Damping and Natural Period Evaluation of Tall RC Buildings Using Full-Scale Data in Korea
Abstract
:1. Introduction
2. Empirical Formulae for Computing Natural Period of Reinforced Concrete (RC) Buildings for Wind Design
3. Empirical Formulae for Damping Ratio of RC Buildings for Wind Design
3.1. Single-Value Damping Ratio
3.1.1. Eurocode 1
3.1.2. The Australia and New Zealand Standard (AS/NZS 1170)
3.1.3. ASCE 7-10
3.2. Frequency- and Amplitude-Dependent Damping Ratio
3.2.1. ISO 4534
3.2.2. Architectural Institute of Japan (AIJ) 2000
3.2.3. Engineering Science Data Unit (ESDU) 83009
3.2.4. Yoon
3.2.5. Lagomarsino
3.3. Comparison of Damping Ratio Formulae
4. Natural Period and Damping Ratio Identification from Measured Full-Scale Data
5. Proposed Equation for Estimation of Natural Period and Damping Ratio for Wind Design of RC Buildings
5.1. Equation for Natural Period Estimation
5.2. Equation for Damping Ratio Estimation
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Campbell, S.; Kwok, K.C.S.; Hitchcock, P.A.; Tse, K.T.; Leung, H.Y. Field measurements of natural periods of vibration and structural damping of wind-excited tall residential buildings. Wind Struct. 2007, 10, 401–420. [Google Scholar] [CrossRef]
- Simiu, E.; Scanlan, R.H. Winds Effects on Structures: Fundamentals and Applications to Design, 3rd ed.; John Wiely & Sons, Inc.: New York, NY, USA, 1996. [Google Scholar]
- Architectural Institute of Korea. Korean Building Code—Structural 2009; Ministry of Construction and Transportation of Korea: Seoul, Korea, 2009.
- Chung, J.H.; Kim, H.; Choi, S.Y. Comparison of Design Code Damping Formulae and Measured Damping Ratios of Tall Buildings under Wind Loads. J. Archit. Inst. Korea 2013, 29, 11–18. [Google Scholar]
- Yoon, S.W.; Joo, Y.K. Natural Periods of Reinforced Concrete Apartments for Serviceability Design. J. Archit. Inst. Korea 2003, 19, 3–10. [Google Scholar]
- Yoon, S.W. Damping ratios of Reinforced Concrete Apartment for Serviceability Design of Wind. J. Archit. Inst. Korea 2004, 20, 27–34. [Google Scholar]
- American Society of Civil Engineers (ASCE). ASCE/SEI 7-10. Minimum Design Loads for Buildings and Other Structures; American Society of Civil Engineers (ASCE): Reston, VA, USA, 2011. [Google Scholar]
- Lagomarsino, S. Forecast models for damping and vibration periods of buildings. Wind Eng. Ind. Aerod. 1993, 48, 221–239. [Google Scholar] [CrossRef]
- European Committee for Standardization (C.E.N.). Eurocode 1: Actions on Structures—Part 1–4: General Actions—Wind Actions; prEN 1991-1-4.6; European Committee for Standardization (C.E.N.): Brussels, Belgium, 2004. [Google Scholar]
- Australia/New Zealand (AS/NZS). Australian/New Zealand Standards, Structural Design Actions—Part 2, Wind Actions. AS/NZS 1170.2:2011; Standards Australia: Sydney, Australia, 2011. [Google Scholar]
- Buildings Department. Code of Practice for Structural Use of Concrete; Hong Kong Buildings Department: Hong Kong, 2004.
