L |
Dipotassium phosphate | 0.5 g/L |
Calcium chloride | 0.2 g/L |
Magnesium sulfate | 0.5 g/L |
Ammonium sulfate | 0.5 g/L |
pH | 6.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Sun, M.; Liu, Z.; Wang, B.; Di, H. Properties of the Iron Bacteria Biofouling on Ni–P–rGO Coating. Appl. Sci. 2020, 10, 1567. https://doi.org/10.3390/app10051567
Xu Z, Sun M, Liu Z, Wang B, Di H. Properties of the Iron Bacteria Biofouling on Ni–P–rGO Coating. Applied Sciences. 2020; 10(5):1567. https://doi.org/10.3390/app10051567
Chicago/Turabian StyleXu, Zhiming, Mingyang Sun, Zuodong Liu, Bingbing Wang, and Huishuang Di. 2020. "Properties of the Iron Bacteria Biofouling on Ni–P–rGO Coating" Applied Sciences 10, no. 5: 1567. https://doi.org/10.3390/app10051567
APA StyleXu, Z., Sun, M., Liu, Z., Wang, B., & Di, H. (2020). Properties of the Iron Bacteria Biofouling on Ni–P–rGO Coating. Applied Sciences, 10(5), 1567. https://doi.org/10.3390/app10051567