A Sequential Emotion Approach for Diagnosing Mental Disorder on Social Media
Abstract
:1. Introduction
2. Related Work
3. Motivation
4. Sequential Emotion Analysis
4.1. Data Preprocessing
4.2. Generalized Multidimensional Emotion Lexicon
4.3. Sequential Emotion Pattern Intensity Quantification
4.4. Sequential Emotion Analysis Algorithm
Algorithm 1. SEA |
Input: |
PB, AC |
Output: |
Sequential emotion intensity set PIS |
1: Begin |
2: Segregate each PB and AC item fw to frequent one item list wl; |
3: Add each quantity value ps of wl item to a finale quantity value ps of fw; |
4: Append each PB item fw to PIS; |
5: Calculate length of AC item fw as n; |
6: for j = 0, j < n, j++ do |
7: apaj = fwj; |
8: Calculate length of PIS as d; |
9: for k = 0, k < d, k++ do |
10: apcj = PISk; |
11: Calculate ppsj according to Equation (1); |
12: lj = plapci |
13: Append fwj to PIS; |
14: end for |
15: end for |
5. Mental Disorder Identification Model
5.1. Intensity Calculation
5.2. Mental Status of Identification
- Status1: Iff
- Status2: Iff
- Status3: Iff
- Status4: Iff
- Status5: Iff
- Status6: Iff
- Status7: Iff
5.3. Sequential Emotion Detection (SED) Algorithm
Algorithm 2. SED |
Input: |
SEP, ui, ms (thr), RoM(thr), RoI(thr), AoI(thr), SoD(thr) |
Output: |
Diagnosis on mental disorder Ided |
1: Begin |
2: Calculate length of SEP as n; |
3: Calculate length of PIS as m; |
4: for i = 0, i < n, i++ do |
5: for j = 0, j < m, j++ do |
6: if SEPi == PISj then |
7: lab = lPISj; |
8: Convert lab as dth mental disorder; |
9: s(d,j) = psPISj; |
10: if ms(d,j) < s(d,j) then |
11: ms(d,j) = s(d,j); |
12: end if |
13: end if |
14: end for |
15: end for |
16: for d = 1, d < 5, d++ do |
17: Calculate RoMd, RoId, AoId, SoDd according to Equations (2)–(5); |
18: Acquire Ided according to RoMd, RoId, AoId, SoDd from Status1-7; |
19: end for |
20: return Ided |
5.4. Bidimensional Hash Search Algorithm for Model Optimization
Algorithm 3. BHS |
Input: |
PIS, SEP |
Output: |
Bidimensional hash table BHTthe |
1: Begin |
2: Create horizontal hash table hth and vertical hash table htv in hth; |
3: Calculate the length of PIS as n; |
4: for i = 0, i < n, i++ do |
5: Set qi ci as the key in hth; |
6: Set li as the value to “label”, PISi as value to “itemset”, psi as value to “intensity” in htv; |
7: Add to BHT; |
8: end for |
9: Calculate length of SEP as n; |
10: for j = 0, j < n, j++ do |
11: Acquire qjcj as key; |
12: Itemset = BHT[key, ’itemset’]; |
13: if SEPj == Itemset then |
14: lTTDj = BHT[key, ‘label’]; |
15: s(lTTDj, j) = BHT[key, ‘intensity’]; |
16: end if |
17: end for |
6. Experiment
6.1. Evaluation of Sequential Emotion Analysis Algorithm
6.2. Evaluation of the Mental Disorder Identification Model
6.2.1. Diagnosed-Oriented Dataset Evaluation
6.2.2. Occupation-Oriented Dataset Evaluation
6.3. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Polanczyk, G.V.; Salum, G.A.; Sugaya, L.S.; Caye, A.; Rohde, L.A. Annual research review: A meta-analysis of the worldwide prevalence of mental disorders in children and adolescents. J. Child Psychol. Psychiatry 2015, 56, 345–365. [Google Scholar] [CrossRef]
- World Health Organization. Depression and Other Common Mental Disorders: Global Health Estimates; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Walker, E.R.; McGee, R.E.; Druss, B.G. Mortality in mental disorders and global disease burden implications: A systematic review and meta-analysis. JAMA Psychiatry 2015, 72, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Chibanda, D.; Weiss, H.A.; Verhey, R.; Simms, V.; Munjoma, R.; Rusakaniko, S.; Chingono, A.; Munetsi, E.; Bere, T.; Manda, E.; et al. Effect of a Primary Care-Based Psychological Intervention on Symptoms of Common Mental Disorders in Zimbabwe: A Randomized Clinical Trial. JAMA 2016, 316, 2618–2626. [Google Scholar] [CrossRef] [PubMed]