- Satake, N.; Suda, K.I.; Arakawa, T.; Sasaki, A.; Tamura, Y. Damping evaluation using full-scale data of buildings in Japan. J. Struct. Eng. 2003, 129, 470–477. [Google Scholar] [CrossRef]
- ISO. ISO 4354 (E) Second Edition: Wind Actions on Structures; International Organization for Standardization: Geneva, Switzerland, 2009. [Google Scholar]
- Architectural Institute of Japan (AIJ). Damping in Buildings; Architectural Institute of Japan (AIJ): Tokyo, Japan, 2000. [Google Scholar]
- Engineering Science Data Unit. ESDU83009. Damping of Structures, Part 1: Tall Buildings; ESDU: London, UK, 1983. [Google Scholar]
- Cook, N.J. The Designer’s Guide to Wind Loading of Building Structures; Butterworth-Heinemann Ltd.: London, UK, 1985. [Google Scholar]
- Kim, J.Y.; Yu, E.; Kim, D.Y.; Kim, S.D. Calibration of analytical models to assess wind-induced acceleration responses of tall buildings in serviceability level. Eng. Struct. 2009, 31, 2086–2096. [Google Scholar] [CrossRef]
- Tamura, Y.; Suganuma, S.Y. Evaluation of amplitude-dependent damping and natural frequency of buildings during strong winds. Wind Eng. Ind. Aerod. 1996, 59, 115–130. [Google Scholar] [CrossRef]
- Xia, Y.; Xu, Y.L.; Wei, Z.L.; Zhu, H.P.; Zhou, X.Q. Variation of structural vibration characteristics versus non-uniform temperature distribution. Eng. Struct. 2011, 33, 146–153. [Google Scholar] [CrossRef] [Green Version]
- Peeters, B.; De Roeck, G. Reference-based stochastic subspace identification for output-only modal analysis. Mech. Syst. Signal Pr. 1999, 13, 855–878. [Google Scholar] [CrossRef] [Green Version]
- Cho, B.H.; Jo, J.S.; Joo, S.J.; Kim, H. Dynamic Parameter Identification of Secondary Mass Dampers Based on Full-Scale Tests. Comput.-Aided Civ. Inf. 2012, 27, 218–230. [Google Scholar] [CrossRef]
- Kim, H.; Ko, Y.N.; Cho, J.M. Evaluation of Ambient Vibration Test Method for Historic Wooden Buildings Based on the Rigid Diaphragm Assumption. J. Asian Archit. Build. 2016, 15, 287–294. [Google Scholar] [CrossRef] [Green Version]
Code | Structural Type | Natural Period |
---|---|---|
KBC 2009 | RC moment frame | T = 0.073H0.75 |
ASCE 7-10 | RC moment frame Other RC building | T = 0.0670H0.9 T = 0.043H |
Lagomarsino | RC | T = 0.018H = H/55 |
Eurocode 1 | RC | T = 0.022H = H/46 |
Satake et al. | RC | T = 0.015H = H/67 |
Yoon and Joo | RC | T = 0.0193H = H/52 |
Structure Type | Logarithmic Decrement of Structural Damping (δs) | Structural Damping Ratio (ζs) |
---|---|---|
RC | 0.10 | 1.57% |
Steel | 0.05 | 0.79% |
SRC | 0.08 | 1.27% |
Stress Level | Structural Type | Structural Damping Ratio (ζs) |
---|---|---|
Serviceability limit state | RC or prestressed concrete | 0.5–1.0% |
Steel | 0.5–1.0% | |
Ultimate limit state | RC | 2.0% |
Steel frame welded | 5.0% | |
Steel frame bolted | 5.0% |
Building Height (H) | Steel Structures | RC Structures |
---|---|---|
H = 40 m | 1.8% | 2.0% |
H = 50 m | 1.5% | 2.0% |
H = 60 m | 1.5% | 1.5% |
H = 70 m | 1.5% | 1.5% |
H > 80 m | 1.0% | 1.2% |
Mean | Lower Limit | |
---|---|---|
ζso | f1/100 | f1/250 |
Type | Code | Structural Damping Ratio (ζs) |
---|---|---|
Single-value damping ratio | Eurocode 1 | 1.57% |
