Single-Leg Squat Performance and Reported Pain within Youth Softball Players
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- National Federation of State High School Association. 2016–2017 High School Athletics Participation Survey. Available online: http://www.nfhs.org/ParticipationStatistics/PDF/2016-17_Participation_Survey_Results.pdf (accessed on 22 January 2020).
- Rechel, J.A.; Yard, E.E.; Comstock, R.D. An epidemiologic comparison of high school sports injuries sustained in practice and competition. J. Athl. Train. 2008, 43, 197–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pytiak, A.V.; Kraeutler, M.J.; Currie, D.W.; McCarty, E.C.; Comstock, R.D. An Epidemiological comparison of elbow injuries among United States high school baseball and softball players, 2005–2006 through 2014–2015. Sports Health 2018, 10, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Shanley, E.; Rauh, M.J.; Michener, L.A.; Ellenbecker, T.S. Incidence of injuries in high school softball and baseball players. J. Athl. Train. 2011, 46, 648–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darrow, C.J.; Collins, C.L.; Yard, E.E.; Comstock, R.D. Epidemiology of severe injuries among United States high school athletes: 2005–2007. Am. J. Sports Med. 2009, 37, 1798–1805. [Google Scholar] [CrossRef] [PubMed]
- DiFiori, J.P.; Benjamn, H.J.; Brenner, J.S.; Gregory, A.; Jayanthi, N.; Landry, G.L.; Luke, A. Overuse injuries and burnout in youth sports: A position statement from the American Medical Society for Sports Medicine. Br. J. Sports Med. 2014, 48, 287–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kibler, W.B.; Press, J.; Sciascia, A. The role of core stability in athletic function. Sports Med. 2006, 36, 189–198. [Google Scholar] [CrossRef]
- Chu, S.K.; Jayabalan, P.; Kibler, W.B.; Press, J. The kinetic chain revisited: New concepts on throwing mechanics and injury. PM R J. Int. J. Funct. Rehabil. 2016, 8, S69–S77. [Google Scholar] [CrossRef]
- Gilmer, G.G.; Gascon, S.S.; Oliver, G.D. Classification of lumbopelvic-hip complex instability on kinematics amongst female team handball athletes. J. Sci. Med. Sport 2018, 21, 805–810. [Google Scholar] [CrossRef]
- Gilmer, G.; Washington, J.; Oliver, G. Assessment of lumbopelvic–hip complex instability and segmental sequencing amongst softball athletes. Int. Biomech. 2018, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Washington, J.K.; Gilmer, G.; Oliver, G.D. Acute hip abduction fatigue on lumbopelvic-hip complex stability in softball players. Int. J. Sports Med. 2018, 39, 571–575. [Google Scholar] [CrossRef]
- Chaudhari, A.M.; McKenzie, C.S.; Pan, X.; Onate, J.A. Lumbopelvis control and days missed because of injury in professional baseball pitchers. Am. J. Sports Med. 2014, 42, 2734–2740. [Google Scholar] [CrossRef] [Green Version]
- Sekiguchi, T.; Hagiwara, Y.; Momma, H.; Tsuchiya, M.; Kuroki, K.; Kanazawa, K.; Yabe, Y.; Yoshida, S.; Koide, M.; Itaya, N.; et al. Coesistence of trunck or lower extremity pain with elbow and/or shoudler pain among youn overhead athlets: A cross-sectional study. Tohoku J. Exp. Med. 2017, 243, 173–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plummer, H.; Oliver, G.D.; Powers, C.M.; Michener, L.A. Trunk lean during a single-leg squat is associated with trunk lean during pitching. Int. J. Sports Phys. Ther. 2018, 13, 58–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strickler, L.; Finley, M.; Gulgin, H. Relationship between hip and core strength and frontal plane alignment during a single-leg squat. Phys. Ther. Sport 2015, 16, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Claiborne, T.L.; Armstrong, A.; Gandhi, V.; Pincivero, D.M. Relationship between hip and knee strength and knee valgus during a single-leg squat. J. Appl. Biomech. 2006, 22, 41–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wasserberger, K.; Barfield, J.; Anz, A.W.; Andrews, J.; Oliver, G.D. Using the single-leg squat as an assessment of stride leg knee mechanics in adolescent baseball pitchers. J. Sci. Med. Sport 2019, 22, 1254–1259. [Google Scholar] [CrossRef]