- Georgiades, K.; Paksarian, D.; Rudolph, K.E.; Merikangas, K.R. Prevalence of Mental Disorder and Service Use by Immigrant Generation and Race/Ethnicity Among U.S. Adolescents. J. Am. Acad. Child Adolesc. Psychiatry 2018, 57, 280–287. e2. [Google Scholar] [CrossRef] [PubMed]
- Hoertel, N.; Franco, S.; Wall, M.M.; Oquendo, M.A.; Kerridge, B.T.; Limosin, F.; Blanco, C. Mental disorders and risk of suicide attempt: A national prospective study. Mol. Psychiatry 2015, 20, 718–726. [Google Scholar] [CrossRef] [Green Version]
- Nock, M.K.; Hwang, I.; Sampson, N.A.; Kessler, R.C. Mental disorders, comorbidity and suicidal behavior: Results from the National Comorbidity Survey Replication. Mol. Psychiatry 2010, 15, 868–876. [Google Scholar] [CrossRef]
- Harris, E.C.; Barraclough, B. Suicide as an outcome for mental disorders. A meta-analysis. Br. J. Psychiatry 1997, 170, 205–228. [Google Scholar] [CrossRef]
- Gloria, C.T.; Steinhardt, M.A. Relationships Among Positive Emotions, Coping, Resilience and Mental Health. Stress Health 2016, 32, 145–156. [Google Scholar] [CrossRef]
- Sheppes, G.; Suri, G.; Gross, J.J. Emotion regulation and psychopathology. Annu. Rev. Clin. Psychol. 2015, 11, 379–405. [Google Scholar] [CrossRef] [Green Version]
- Chakriswaran, P.; Vincent, D.R.; Srinivasan, K.; Sharma, V.; Chang, C.-Y.; Reina, D.G. Emotion AI-Driven Sentiment Analysis: A Survey, Future Research Directions, and Open Issues. Appl. Sci. 2019, 9, 5462. [Google Scholar] [CrossRef] [Green Version]
- Spitzer, R.L.; Endicott, J.; Micoulaud Franchi, J.-A. Medical and mental disorder: Proposed definition and criteria. Ann. Méd. Psychol. Rev. Psychiatr. 2018, 176, 656–665. [Google Scholar] [CrossRef]
- Clark, L.A.; Cuthbert, B.; Lewis-Fernández, R.; Narrow, W.E.; Reed, G.M. Three approaches to understanding and classifying mental disorder: ICD-11, DSM-5, and the National Institute of Mental Health’s Research Domain Criteria (RDoC). Psychol. Sci. Public Interest 2017, 18, 72–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fried, E.I.; van Borkulo, C.D.; Cramer, A.O.; Boschloo, L.; Schoevers, R.A.; Borsboom, D. Mental disorders as networks of problems: A review of recent insights. Soc. Psychiatry Psychiatr. Epidemiol. 2017, 52, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shuai, H.-H.; Shen, C.-Y.; Yang, D.-N.; Lan, Y.-F.C.; Lee, W.-C.; Yu, P.S.; Chen, M.-S. A Comprehensive Study on Social Network Mental Disorders Detection via Online Social Media Mining. IEEE Trans. Knowl. Data Eng. 2018, 30, 1212–1225. [Google Scholar] [CrossRef]
- Dham, S.; Sharma, A.; Dhall, A. Depression scale recognition from audio, visual and text analysis. arXiv 2017, arXiv:1709.05865. [Google Scholar]
- Jazaieri, H.; Morrison, A.S.; Goldin, P.R.; Gross, J.J. The role of emotion and emotion regulation in social anxiety disorder. Curr. Psychiatry Rep. 2015, 17, 531. [Google Scholar] [CrossRef]
- Lee Pe, M.; Kircanski, K.; Thompson, R.J.; Bringmann, L.F.; Tuerlinckx, F.; Mestdagh, M.; Mata, J.; Jaeggi, S.M.; Buschkuehl, M.; Jonides, J.; et al. Emotion-Network Density in Major Depressive Disorder. Clin. Psychol. Sci. 2015, 3, 292–300. [Google Scholar] [CrossRef]
- Hussein, D.M.E.-D.M. A survey on sentiment analysis challenges. J. King Saud Univ. Eng. Sci. 2018, 30, 330–338. [Google Scholar] [CrossRef]
- Rout, J.K.; Choo, K.-K.R.; Dash, A.K.; Bakshi, S.; Jena, S.K.; Williams, K.L. A model for sentiment and emotion analysis of unstructured social media text. Electron. Commer. Res. 2017, 18, 181–199. [Google Scholar] [CrossRef]
- Subramaniyaswamy, V.; Logesh, R.; Abejith, M.; Umasankar, S.; Umamakeswari, A. Sentiment Analysis of Tweets for Estimating Criticality and Security of Events. J. Organ. End User Comput. 2017, 29, 51–71. [Google Scholar] [CrossRef]
