Effects of Gamma-Valerolactone Assisted Fractionation of Ball-Milled Pine Wood on Lignin Extraction and Its Characterization as Well as Its Corresponding Cellulose Digestion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Biomass
2.2. GVL Assisted Fractionation of the Biomass
2.3. Enzymatic Saccharification
2.4. Compositional Analysis and Biosugar Quantification
2.5. Statistical Analysis
2.6. Characterization of Isolated Lignin and Fractionated Biomass
3. Results and Discussion
3.1. Effects of Pretreatment Severity on the Chemical Composition of Biomass
3.2. Lignin Extraction from Ball-Milled Pinewood
3.3. Enzymatic Hydrolysis of Solid Fractions
3.4. Correlation of Enzymatic Hydrolysis with Delignification and Crystallinity Index
3.5. Gel Permeation Chromatography
3.6. DFRC
3.7. 2D-HSQC-NMR Spectra
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ubando, A.T.; Felix, C.B.; Chen, W. Biorefineries in circular bioeconomy: A comprehensive review. Bioresour. Technol. 2019, 122585. [Google Scholar] [CrossRef] [PubMed]
- Venkata Mohan, S.; Dahiya, S.; Amulya, K.; Katakojwala, R.; Vanitha, T.K. Can circular bioeconomy be fueled by waste biorefineries—A closer look. Bioresour. Technol. Rep. 2019, 7, 100277. [Google Scholar] [CrossRef]
- Araújo, D.; Vilarinho, M.; Machado, A. Effect of combined dilute-alkaline and green pretreatments on corncob fractionation: Pretreated biomass characterization and regenerated cellulose film production. Ind. Crop. Prod. 2019, 141. [Google Scholar] [CrossRef]
- Jin, J.; Yu, B.; Shi, Z.; Wang, C.; Chong, C. Lignin-based electrospun carbon nanofibrous webs as free-standing and binder-free electrodes for sodium ion batteries. J. Power Sources 2014, 272, 800–807. [Google Scholar] [CrossRef]
- Khoshnevisan, B.; Shafiei, M.; Rajaeifar, M.A.; Tabatabaei, M. Biogas and bioethanol production from pinewood pre-treated with steam explosion and N-methylmorpholine-N-oxide (NMMO): A comparative life cycle assessment approach. Energy 2016, 114, 935–950. [Google Scholar] [CrossRef]
- Kumar, B.; Bhardwaj, N.; Agrawal, K.; Chaturvedi, V.; Verma, P. Current perspective on pretreatment technologies using lignocellulosic biomass: An emerging biorefinery concept. Fuel Process. Technol. 2020, 199. [Google Scholar] [CrossRef]
- Tian, S.Q.; Zhao, R.Y.; Chen, Z.C. Review of the pretreatment and bioconversion of lignocellulosic biomass from wheat straw materials. Renew. Sustain. Energy Rev. 2018, 91, 483–489. [Google Scholar] [CrossRef]
- Jafari, Y.; Amiri, H.; Karimi, K. Acetone pretreatment for improvement of acetone, butanol, and ethanol production from sweet sorghum bagasse. Appl. Energy 2016, 168, 216–225. [Google Scholar] [CrossRef]
- Stücker, A.; Schütt, F.; Saake, B.; Lehnen, R. Lignins from enzymatic hydrolysis and alkaline extraction of steam refined poplar wood: Utilization in lignin-phenol-formaldehyde resins. Ind. Crop. Prod. 2016, 85, 300–308. [Google Scholar] [CrossRef]
- Kumari, D.; Singh, R. Pretreatment of lignocellulosic wastes for biofuel production: A critical review. Renew. Sustain. Energy Rev. 2018, 90, 877–891. [Google Scholar] [CrossRef]
- Hassan, S.S.; Williams, G.A.; Jaiswal, A.K. Moving towards the second generation of lignocellulosic biorefineries in the EU: Drivers, challenges, and opportunities. Renew. Sustain. Energy Rev. 2019, 101, 590–599. [Google Scholar] [CrossRef] [Green Version]
- Solarte-Toro, J.C.; Romero-García, J.M.; Martínez-Patiño, J.C.; Ruiz-Ramos, E.; Castro-Galiano, E.; Cardona-Alzate, C.A. Acid pretreatment of lignocellulosic biomass for energy vectors production: A review focused on operational conditions and techno-economic assessment for bioethanol production. Renew. Sustain. Energy Rev. 2019, 107, 587–601. [Google Scholar] [CrossRef]