- Graci, V.; Salsich, G.B. Trunk and lower extremity segment kinematics and their relationship to pain following movement instruction during a single-leg squat in females with dynamic knee valgus and patellofemoral pain. J. Sci. Med. Sport 2015, 18, 3430347. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Siegler, S.; Allard, P.; Kirtley, C.; Leardini, A.; Rosenbaum, D.; Whittle, M.; D’Lima, D.D.; Cristofolini, L.; Witte, H.; et al. ISB recommendation on definitions of joint coordinate system of various joints for reporting of human joint motion-part I: Ankle, hip, and spine. J. Biomech. 2002, 35, 543–548. [Google Scholar] [CrossRef]
- Haung, Y.H.; Wu, T.Y.; Learman, K.E.; Tsai, Y.S. A comparison of throwing kinematics between youth baseball players with and without a history of medial elbow pain. Clin. J. Phys. 2010, 53, 160–166. [Google Scholar]
- Landry, S.C.; McKean, K.A.; Hubley-Kozey, C.L.; Stanish, W.D.; Deluzio, K.J. Knee biomechanics of moderate OA patients measured during gait at a self-selected and fast walking speed. J. Biomech. 2007, 40, 1754–1761. [Google Scholar] [CrossRef]
- Nakagawa, T.H.; Moriya, E.T.; Maciel, C.D.; Serrao, F.V. Trunk, pelvis, hip, and knee kinematics, hip strength, and gluteal muscle activation during a single-leg squat in males and females with and without patellofemoral pain syndrome. J. Orthop. Sports Phys. Ther. 2012, 42, 491–501. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, J.; Muneta, T.; Ju, Y.J.; Sekiya, I. Differences in kinematics of single-leg squatting between anterior cruciate ligament-injured patients and healthy controls. Knee Surg. Sports Traumatol. Arthrosc. 2010, 18, 56. [Google Scholar] [CrossRef] [PubMed]
- Herrington, L. Knee valgus angle during single-leg squatand landing in patellofemoral pain patients and controls. Knee 2014, 21, 514–517. [Google Scholar] [CrossRef] [PubMed]
- Garrick, L.E.; Alexander, B.C.; Schache, A.G.; Pandy, M.G.; Crossley, K.M.; Collins, N.J. Athletes rated as poor single-leg squat performers display measurable differences in single-leg squat biomechanics compared with good performers. J. Sport Rehabil. 2018, 27, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Hollman, J.H.; Galardi, C.M.; Voth, B.C.; Whitmarsh, C.L. Frontal and transverse plan hip kinematics and gluteus maximus recruitment correlate with frontal plane knee kinematics during single-leg squat tests in women. Clin. Biomech. 2014, 29, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Crossley, K.M.; Zhang, W.J.; Schache, A.G.; Bryant, A.; Cowan, S.M. Performance on the single-leg squat task indicates hip abductor muscle function. Am. J. Sports Med. 2011, 39, 866–873. [Google Scholar] [CrossRef]
- Mauntel, T.C.; Begalle, R.L.; Cram, T.R.; Frank, B.S.; Hirth, C.J.; Blackburn, J.T.; Padua, D.A. The effects of lower extremity muscle activation and passive range of motion on single-leg squat performance. J. Strength Cond. Res. 2013, 27, 1813–1823. [Google Scholar] [CrossRef] [Green Version]
- Graci, V.; Van Dillen, L.R.; Salsich, G.B. Gender differences in trunk, pelvis and lower limb kinematics during a single-leg squat. Gait Posture 2012, 36, 461–466. [Google Scholar] [CrossRef]
- Wilson, J.D.; Dougherty, C.; Ireland, M.L.; Davis, I. Core stability and its relationship to lower extremity function and injury. J. Am. Acad. Orthop. Surg. 2005, 13, 316–325. [Google Scholar] [CrossRef] [Green Version]
Kinematic Variable | Left SLS | Right SLS | Bilateral Asymmetry |
---|---|---|---|
Maximal Knee Flexion | 77.2 ± 14.9° | 79.8 ± 13.5° | 10.2 ± 8.0° |
Knee Valgus/Varus | |||