AS/NZS 1170 | 0.5–1.0% | |
ASCE 7-10 | 2.0% | |
Frequency- and amplitude-dependent damping ratio | ISO 4354 | 1.2–2.0% (height dependent) |
AIJ 2000 | ||
ESDU 83009 | ||
Yoon |
No | Building Name | No. of Stories | Building Height (m) | Location | Natural Period (s) | Damping Ratio (%) |
---|---|---|---|---|---|---|
1 | Humansia 911 | 35 | 104.3 | Seongnam | 1.68 | 0.75 |
2 | Humansia 914 | 25 | 75.3 | Seongnam | 1.11 | 0.72 |
3 | Humansia 101 | 15 | 44.8 | Seongnam | 0.67 | 0.79 |
4 | Humansia 103 | 17 | 50.4 | Seongnam | 0.83 | 0.51 |
5 | Humansia 106 | 19 | 56.0 | Seongnam | 0.81 | 0.51 |
6 | Humansia 301 | 15 | 44.8 | Seongnam | 0.65 | 0.65 |
7 | Humansia 304 | 18 | 53.2 | Seongnam | 0.77 | 0.38 |
8 | Humansia 307 | 15 | 44.8 | Seongnam | 0.65 | 1.40 |
9 | Humansia 504 | 35 | 104.3 | Seongnam | 1.76 | 0.71 |
10 | Humansia 508 | 35 | 104.3 | Seongnam | 1.91 | 0.90 |
11 | Adelis | 47 | 157.7 | Busan | 2.93 | 0.72 |
12 | Centum Park | 51 | 153.0 | Busan | 2.54 | 0.61 |
13 | Centum star | 60 | 209.6 | Busan | 4.28 | 0.60 |
14 | NEATT | 68 | 305.0 | Incheon | 4.81 | 0.38 |
15 | Leaders’ View | 57 | 217.0 | Daegu | 4.44 | 1.22 |
16 | We’ve | 54 | 182.0 | Daegu | 3.46 | 0.44 |
17 | Central Park 103 | 47 | 161.3 | Incheon | 3.52 | 1.46 |
18 | Central Park 202 | 42 | 152.7 | Incheon | 3.08 | 0.81 |
19 | Central Park 203 | 49 | 174.6 | Incheon | 3.57 | 0.61 |
20 | Metapolis | 66 | 248.7 | Hwasung | 5.55 | 0.57 |
21 | Centroad A | 33 | 148.2 | Incheon | 4.16 | 0.63 |
22 | Centroad B | 34 | 152.4 | Incheon | 3.37 | 1.66 |
23 | Green Avenue | 26 | 85.0 | Incheon | 1.67 | 0.78 |
24 | Harborview 1401 | 33 | 112.3 | Incheon | 1.72 | 0.75 |
25 | Harborview 1402 | 33 | 112.3 | Incheon | 1.60 | 0.61 |
26 | Harborview 1501 | 34 | 115.8 | Incheon | 2.40 | 0.78 |
27 | Harborview 1502 | 38 | 128.3 | Incheon | 2.79 | 0.98 |
28 | Central Star A | 58 | 206.7 | Busan | 4.33 | 0.47 |
29 | Central Star B | 47 | 167.5 | Busan | 3.28 | 1.56 |
30 | Central Star C | 48 | 171.1 | Busan | 3.29 | 1.96 |
31 | I-Park hotel | 34 | 130.2 | Busan | 3.10 | 1.11 |
32 | I-Park T1 | 67 | 273.5 | Busan | 4.81 | 0.57 |
33 | I-Park T2 | 72 | 292.0 | Busan | 5.39 | 0.71 |
34 | I-Park T3 | 45 | 201.5 | Busan | 2.97 | 0.75 |
35 | First World | 64 | 237.0 | Incheon | 5.29 | 0.47 |
36 | Star City | 60 | 204.0 | Seoul | 4.05 | 0.84 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ha, T.; Shin, S.-H.; Kim, H. Damping and Natural Period Evaluation of Tall RC Buildings Using Full-Scale Data in Korea. Appl. Sci. 2020, 10, 1568. https://doi.org/10.3390/app10051568
Ha T, Shin S-H, Kim H. Damping and Natural Period Evaluation of Tall RC Buildings Using Full-Scale Data in Korea. Applied Sciences. 2020; 10(5):1568. https://doi.org/10.3390/app10051568
Chicago/Turabian StyleHa, Taehyu, Seung-Hoon Shin, and Hongjin Kim. 2020. "Damping and Natural Period Evaluation of Tall RC Buildings Using Full-Scale Data in Korea" Applied Sciences 10, no. 5: 1568. https://doi.org/10.3390/app10051568
APA StyleHa, T., Shin, S. -H., & Kim, H. (2020). Damping and Natural Period Evaluation of Tall RC Buildings Using Full-Scale Data in Korea. Applied Sciences, 10(5), 1568. https://doi.org/10.3390/app10051568