Wave Propagation in Periodic Metallic Structures with Equilateral Triangular Holes
Abstract
:1. Introduction
2. Formulation
2.1. Mode Matching
2.2. Modal Functions
3. Results
3.1. Dispersion Diagram
3.2. Isotropic Behavior
3.3. Bandgaps
3.4. Applications
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pendry, J.B.; Martin-Moreno, L.; García-Vidal, F.J. Mimicking Surface Plasmons with Structured Surfaces. Science 2004, 305, 847–848. [Google Scholar] [CrossRef] [PubMed]
- Quesada, R.; Martín-Cano, D.; García-Vidal, F.J.; Bravo-Abad, J. Deep-subwavelength negative-index waveguiding enabled by coupled conformal surface plasmons. Opt. Lett. 2014, 39, 2990–2993. [Google Scholar] [CrossRef] [PubMed]
- Collin, R.E. Field Theory of Guided Waves, 2nd ed.; IEEE Press: New York, NY, USA, 1990. [Google Scholar]
- Ishimaru, A. Electromagnetic Wave Propagation, Radiation, and Scattering; Prentice Hall: Upper Saddle River, NJ, USA, 1991. [Google Scholar]
- Tang, W.X.; Zhang, H.C.; Ma, H.F.; Jiang, W.X.; Cui, T.J. Concept, Theory, Design, and Applications of Spoof Surface Plasmon Polaritons at Microwave Frequencies. Adv. Opt. Mater. 2019, 7, 1800421. [Google Scholar] [CrossRef] [Green Version]
- Meng, W.; Ma, H.F.; Tang, W.X.; Sun, S.; Cui, T.J. Leaky-Wave Radiations with Arbitrarily Customizable Polarizations Based on Spoof Surface Plasmon Polaritons. Phys. Rev. Appl. 2019, 12, 11. [Google Scholar]
- Quevedo-Teruel, O.; Ebrahimpouri, M.; Ng Mou Kehn, M. Ultrawideband metasurface lenses based on off-shifted opposite layers. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 484–487. [Google Scholar] [CrossRef]
- Ghasemifard, F.; Norgren, M.; Quevedo-Teruel, O. Dispersion analysis of 2D glide-symmetric corrugated metasurfaces using mode-matching technique. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 1–3. [Google Scholar] [CrossRef]
- Ebrahimpouri, M.; Quevedo-Teruel, O.; Rajo-Iglesias, E. Design Guidelines for Gap Waveguide Technology Based on Glide-Symmetric Holey Structures. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 542–544. [Google Scholar] [CrossRef]
- Monje-Real, A.; Fonseca, N.J.G.; Zetterstrom, O.; Pucci, E.; Quevedo-Teruel, O. Holey glide-symmetric filters for 5G at millimeter-wave frequencies. IEEE Microw. Wirel. Compon. Lett. 2020, 30, 31–34. [Google Scholar] [CrossRef]
- Ebrahimpouri, M.; Quevedo-Teruel, O. Ultrawideband anisotropic glide-symmetric metasurfaces. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1547–1551. [Google Scholar] [CrossRef]
- Ebrahimpouri, M.; Herran, L.F.; Quevedo-Teruel, O. Wide angle impedance matching using glide-symmetric metasurfaces. IEEE Microw. Wirel. Compon. Lett. 2020, 30, 8–11. [Google Scholar] [CrossRef]
- Palomares-Caballero, A.; Padilla, P.; Alex-Amor, A.; Valenzuela-Valdés, J.; Quevedo-Teruel, O. Twist and glide symmetries for helix antenna design and miniaturization. Symmetry 2019, 11, 349. [Google Scholar] [CrossRef] [Green Version]
- Palomares-Caballero, A.; Alex-Amor, A.; Padilla, P.; Luna, F.; Valenzuela-Valdés, J. Compact and Low-Loss V-band Waveguide Phase Shifter Based on Glide-Symmetric Pin Configuration. IEEE Access 2019, 7, 31297–31304. [Google Scholar] [CrossRef]
- Quevedo-Teruel, O.; Miao, J.; Mattsson, M.; Algaba-Brazalez, A.; Johansson, M.; Manholm, L. Glide-symmetric fully metallic Luneburg lens for 5G communications at Ka-band. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1588–1592. [Google Scholar] [CrossRef]
- Ebrahimpouri, M.; Rajo-Iglesias, E.; Sipus, Z.; Quevedo-Teruel, O. Cost-effective gap waveguide technology based on glide-symmetric holey EBG structures. IEEE Trans. Microw. Theory Technol. 2018, 66, 927–934. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimpouri, M.; Brazalez, A.A.; Manholm, L.; Quevedo-Teruel, O. Using glide-symmetric holes to reduce leakage between waveguide flanges. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 473–475. [Google Scholar] [CrossRef]
- Rajo-Iglesias, E.; Ebrahimpouri, M.; Quevedo-Teruel, O. Wideband phase shifter in groove gap waveguide technology implemented with glide-symmetric holey EBG. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 476–478. [Google Scholar] [CrossRef]
- Padilla, P.; Palomares-Caballero, A.; Alex-Amor, A.; Valenzuela-Valdés, J.; Fernández-González, J.M.; Quevedo-Teruel, O. Broken glide-symmetric holey structures for bandgap selection in gap-waveguide technology. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 327–329. [Google Scholar] [CrossRef]