45° Descent | −1.4 ± 6.6° | 0 ± 6.3° | 6.9 ± 6.0° |
Maximal Knee Flexion | −7.9 ± 9.6° | 5.4 ± 9.1° | 16.4 ± 10.4° |
45° Ascent | −1.7 ± 7.2° | 0.1 ± 6.7° | 7.4 ± 6.1° |
Descent Phase | 7.1 ± 4.9° | 6.4 ± 3.8° | - |
Ascent Phase | 6.6 ± 4.4° | 6.2 ± 4.4° | - |
Sacrum Displacement | |||
45° Descent | 5.2 ± 2.6 cm | 4.5 ± 2.0 cm | 12.4 ± 5.7 cm |
Maximal Knee Flexion | 17.6 ± 4.9 cm | 17.9 ± 5.5 cm | 12.2 ± 5.6 cm |
45° Ascent | 5.3 ± 2.9 cm | 4.4 ± 2.4 cm | 2.1 ± 2.0 cm |
Descent Phase | 12.4 ± 5.7 cm | 13.4 ± 5.7 cm | - |
Ascent Phase | 12.2 ± 5.6 cm | 13.5 ± 5.9 cm | - |
Anterior/Posterior Pelvic Tilt | |||
45° Descent | 6.6 ± 9.0° | 7.6 ± 8.2° | 4.5 ± 3.0° |
Maximal Knee Flexion | 19.6 ± 10.5° | 20.2 ± 10.5° | 4.6 ± 3.5° |
45° Ascent | 14.8 ± 8.8° | 14.9 ± 8.2° | 4.1 ± 2.9° |
Descent Phase | 13.0 ± 7.9° | 12.5 ± 8.2° | - |
Ascent Phase | 4.8 ± 4.9° | 5.3 ± 5.6° | - |
Lateral Pelvic Tilt | |||
45° Descent | −2.5 ± 6.0° | 2.5 ± 5.1° | 7.3 ± 4.6° |
Maximal Knee Flexion | 4.3 ± 8.1° | −4.5 ± 8.7° | 11.7 ± 8.3° |
45° Ascent | 1.5 ± 7.1° | −0.4 ± 6.9° | 6.5 ± 5.7° |
Descent Phase | 6.9 ± 4.9° | 7.0 ± 5.4° | - |
Ascent Phase | 2.9 ± 3.8° | 4.1 ± 4.3° | - |
Kinematic Variable | Pain | ||
---|---|---|---|
Left SLS | Right SLS | Bilateral Asymmetry | |
Maximal Knee Flexion | 0.030 (0.849) | −0.030 (0.850) | −0.112 (0.480) |
Knee Valgus/Varus | |||
45° Descent | 0.253 (0.106) | 0.246 (0.116) | 0.180 (0.255) |
Maximal Knee Flexion | 0.276 (0.077) ^ | 0.195 (0.215) | 0.392 (0.010) * |
45° Ascent | 0.301 (0.053) ^ | 0.115 (0.468) | 0.281 (0.071) ^ |
Sacrum Displacement | |||
45° Descent | 0.096 (0.544) | 0.279 (0.074) ^ | −0.128 (0.420) |
Maximal Knee Flexion | 0.200 (0.205) | 0.263 (0.093) ^ | −0.101 (0.526) |
45° Ascent | 0.148 (0.350) | 0.255 (0.103) | 0.177 (0.263) |
Anterior/Posterior Pelvic Tilt | |||
45° Descent | −0.244 (0.120) | 0.009 (0.956) | −0.027 (0.864) |
Maximal Knee Flexion | −0.015 (0.926) | 0.130 (0.413) | −0.096 (0.544) |
45° Ascent | −0.044 (0.780) | 0.097 (0.540) | 0.123 (0.439) |
Lateral Pelvic Tilt | |||
45° Descent | −0.138 (0.384) | −0.141 (0.372) | −0.231 (0.141) |
Maximal Knee Flexion | −0.030 (0.851) | −0.248 (0.113) | 0.162 (0.304) |
45° Ascent | 0.023 (0.883) | −0.196 (0.214) | 0.101 (0.524) |
Kinematic Variable | Pain | |
---|---|---|
Left SLS | Right SLS | |
Knee Valgus/Varus | ||
Descent Phase | 0.270 (0.083) ^ | 0.292 (0.060) ^ |
Ascent Phase | 0.152 (0.336) | 0.214 (0.173) |
Sacrum Displacement | ||
Descent Phase | 0.128 (0.420) | 0.160 (0.311) |
Ascent Phase | −0.101 (0.526) | −0.145 (0.360) |
Anterior/Posterior Pelvic Tilt | ||
Descent Phase | −0.259 (0.097) ^ | −0.157 (0.322) |
Ascent Phase | 0.048 (0.762) | 0.101 (0.525) |
Lateral Pelvic Tilt | ||
Descent Phase | −0.120 (0.451) | 0.267 (0.088) ^ |
Ascent Phase | −0.106 (0.502) | −0.190 (0.229) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brittain, A.R.; Friesen, K.B.; Wasserberger, K.W.; Barfield, J.W.; Oliver, G.D. Single-Leg Squat Performance and Reported Pain within Youth Softball Players. Appl. Sci. 2020, 10, 1648. https://doi.org/10.3390/app10051648
Brittain AR, Friesen KB, Wasserberger KW, Barfield JW, Oliver GD. Single-Leg Squat Performance and Reported Pain within Youth Softball Players. Applied Sciences. 2020; 10(5):1648. https://doi.org/10.3390/app10051648
Chicago/Turabian StyleBrittain, Abigail R., Kenzie B. Friesen, Kyle W. Wasserberger, Jeff W. Barfield, and Gretchen D. Oliver. 2020. "Single-Leg Squat Performance and Reported Pain within Youth Softball Players" Applied Sciences 10, no. 5: 1648. https://doi.org/10.3390/app10051648
APA StyleBrittain, A. R., Friesen, K. B., Wasserberger, K. W., Barfield, J. W., & Oliver, G. D. (2020). Single-Leg Squat Performance and Reported Pain within Youth Softball Players. Applied Sciences, 10(5), 1648. https://doi.org/10.3390/app10051648