Balance Control in Obese Subjects during Quiet Stance: A State-of-the Art
Abstract
:1. Introduction
- Treatment of biomechanical constraints (weakness, reduced range of motion, reduced flexibility, and improper postural alignment).
- Weight shifting exercise to treat reduced limits of stability.
- Sensory retraining of balance control.
- Training of anticipatory postural adjustments focused on improving postural preparation for transition from one position to another (sit-to-stand single-leg-stance, step initiation, and compensatory forward stepping).
- Training postural responses to perturbations.
- Dynamic stability during gait (i.e., walking in different directions and environments).
2. Methods
3. Results
3.1. Study Population
Experimental Set-up and Parameters
3.2. Gender Effects
3.2.1. Males
3.2.2. Females
3.2.3. Males vs. Females
3.3. General Considerations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Karimi, M.T.; Solomonidis, S. The relationship between parameters of static and dynamic stability tests. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 2011, 16, 530–535. [Google Scholar]
- Maranesi, E.; Fioretti, S.; Ghetti, G.G.; Rabini, R.A.; Burattini, L.; Mercante, O.; Di Nardo, F. The surface electromyographic evaluation of the Functional Reach in elderly subjects. J. Electromyogr. Kinesiol. 2016, 26, 102–110. [Google Scholar] [CrossRef]
- Alghadir, A.H.; Alotaibi, A.Z.; Iqbal, Z.A. Postural stability in people with visual impairment. Brain Behav. 2019, 9, e01436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appiah-Kubi, K.; Wright, W. Vestibular training promotes adaptation of multisensory integration in postural control. Gait Posture 2019, 73, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Yanagihara, D. Role of the cerebellum in postural control. J. Phys. Fit. Sports Med. 2014, 3, 169–172. [Google Scholar] [CrossRef] [Green Version]
- Błaszczyk, J.W. The use of force-plate posturography in the assessment of postural instability. Gait Posture 2016, 44, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Maurer, C.; Peterka, R.J. A New Interpretation of Spontaneous Sway Measures Based on a Simple Model of Human Postural Control. J. Neurophysiol. 2005, 93, 189–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cieślińska-Świder, J.M.; Błaszczyk, J.W. Posturographic characteristics of the standing posture and the effects of the treatment of obesity on obese young women. PLOS ONE 2019, 14, e0220962. [Google Scholar] [CrossRef]
- Winter, D. Human balance and posture control during standing and walking. Gait Posture 1995, 3, 193–214. [Google Scholar] [CrossRef]
- Maranesi, E.; Merlo, A.; Fioretti, S.; Zemp, D.D.; Campanini, I.; Quadri, P. A statistical approach to discriminate between non-fallers, rare fallers and frequent fallers in older adults based on posturographic data. Clin. Biomech. 2016, 32, 8–13. [Google Scholar] [CrossRef]
- Sabatini, A.M. Analysis of postural sway using entropy measures of signal complexity. Med. Biol. Eng. Comput. 2000, 38, 617–624. [Google Scholar] [CrossRef] [PubMed]
- Chiari, L.; Rocchi, L.; Cappello, A. Stabilometric parameters are affected by anthropometry and foot placement. Clin. Biomech. 2002, 17, 666–677. [Google Scholar] [CrossRef]