- Van den Broek-Altenburg, E.M.; Atherly, A.J. Using Social Media to Identify Consumers’ Sentiments towards Attributes of Health Insurance during Enrollment Season. Appl. Sci. 2019, 9, 2035. [Google Scholar] [CrossRef] [Green Version]
- Jabreel, M.; Moreno, A. A Deep Learning-Based Approach for Multi-Label Emotion Classification in Tweets. Appl. Sci. 2019, 9, 1123. [Google Scholar] [CrossRef] [Green Version]
- Go, A.; Bhayani, R.; Huang, L. Twitter sentiment classification using distant supervision. CS224N Proj. Rep. Stanf. 2009, 1, 2009. [Google Scholar]
- Mohammad, S.M.; Turney, P.D. Crowdsourcing a word—Emotion association lexicon. Comput. Intell. 2013, 29, 436–465. [Google Scholar] [CrossRef] [Green Version]
- Tai, K.S.; Socher, R.; Manning, C.D. Improved semantic representations from tree-structured long short-term memory networks. arXiv 2015, arXiv:1503.00075. [Google Scholar]
- Tai, C.-H.; Tan, Z.-H.; Chang, Y.-S. Systematical approach for detecting the intention and intensity of feelings on social network. IEEE J. Biomed. Health Inform. 2016, 20, 987–995. [Google Scholar] [CrossRef]
- Fusar-Poli, P.; Rutigliano, G.; Stahl, D.; Davies, C.; De Micheli, A.; Ramella-Cravaro, V.; Bonoldi, I.; McGuire, P. Long-term validity of the At Risk Mental State (ARMS) for predicting psychotic and non-psychotic mental disorders. Eur. Psychiatry 2017, 42, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.H.; Hu, G.L.; Wang, L. Psychological Disorder Identifying Method Based on Emotion Perception over Social Networks. Int. J. Environ. Res. Public Health 2019, 16, 953. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Hu, G.; Zhou, T. Semantic Analysis of Learners’ Emotional Tendencies on Online MOOC Education. Sustainability 2018, 10, 1921. [Google Scholar] [CrossRef] [Green Version]
- Guntuku, S.C.; Yaden, D.B.; Kern, M.L.; Ungar, L.H.; Eichstaedt, J.C. Detecting depression and mental illness on social media: An integrative review. Curr. Opin. Behav. Sci. 2017, 18, 43–49. [Google Scholar] [CrossRef]
- Wongkoblap, A.; Vadillo, M.A.; Curcin, V. Researching mental health disorders in the era of social media: Systematic review. J. Med. Internet Res. 2017, 19, e228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benton, A.; Mitchell, M.; Hovy, D. Multi-task learning for mental health using social media text. arXiv 2017, arXiv:1712.03538. [Google Scholar]
- Gkotsis, G.; Oellrich, A.; Velupillai, S.; Liakata, M.; Hubbard, T.J.; Dobson, R.J.; Dutta, R. Characterisation of mental health conditions in social media using Informed Deep Learning. Sci. Rep. 2017, 7, 45141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sloan, E.; Hall, K.; Moulding, R.; Bryce, S.; Mildred, H.; Staiger, P.K. Emotion regulation as a transdiagnostic treatment construct across anxiety, depression, substance, eating and borderline personality disorders: A systematic review. Clin. Psychol. Rev. 2017, 57, 141–163. [Google Scholar] [CrossRef] [PubMed]
- Coppersmith, G.; Leary, R.; Crutchley, P.; Fine, A. Natural language processing of social media as screening for suicide risk. Biomed. Inform. Insights 2018, 10, 1178222618792860. [Google Scholar] [CrossRef] [PubMed]
- Yadollahi, A.; Shahraki, A.G.; Zaiane, O.R. Current state of text sentiment analysis from opinion to emotion mining. ACM Comput. Surv. (CSUR) 2017, 50, 25. [Google Scholar] [CrossRef]
- Mäntylä, M.V.; Graziotin, D.; Kuutila, M. The evolution of sentiment analysis—A review of research topics, venues, and top cited papers. Comput. Sci. Rev. 2018, 27, 16–32. [Google Scholar] [CrossRef] [Green Version]
Parameter | Definition |
---|---|
PB | Psychology blog corpus of mental disorder |
AC | Authoritative criteria corpus of mental disorder |
fwi | ith frequent pattern in corpus from AC |