- Liao, Q.; Rajo-Iglesias, E.; Quevedo-Teruel, O. Ka-band fully metallic TE40 slot array antenna with glide-symmetric gap waveguide technology. IEEE Trans. Antennas Propag. 2019, 67, 6410–6418. [Google Scholar] [CrossRef]
- Valerio, G.; Ghasemifard, F.; Sipus, Z.; Quevedo-Teruel, O. Glide-Symmetric All-Metal Holey Metasurfaces for Low-Dispersive Artificial Materials: Modeling and Properties. IEEE Trans. Microw. Theory Technol. 2018, 66, 3210–3223. [Google Scholar] [CrossRef] [Green Version]
- Ghasemifard, F. Periodic Structures with Higher Symmetries: Analysis and Applications. Ph.D. Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2018. [Google Scholar]
- Ghasemifard, F.; Norgren, M.; Quevedo-Teruel, O.; Valerio, G. Analyzing Glide-Symmetric Holey Metasurfaces Using a Generalized Floquet Theorem. IEEE Access 2018, 6, 71743–71750. [Google Scholar] [CrossRef]
- Alex-Amor, A.; Ghasemifard, F.; Valerio, G.; Ebrahimpouri, M.; Padilla, P.; Fernández-González, J.M.; Quevedo-Teruel, O. Glide-Symmetric Metallic Structures with Elliptical Holes for Lens Compression. IEEE Trans. Microw. Theory Technol. 2019. submitted. [Google Scholar]
- Valerio, G.; Sipus, Z.; Grbic, A.; Quevedo-Teruel, O. Non-resonant modes in plasmonic holey metasurfaces for the design of artificial flat lenses. Opt. Lett. 2017, 42, 2026–2029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morán-López, A.; Córcoles, J.; Ruiz-Cruz, J.A.; Montejo-Garai, J.R.; Rebollar, J.M. Electromagnetic Scattering at the Waveguide Step between Equilateral Triangular Waveguides. Adv. Math. Phys. 2016, 2016, 2974675. [Google Scholar] [CrossRef] [Green Version]
- Schelkunoff, S.A. Electromagnetic Waves; D. Van Nostrand Company: New York, NY, USA, 1943. [Google Scholar]
- Wang, C.Y. Exact solution of equilateral triangular waveguide. Electron. Lett. 2010, 46, 925–927. [Google Scholar] [CrossRef]
- Milton, K.A.; Schwinger, J. Rectangular and Triangular Waveguides. In Electromagnetic Radiation: Variational Methods, Waveguides and Accelerators; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Morán-López, A.; Córcoles, J.; Ruiz-Cruz, J.A.; Montejo-Garai, J.R.; Rebollar, J.M. Dual-mode filters in equilateral triangular waveguides with wide spurious-free response. In Proceedings of the 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 4–9 June 2017; pp. 1192–1195. [Google Scholar]
- Tamayo-Domínguez, A.; Fernández-González, J.M.; Quevedo-Teruel, O. One-Plane Glide-Symmetric Holey Structures for Stop-Band and Refraction Index Reconfiguration. Symmetry 2019, 11, 495. [Google Scholar] [CrossRef] [Green Version]
HOLE SHAPE | Anisotropy (<5%) | Refr. Index (@10 GHz) | Dispersion (<5%) | Bandgap (%) |
---|---|---|---|---|
Triangular | 16.20 GHz | 1.31 | 25.71 GHz | 39.50 |
Circular | 28.86 GHz | 1.17 | 46.04 GHz | 0 |
Square | 22.98 GHz | 1.21 | 32.10 GHz | 6.81 |
HOLE SHAPE | Min. Iso. Range | Max. Refr. Index (@10 GHz) | Min. Low-Disp. Range | Max. Bandgap (%) |
---|---|---|---|---|
Triangular | 16.20 GHz | 1.31 | 25.71 GHz | 39.50 |
Circular | 24.76 GHz | 1.23 | 34.41 GHz | 22.55 |
Square | 19.85 GHz | 1.34 | 21.76 GHz | 48.66 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alex-Amor, A.; Valerio, G.; Ghasemifard, F.; Mesa, F.; Padilla, P.; Fernández-González, J.M.; Quevedo-Teruel, O. Wave Propagation in Periodic Metallic Structures with Equilateral Triangular Holes. Appl. Sci. 2020, 10, 1600. https://doi.org/10.3390/app10051600
Alex-Amor A, Valerio G, Ghasemifard F, Mesa F, Padilla P, Fernández-González JM, Quevedo-Teruel O. Wave Propagation in Periodic Metallic Structures with Equilateral Triangular Holes. Applied Sciences. 2020; 10(5):1600. https://doi.org/10.3390/app10051600
Chicago/Turabian StyleAlex-Amor, Antonio, Guido Valerio, Fatemeh Ghasemifard, Francisco Mesa, Pablo Padilla, José M. Fernández-González, and Oscar Quevedo-Teruel. 2020. "Wave Propagation in Periodic Metallic Structures with Equilateral Triangular Holes" Applied Sciences 10, no. 5: 1600. https://doi.org/10.3390/app10051600
APA StyleAlex-Amor, A., Valerio, G., Ghasemifard, F., Mesa, F., Padilla, P., Fernández-González, J. M., & Quevedo-Teruel, O. (2020). Wave Propagation in Periodic Metallic Structures with Equilateral Triangular Holes. Applied Sciences, 10(5), 1600. https://doi.org/10.3390/app10051600