- Kim, Y.; Morshed, S.; Joseph, T.; Bozic, K.; Ries, M.D. Clinical Impact of Obesity on Stability Following Revision Total Hip Arthroplasty. Clin. Orthop. 2006, 453, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Capodaglio, P.; Menegoni, F.; Vismara, L.; Cimolin, V.; Grugni, G.; Galli, M. Characterisation of balance capacity in Prader–Willi patients. Res. Dev. Disabil. 2011, 32, 81–86. [Google Scholar] [CrossRef]
- Doyle, T.L.; Newton, R.U.; Burnett, A.F. Reliability of Traditional and Fractal Dimension Measures of Quiet Stance Center of Pressure in Young, Healthy People. Arch. Phys. Med. Rehabil. 2005, 86, 2034–2040. [Google Scholar] [CrossRef]
- Galli, M.; Rigoldi, C.; Celletti, C.; Mainardi, L.; Tenore, N.; Albertini, G.; Camerota, F. Postural analysis in time and frequency domains in patients with Ehlers-Danlos syndrome. Res. Dev. Disabil. 2011, 32, 322–325. [Google Scholar] [CrossRef]
- Cimolin, V.; Galli, M.; Rigoldi, C.; Grugni, G.; Vismara, L.; Mainardi, L.; Capodaglio, P. Fractal dimension approach in postural control of subjects with Prader-Willi Syndrome. J. NeuroEngineering Rehabil. 2011, 8, 45. [Google Scholar] [CrossRef] [Green Version]
- Goldberger, A.L.; Amaral, L.A.N.; Hausdorff, J.M.; Ivanov, P.C.; Peng, C.-K.; Stanley, H.E. Fractal dynamics in physiology: Alterations with disease and aging. Proc. Natl. Acad. Sci. USA 2002, 99, 2466–2472. [Google Scholar] [CrossRef] [Green Version]
- Maffiuletti, N.A.; Agosti, F.; Proietti, M.; Riva, D.; Resnik, M.; Lafortuna, C.L.; Sartorio, A. Postural instability of extremely obese individuals improves after a body weight reduction program entailing specific balance training. J. Endocrinol. Invest. 2005, 28, 2–7. [Google Scholar] [CrossRef]
- Alonso, A.C.; Mochizuki, L.; Silva Luna, N.M.; Ayama, S.; Canonica, A.C.; Greve, J.M.D.A. Relation between the Sensory and Anthropometric Variables in the Quiet Standing Postural Control: Is the Inverted Pendulum Important for the Static Balance Control? BioMed Res. Int. 2015, 2015, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Cau, N.; Cimolin, V.; Galli, M.; Precilios, H.; Tacchini, E.; Santovito, C.; Capodaglio, P. Center of pressure displacements during gait initiation in individuals with obesity. J. NeuroEngineering Rehabil. 2014, 11, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Souza, S.A.F.; Faintuch, J.; Valezi, A.C.; Sant’ Anna, A.F.; Gama-Rodrigues, J.J.; de Batista Fonseca, I.C.; Souza, R.B.; Senhorini, R.C. Gait Cinematic Analysis in Morbidly Obese Patients. Obes. Surg. 2005, 15, 1238–1242. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Aruin, A.S. The effect of short-term changes in body mass distribution on feed-forward postural control. J. Electromyogr. Kinesiol. 2009, 19, 931–941. [Google Scholar] [CrossRef]
- World Health Organisation Obesity and overweigth. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight(accessed on 6 March 2020).
- Ward, Z.J.; Bleich, S.N.; Cradock, A.L.; Barrett, J.L.; Giles, C.M.; Flax, C.; Long, M.W.; Gortmaker, S.L. Projected U.S. State-Level Prevalence of Adult Obesity and Severe Obesity. N. Engl. J. Med. 2019, 381, 2440–2450. [Google Scholar] [CrossRef]