- Sorn, V.; Chang, K.L.; Phitsuwan, P.; Ratanakhanokchai, K.; Dong, C.D. Effect of microwave-assisted ionic liquid/acidic ionic liquid pretreatment on the morphology, structure, and enhanced delignification of rice straw. Bioresour. Technol. 2019, 293, 121929. [Google Scholar] [CrossRef] [PubMed]
- Zabed, H.M.; Akter, S.; Yun, J.; Zhang, G.; Awad, F.N.; Qi, X.; Sahu, J.N. Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production. Renew. Sustain. Energy Rev. 2019, 105, 105–128. [Google Scholar] [CrossRef]
- Cebreiros, F.; Clavijo, L.; Boix, E.; Ferrari, M.D.; Lareo, C. Integrated valorization of eucalyptus sawdust within a biorefinery approach by autohydrolysis and organosolv pretreatments. Renew Energy 2020, 149, 115–127. [Google Scholar] [CrossRef]
- Ramakoti, B.; Dhanagopal, H.; Deepa, K.; Rajesh, M.; Ramaswamy, S.; Tamilarasan, K. Solvent fractionation of organosolv lignin to improve lignin homogeneity: Structural characterization. Bioresour. Technol. Rep. 2019, 7, 100293. [Google Scholar] [CrossRef]
- Tan, X.; Zhang, Q.; Wang, W.; Zhuang, X.; Deng, Y.; Yuan, Z. Comparison study of organosolv pretreatment on hybrid pennisetum for enzymatic saccharification and lignin isolation. Fuel 2019, 249, 334–340. [Google Scholar] [CrossRef]
- Ye, L.; Han, Y.; Feng, J.; Lu, X. A review about GVL production from lignocellulose: Focusing on the full components utilization. Ind. Crop. Prod. 2020, 144, 112031. [Google Scholar] [CrossRef]
- Sun, S.N.; Chen, X.; Tao, Y.H.; Cao, X.F.; Li, M.F.; Wen, J.L.; Nie, S.X.; Sun, R.C. Pretreatment of Eucalyptus urophylla in γ-valerolactone/dilute acid system for removal of non-cellulosic components and acceleration of enzymatic hydrolysis. Ind. Crop. Prod. 2019, 132, 21–28. [Google Scholar] [CrossRef]
- Jia, L.; Qin, Y.; Wen, P.; Zhang, T.; Zhang, J. Alkaline post-incubation improves cellulose hydrolysis after Γ-valerolactone/water pretreatment. Bioresour. Technol. 2019, 278, 440–443. [Google Scholar] [CrossRef]
- Jin, L.; Yu, X.; Peng, C.; Guo, Y.; Zhang, L.; Xu, Q.; Zhao, Z.K.; Liu, Y.; Xie, H. Fast dissolution pretreatment of the corn stover in gamma-valerolactone promoted by ionic liquids: Selective delignification and enhanced enzymatic saccharification. Bioresour. Technol. 2018, 270, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, Q.; Si, C.; Lu, L.; Luo, C.; Gu, X.; Liu, W.; Lu, X. Green and efficient production of furfural from corn cob over H-ZSM-5 using γ-valerolactone as solvent. Ind. Crop. Prod. 2018, 120, 343–350. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Rehman, M.S.U.; Terán-Hilares, R.; Khalid, S.; Han, J.I. Optimization of twin gear-based pretreatment of rice straw for bioethanol production. Energy Convers. Manag. 2017, 141, 120–125. [Google Scholar] [CrossRef]
- Sluiter, J.B.; Ruiz, R.O.; Scarlata, C.J.; Sluiter, A.D.; Templeton, D.W. Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. J. Agric. Food Chem. 2010, 58, 9043–9053. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Park, S.Y.; Lee, J.H.; Choi, I.G.; Choi, J.W. Sequential solvent fractionation of lignin for selective production of monoaromatics by Ru catalyzed ethanolysis. RSC Adv. 2017, 7, 53117–53125. [Google Scholar] [CrossRef] [Green Version]
- Angelini, S.; Ingles, D.; Gelosia, M.; Cerruti, P.; Pompili, E.; Scarinzi, G.; Cavalaglio, G.; Cotana, F.; Malinconico, M. One-pot lignin extraction and modification in γ-valerolactone from steam explosion pre-treated lignocellulosic biomass. J. Clean. Prod. 2017, 151, 152–162. [Google Scholar] [CrossRef]