fi | Frequency of ith word |
wl(j,i) | jth word in segregation of fwi |
li | Disorder label of ith pattern |
psi | Intensity support of ith pattern |
qi | Quantity of items of ith pattern |
ci | Initial character of ith pattern |
PIS | Pattern intensity set |
apai | ith antecedent of associated pattern from PB |
apci | ith consequent of associated pattern from PB |
aci | Intensity confidence of ith associated pattern |
pli | Disorder label of ith potential pattern |
ppi | ith potential pattern |
ppsi | Intensity support of ith potential pattern |
Eight Basic Emotions in the Plutchik Wheel | Twenty-one Representative Emotions |
---|---|
Joy | Joy Intimacy |
Trust | Trust Confidence Concentration |
Fear | Anxiety Insecurity Fear |
Surprise | Surprise |
Sadness | Sadness Pain Despair Tired |
Disgust | Shame Disgust |
Anger | Anger Manic |
Anticipation | Passion Gratitude Hope Relaxation |
Parameter | Definition |
---|---|
ui | ith user |
SEP | Sequential emotion pattern data of user |
BHT | Bidimensional hash table of PIS |
lab | Matched mental disorder label |
s(d, j) | Intensity support of jth pattern in dth disorder |
ms(d, j) | Max intensity support of dth disorder is jth pattern |
g(d, j) | Intensity of jth pattern in dth disorder greater than RoId |
mnd | Number of matched emotions in dth disorder |
n | Number of all pattern detected from user |
RoMd | Ratio of matched patterns in dth disorder |
RoId | Relevance of intensity of all matched patterns in the dth disorder |
AoId | Average of intensity above RoId in dth disorder |
SoDd | Significance of the dth disorder among the rest type of disorders |
Ided | Diagnosis of mental statue in dth disorder |
Statuses | Definition |
---|---|
Status1 | In severe stage of mental disorder |
Status2 | In moderate stage of mental disorder |
Status3 | In mild stage of mental disorder |
Status4 | In severe tendency of mental disorder |
Status5 | In moderate tendency of mental disorder |
Status6 | In mild tendency of mental disorder |
Status7 | Mentally healthy |
Method | Precision | Recall | F1_Measure |
---|---|---|---|
Our method | 0.79 | 0.91 | 0.87 |
LSTM | 0.72 | 0.83 | 0.74 |
SeNTU | 0.75 | 0.86 | 0.82 |
User Type | User Number | Tweets Number |
---|---|---|
Anxiety Disorder | 2089 | 45,930 |
Bipolar Disorder | 1646 | 47,112 |
Depressive Disorder | 974 | 20,318 |
OCD Disorder | 2281 | 53,667 |
Waiter | 1179 | 23,459 |
Reporter | 961 | 19,144 |
Engineer | 891 | 17,653 |
Traveler | 962 | 18,835 |
Comedian | 1764 | 35,627 |
Musician | 2364 | 49,907 |
Disorder Type | Identified User | Total User | Accuracy |
---|---|---|---|
Anxiety | 1896 | 2089 | 90.76% |
Bipolar | 1493 | 1646 | 90.70% |
Depressive | 883 | 974 | 90.66% |
OCD | 2063 | 2281 | 90.44% |
Category | Detected User | Total User | Prediction Rate |
---|---|---|---|
Waiter | 546 | 1179 | 46.31% |
Reporter | 345 | 961 | 35.90% |
Engineer | 723 | 891 | 38.27% |
Traveler | 78 | 962 | 8.11% |
Comedian | 188 | 1764 | 10.66% |
Musician | 382 | 2364 | 16.16% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Liu, H.; Zhou, T. A Sequential Emotion Approach for Diagnosing Mental Disorder on Social Media. Appl. Sci. 2020, 10, 1647. https://doi.org/10.3390/app10051647
Wang L, Liu H, Zhou T. A Sequential Emotion Approach for Diagnosing Mental Disorder on Social Media. Applied Sciences. 2020; 10(5):1647. https://doi.org/10.3390/app10051647
Chicago/Turabian StyleWang, Ling, Hangyu Liu, and Tiehua Zhou. 2020. "A Sequential Emotion Approach for Diagnosing Mental Disorder on Social Media" Applied Sciences 10, no. 5: 1647. https://doi.org/10.3390/app10051647
APA StyleWang, L., Liu, H., & Zhou, T. (2020). A Sequential Emotion Approach for Diagnosing Mental Disorder on Social Media. Applied Sciences, 10(5), 1647. https://doi.org/10.3390/app10051647