- McGraw, B.; McClenaghan, B.A.; Williams, H.G.; Dickerson, J.; Ward, D.S. Gait and postural stability in obese and nonobese prepubertal boys. Arch. Phys. Med. Rehabil. 2000, 81, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Mathus-Vliegen, E.M.H.; Basdevant, A.; Finer, N.; Hainer, V.; Hauner, H.; Micic, D.; Maislos, M.; Roman, G.; Schutz, Y.; Tsigos, C.; et al. Prevalence, Pathophysiology, Health Consequences and Treatment Options of Obesity in the Elderly: A Guideline. Obes. Facts 2012, 5, 460–483. [Google Scholar] [CrossRef]
- Menegoni, F.; Milano, E.; Trotti, C.; Galli, M.; Bigoni, M.; Baudo, S.; Mauro, A. Quantitative evaluation of functional limitation of upper limb movements in subjects affected by ataxia. Eur. J. Neurol. 2009, 16, 232–239. [Google Scholar] [CrossRef]
- Son, S.M. Influence of Obesity on Postural Stability in Young Adults. Osong Public Health Res. Perspect. 2016, 7, 378–381. [Google Scholar] [CrossRef] [Green Version]
- Hue, O.; Simoneau, M.; Marcotte, J.; Berrigan, F.; Doré, J.; Marceau, P.; Marceau, S.; Tremblay, A.; Teasdale, N. Body weight is a strong predictor of postural stability. Gait Posture 2007, 26, 32–38. [Google Scholar] [CrossRef]
- Teasdale, N.; Hue, O.; Marcotte, J.; Berrigan, F.; Simoneau, M.; Doré, J.; Marceau, P.; Marceau, S.; Tremblay, A. Reducing weight increases postural stability in obese and morbid obese men. Int. J. Obes. 2007, 31, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Menegoni, F.; Galli, M.; Tacchini, E.; Vismara, L.; Cavigioli, M.; Capodaglio, P. Gender-specific Effect of Obesity on Balance. Obesity 2009, 17, 1951–1956. [Google Scholar] [CrossRef] [PubMed]
- Błaszczyk, J.W.; Cieślinska-Świder, J.; Plewa, M.; Zahorska-Markiewicz, B.; Markiewicz, A. Effects of excessive body weight on postural control. J. Biomech. 2009, 42, 1295–1300. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Gómez, N.S.; Plascencia, G.; Villanueva-Padrón, L.A.; Jáuregui-Renaud, K. Influence of Obesity and Gender on the Postural Stability during Upright Stance. Obes. Facts 2011, 4, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Rigoldi, C.; Galli, M.; Mainardi, L.; Crivellini, M.; Albertini, G. Postural control in children, teenagers and adults with Down syndrome. Res. Dev. Disabil. 2011, 32, 170–175. [Google Scholar] [CrossRef]
- Hita-Contreras, F.; Martínez-Amat, A.; Lomas-Vega, R.; Álvarez, P.; Mendoza, N.; Romero-Franco, N.; Aránega, A. Relationship of body mass index and body fat distribution with postural balance and risk of falls in Spanish postmenopausal women. Menopause 2013, 20, 202–208. [Google Scholar] [CrossRef]
- Cimolin, V.; Galli, M.; Rigoldi, C.; Grugni, G.; Vismara, L.; de Souza, S.A.F.; Mainardi, L.; Albertini, G.; Capodaglio, P. The fractal dimension approach in posture: a comparison between Down and Prader–Willi syndrome patients. Comput. Methods Biomech. Biomed. Engin. 2014, 17, 1535–1541. [Google Scholar] [CrossRef]
- Cieślińska-Świder, J.; Furmanek, M.P.; Błaszczyk, J.W. The influence of adipose tissue location on postural control. J. Biomech. 2017, 60, 162–169. [Google Scholar] [CrossRef]
- Hirjaková, Z.; Šuttová, K.; Kimijanová, J.; Bzdúšková, D.; Hlavačka, F. Postural Changes During Quiet Stance and Gait Initiation in Slightly Obese Adults. Physiol. Res. 2018, 985–992. [Google Scholar] [CrossRef]