- Jung, Y.H.; Kim, H.K.; Park, H.M.; Park, Y.C.; Park, K.; Seo, J.H.; Kim, K.H. Mimicking the Fenton reaction-induced wood decay by fungi for pretreatment of lignocellulose. Bioresour. Technol. 2015, 179, 467–472. [Google Scholar] [CrossRef]
- Ko, J.K.; Bak, J.S.; Jung, M.W.; Lee, H.J.; Choi, I.G.; Kim, T.H.; Kim, K.H. Ethanol production from rice straw using optimized aqueous-ammonia soaking pretreatment and simultaneous saccharification and fermentation processes. Bioresour. Technol. 2009, 100, 4374–4380. [Google Scholar] [CrossRef]
- Wu, M.; Liu, J.K.; Yan, Z.Y.; Wang, B.; Zhang, X.M.; Xu, F.; Sun, R.-C. Efficient recovery and structural characterization of lignin from cotton stalk based on a biorefinery process using a γ-valerolactone/water system. RSC Adv. 2016, 6, 6196–6204. [Google Scholar] [CrossRef]
Sample | GVL Extraction Conditions | Solid Recovery (%) | Solid Composition (%) | Solution pH after Complete Reaction | ||||
---|---|---|---|---|---|---|---|---|
Glucan | Xylan | Mannan | Lignin | |||||
Time (hours) | Temperature (°C) | |||||||
Pinewood | 2 | 140 | 86 | 42 | 5 | 14 | 29 | 6.0 |
4 | 140 | 80 | 38 | 6 | 12 | 30 | 5.9 | |
2 | 160 | 70 | 37 | 4 | 15 | 26 | 5.5 | |
4 | 160 | 65 | 34 | 10 | 12 | 25 | 5.2 | |
2 | 180 | 60 | 28 | 9 | 10 | 24 | 4.0 | |
4 | 180 | 50 | 25 | 8 | 12 | 30 | 3.0 |
Sample | GVL Extraction Conditions | Lignin Yield (%) | |
---|---|---|---|
Time (hours) | Temperature (°C) | ||
Pinewood | 2 | 140 | 3.0 |
4 | 140 | 6.5 | |
2 | 160 | 18 | |
4 | 160 | 27 | |
2 | 180 | 29 | |
4 | 180 | 33 |
Sample | Mn | Mw | (Mw/Mn) P |
---|---|---|---|
Pine MWL | 5157 | 10660 | 2.06 |
GVL Lignin 140:2 | 4164 | 12331 | 2.96 |
GVL Lignin 140:4 | 4942 | 11913 | 2.41 |
GVL Lignin 160:2 | 4575 | 13162 | 2.87 |
GVL Lignin 160:4 | 3897 | 10165 | 2.60 |
GVL Lignin 180:2 | 3279 | 7939 | 2.42 |
GVL Lignin 180:4 | 2847 | 7245 | 2.54 |
Sample | G Units | S Units | Total |
---|---|---|---|
Pine MWL | 810.6 ± 34.9 | - | 810.6 ± 34.9 |
GVL Lignin 140:2 | 300 ± 35.8 | - | 300 ± 35.8 |
GVL Lignin 140:4 | 250 ± 36.8 | - | 250 ± 36.8 |
GVL Lignin 160:2 | 242 ± 46.0 | - | 242 ± 46.0 |
GVL Lignin 160:4 | 210 ± 10.4 | - | 242 ± 10.4 |
GVL Lignin 180:2 | 196 ± 24.7 | - | 196 ± 24.7 |
GVL Lignin 180:4 | 150 ± 48.1 | - | 150 ± 48.1 |
β–O–4 | β- β | β-5 | |
---|---|---|---|
Pine MWL | 43.5 | 2.0 | 16.1 |
GVL Lignin 140:2 | 28.8 | 3.5 | 11.6 |
GVL Lignin 140:4 | 31.1 | 3.6 | 13.2 |
GVL Lignin 160:2 | 26.9 | 3.0 | 13.0 |
GVL Lignin 160:4 | 23.8 | 3.8 | 12.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, M.A.; Lee, J.H.; Raja, A.A.; Choi, J.W. Effects of Gamma-Valerolactone Assisted Fractionation of Ball-Milled Pine Wood on Lignin Extraction and Its Characterization as Well as Its Corresponding Cellulose Digestion. Appl. Sci. 2020, 10, 1599. https://doi.org/10.3390/app10051599
Ahmed MA, Lee JH, Raja AA, Choi JW. Effects of Gamma-Valerolactone Assisted Fractionation of Ball-Milled Pine Wood on Lignin Extraction and Its Characterization as Well as Its Corresponding Cellulose Digestion. Applied Sciences. 2020; 10(5):1599. https://doi.org/10.3390/app10051599
Chicago/Turabian StyleAhmed, Muhammad Ajaz, Jae Hoon Lee, Arsalan A. Raja, and Joon Weon Choi. 2020. "Effects of Gamma-Valerolactone Assisted Fractionation of Ball-Milled Pine Wood on Lignin Extraction and Its Characterization as Well as Its Corresponding Cellulose Digestion" Applied Sciences 10, no. 5: 1599. https://doi.org/10.3390/app10051599
APA StyleAhmed, M. A., Lee, J. H., Raja, A. A., & Choi, J. W. (2020). Effects of Gamma-Valerolactone Assisted Fractionation of Ball-Milled Pine Wood on Lignin Extraction and Its Characterization as Well as Its Corresponding Cellulose Digestion. Applied Sciences, 10(5), 1599. https://doi.org/10.3390/app10051599