- Paillard, T.; Noé, F. Techniques and Methods for Testing the Postural Function in Healthy and Pathological Subjects. BioMed Res. Int. 2015, 2015, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Cimolin, V.; Galli, M.; Grugni, G.; Vismara, L.; Precilios, H.; Albertini, G.; Rigoldi, C.; Capodaglio, P. Postural strategies in Prader–Willi and Down syndrome patients. Res. Dev. Disabil. 2011, 32, 669–673. [Google Scholar] [CrossRef]
- Galli, M.; Rigoldi, C.; Mainardi, L.; Tenore, N.; Onorati, P.; Albertini, G. Postural control in patients with Down syndrome. Disabil. Rehabil. 2008, 30, 1274–1278. [Google Scholar] [CrossRef] [PubMed]
- Galli, M.; Cimolin, V.; Vismara, L.; Grugni, G.; Camerota, F.; Celletti, C.; Albertini, G.; Rigoldi, C.; Capodaglio, P. The effects of muscle hypotonia and weakness on balance: A study on Prader–Willi and Ehlers–Danlos syndrome patients. Res. Dev. Disabil. 2011, 32, 1117–1121. [Google Scholar] [CrossRef] [PubMed]
- Dutil, M.; Handrigan, G.A.; Corbeil, P.; Cantin, V.; Simoneau, M.; Teasdale, N.; Hue, O. The impact of obesity on balance control in community-dwelling older women. AGE 2013, 35, 883–890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, C.C.T.; Barnes, C.M.; Holton, M.; Summers, H.D.; Stratton, G. Profiling movement quality and gait characteristics according to body-mass index in children (9–11 y). Hum. Mov. Sci. 2016, 49, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Berrigan, F.; Simoneau, M.; Tremblay, A.; Hue, O.; Teasdale, N. Influence of obesity on accurate and rapid arm movement performed from a standing posture. Int. J. Obes. 2006, 30, 1750–1757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilleard, W.; Smith, T. Effect of obesity on posture and hip joint moments during a standing task, and trunk forward flexion motion. Int. J. Obes. 2007, 31, 267–271. [Google Scholar] [CrossRef]
- Corbeil, P.; Simoneau, M.; Rancourt, D.; Tremblay, A.; Teasdale, N. Increased risk for falling associated with obesity: mathematical modeling of postural control. IEEE Trans. Neural Syst. Rehabil. Eng. 2001, 9, 126–136. [Google Scholar] [CrossRef]
- Rodacki, A.L.F.; Fowler, N.E.; Provensi, C.L.G.; Rodacki, C.D.L.N.; Dezan, V.H. Body mass as a factor in stature change. Clin. Biomech. 2005, 20, 799–805. [Google Scholar] [CrossRef]
Source | Year | Country | # Participants and Gender (# M/F) | Age (Yrs.) | BMI (Kg/m2) (the Weight (kg) Is Reported When BMI Is Not Present) | Parameters | Trial Duration | Conditions | Foot Position |
---|---|---|---|---|---|---|---|---|---|
Hue et al. [30] | 2007 | Canada | Total: 59 (M) | 40.5 ± 9.5 | 35.2 ± 11.7 | CoP RMS (AP and ML) CoP Range (AP and ML) Sway area Mean CoP velocity (AP and ML) RMS of CoP velocity | 35 s (last 30 s used for the analysis) | Eyes open/eyes closed | Feet 10 cm apart |
Teasdale et al. [31] | 2007 | Canada | Total: 44 (M) Divided into Control group: 16 Obese group: 14 Morbid group: 14 | Control group: 38.6 ± 9.4 Obese group: 37.9 ± 7.7 Morbid group: 44.4 ± 8.9 | Control group: 22.7 ± 2.2 Obese group: 33 ± 3 Morbid group: 50.5 ± 6.8 | CoP RMS (AP and ML) CoP Range (AP and ML) Mean CoP velocity (AP and ML)RMS of CoP velocity | 35 s (last 30 s used for the analysis) | Eyes open/Eyes closed | Feet together |
Menegoni et al. [32] | 2009 | Italy | Total: 44 M: 22/F: 22 | 19–58 | M:41.1 ± 4.1 F:40.2 ± 5 | CoP RMS (AP and ML) CoP Range (AP and ML) Mean CoP velocity (AP and ML) | 60 s | Eyes open | Standardised (distance between heels approx. 8 cm and angle between feet of 30°) |
Blaszczyk et al. [33] | 2009 | Poland | Total. 100 (F) | 18–53 | 37.2 ± 5.2 | CoP range (AP and ML) CoP length | 30 s | Eyes open/eyes closed | Feet apart and slightly turned out |
Cimolin et al. [17] | 2011 | Italy | Total: 11 (PWS) M: 5/F: 6 | 34.4 ± 3.7 | 41.4 ± 8.1 | CoP Range (AP and ML) CoP length peak of the spectrum (AP and ML) FD | 30 s | Eyes open | Feet at a 30° angle |
Cruz-Gomez et al. [34] | 2011 | Mexico | Total: 180 M: 90/F: 90 Divided into Lean (%): M: 41; F: 37 Overweight (%): M: 48; F: 33 Obese (%): M: 11; F: 30 | 12–67 (M:34.9 ± 12.27; F:36.76 ± 12.02) | M:25.97 ± 3.73 F:26.83 ± 4.77 | CoP length CoP area CoP velocity | 25.6 s | 1. Hard surface and eyes open. 2. Hard surface and eyes closed. 3. Soft surface and eyes open. 4. Soft surface and eyes closed | According to the manufacturer reference |
Rigoldi et al. [35] | 2011 | Italy | Total: 45 (DS) (gender not detailed) | 22–46 | 57.9 + 10.8 Kg | CoP Range (AP and ML) CoP length peak of the spectrum (AP and ML) | 30 s | Eyes open/eyes closed | Feet at a 30° angle |
Hita-Contreras et al. [36] | 2013 | Spain | Total: 100 (F) | 57.51 ± 3.99 | 27.10 ± 4.71 | CoP RMS (AP and ML) Sway area Mean CoP velocity (AP and ML) | 30 s | 1. Eyes open 2. Eyes closed 3. Foam surface and eyes open 4. Foam surface and eyes closed | Feet at a 30° angle |
Cimolin et al. [37] | 2014 | Italy | Total 59 M: 15; F: 11 M: 6; F: 7 (PWS) M: 11; F: 9 (DS) | 34.2 ± 10.7 32.4 ± 4.2 (PWS) 29.1 ± 8.1 (DS) | 40.6 ± 4.6 40.3 ± 6.6 (PWS) 35.8 ± 6.2 (DS) | CoP Range (AP and ML) CoP length peak of the spectrum (AP and ML) FD | 30 s | Eyes open | Feet at a 30° angle |
Cieslinska-Swider et al. [38] | 2017 | Poland | Total: 80 (F) Divided into Group A: 40 with android type of obesity Group G: 40 with gynoid type of obesity | Group A: 38 ± 12 Group G: 36 ± 11 | Group A: 37.6 ± 5.5 Group G: 36.9 ± 5.1 | CoP range (AP and ML) CoP mean velocity CoP peak velocity | 30 s | Eyes open/eyes closed | Feet apart and slightly turned out |
Hirjakova et al. [39] | 2018 | Slovakia | Total: 22 M: 13/F: 9 | 32.5 ± 1.3 | 32.0 ± 0.9 | CoP Range (AP and ML) Mean CoP velocity (AP and ML) | 50 s | Eyes open | Self-selected stance width |
Cieslinska-Swider et al. [8] | 2019 | Poland | Total: 32 (F) | 35.9 ± 9.8 | 36.4 ± 5.2 | CoP range (AP and ML) CoP mean velocity CoP peak velocity | 30 s | Eyes open/eyes closed | Feet apart and slightly turned out |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cimolin, V.; Cau, N.; Galli, M.; Capodaglio, P. Balance Control in Obese Subjects during Quiet Stance: A State-of-the Art. Appl. Sci. 2020, 10, 1842. https://doi.org/10.3390/app10051842
Cimolin V, Cau N, Galli M, Capodaglio P. Balance Control in Obese Subjects during Quiet Stance: A State-of-the Art. Applied Sciences. 2020; 10(5):1842. https://doi.org/10.3390/app10051842
Chicago/Turabian StyleCimolin, Veronica, Nicola Cau, Manuela Galli, and Paolo Capodaglio. 2020. "Balance Control in Obese Subjects during Quiet Stance: A State-of-the Art" Applied Sciences 10, no. 5: 1842. https://doi.org/10.3390/app10051842
APA StyleCimolin, V., Cau, N., Galli, M., & Capodaglio, P. (2020). Balance Control in Obese Subjects during Quiet Stance: A State-of-the Art. Applied Sciences, 10(5), 1842. https://doi.org/10.3390/app10051842